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Metastable vacua

Exist in gauge theories

N=1 SQCD      Intriligator, Seiberg, Shih

Lots of other theories      everybody and their brother

No type IIA realizations of metastable 
vacua                Bena, Gorbatov, Hellerman, Seiberg, Shih

Why ? 



No IIA brane realization
N=1 engineered with D4 + NS5

D4 ends on codimension 2 line inside NS5 

End of D4 branes sources log mode on NS5

NS5 brane bending

     ⇔	 Log running of N=1 coupling constant     Witten

Tiny IR perturbation ⇒  log  ⇒  UV messed up

Bena, Gorbatov, Hellerman, Seiberg, Shih

different UV ⇔	 not vacua of the same theory



What about AdS-CFT
No asmpt-AdS5 metastable solutions

One candidate:                 Kachru Pearson Verlinde

Anti-D3 branes in Klebanov Strassler

Codimension 6   ⇒   modes ~ 1/ r 
4 

Normalizable  ⇒  metastable vacuum

Much used in string cosmology

?



Klebanov-Strassler

2-sphere

3-sphere

r = 0

r =∞

1
4π2α�

�

S3
F (3) = M

UV

IR
D3 charge dissolved in fluxes

H3 x F3 → F5 

F5 x F3 → H3



Metastable proposal

2-sphere

3-sphere

Metastable vacuum Kachru Pearson Verlinde

Add anti-D3 at tip

anti-D3 tunnel and annihilate D3 charge in flux

D3 charge in flux

 decay to BPS solution brane polarization
(Myers effect)



AdS-CFT modes        BDHM - BKLT

Normalizable modes  (NM)
dual to vevs

Finite energy, IR

Non-normalizable (NNM)
deformations of Lagrangian

Infinite energy, UV

Different NNM  ⇒  different theories

Same NNM  ⇒   different vacua, same theory

Energy

Normalizable

Non-Normalizable

r = 0

r =∞

metastable ⇔ NNM=0 



Big Question

Fluxes ⇒   KS field ~ log r

encodes log running of coupling constant

Anti-D3 couple to this field   
IIA intuition:  log messed up ⇒ non-normalizable 

every dual of non-conformal 4D theory ⇒ log modes

2 Another floating brane

This is an M2 wrapped on the S2 and zooming at ψ = t.

V BI =
�

(e2A − e2B)e4S = 8d21e
−6D (2.12)

after imposing the other floating conditions

FWZ = −dVWZ

dr
= 2Q2e

A−B−6D+2S = 4Q2d1 tanhFe−10D (2.13)

1

g21
− 1

g22
∼

�

S2

B2 ∼ log r (2.14)

3

Anti-D3 ⇒ normalizable or non-normalizable modes? 



Big Implications if NNM
No AdS-CFT metastable 4D vacua

String cosmology/landscape:

 anti-D3 down long KS throats ➙  
 redshift ➙ tunably-small energy ➙
 lift AdS to dS                   KKLT, etc.
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D
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By fine-tuning D, it is easy to have the dS minimum very close to zero. For the model W0 =
−10−4, A = 1, a = 0.1 D = 3× 10−9 we find the potential (multiplied by 1015):
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anti-D3 non-normalizable 
energy not tunably-small  
moduli stabilization messed up

SCAPEZILLA



Scape-zilla
4D N=1 gauge theories - log running - generic 
phenomenon, not restricted to KS

Same happens in LARGE volume scenarios

No vacuum uplift by small-energy !
anti-D3 give O(1)contribution ! 

Landscape of AdS vacua

Landscape of dS vacua





Can we find Scapezilla ?

2-sphere

3-sphere

r = 0

r =∞

Solution(t)
SU(2)× SU(2)× Z2

Smear anti-D3’s



Perturbation theory in anti-D3 number

8 modes satisfying second-order eqs. 

16 integration constants 

expanded around BPS solution ⇒ 
first-order system:

Papadopoulos, Tseytlin 2000
Borokhov,Gubser 2002
Kuperstein, Sonnenschein 2003

2.1 The First Order Formalism

The starting point is the one dimensional Lagrangian

L = −1

2
Gab

dφa

dτ

dφb

dτ
− V (φ) (1)

which we require to have the simplifying property that it can be written in terms of a superpotential

L = −1

2
Gab

�dφa

dτ
− 1

2
Gac∂W

∂φc

��dφa

dτ
− 1

2
Gac∂W

∂φc

�
− 1

2

∂W

∂τ
, (2)

where

V (φ) =
1

8
Gab∂W

∂φa

∂W

∂φb
. (3)

The fields φa are expanded around their supersymmetric background value φa
0 (which will

correspond in our case to the Klebanov-Strassler solution [?])

φa = φa
0 + φa

1(X) +O(X2) , (4)

where X represents the set of perturbation parameters, and φa
1 is linear in them. The supersym-

metric solution φa = φa
0 satisfies the gradient flow equations

dφa

dτ
− 1

2
Gab∂W

∂φb
= 0 , (5)

while the deviation from the gradient flow equations for the perturbation φa
1 is measured by the

conjugate functions ξa, given by

ξa ≡ Gab(φ0)

�
dφb

1

dτ
−M b

d(φ0)φ
d
1

�
, M b

d ≡
1

2

∂

∂φd

�
Gbc∂W

∂φc

�
. (6)

The ξa are linear in the expansion parameters X, hence they are of the same order as the φa
1, and

when all the ξa vanish the deformation is supersymmetric.
The main point of this construction is that the equations of motion reduce to a set of first order

linear equations for (ξa,φa):

dξa
dτ

+ ξbM
b
a(φ0) = 0, (7)

dφa
1

dτ
−Ma

b(φ0)φ
b
1 = Gabξb . (8)

Note that equations (8) are just a rephrasing of the definition of the ξa in (6), while Eqs. (7) imply
the equations of motion [?].

2.2 Papadopoulos-Tseytlin ansatz for the perturbation

The KS background has SU(2) × SU(2) × Z2 symmetry. We are interested in a solution for the
backreaction of a smeared set of anti-D3 branes and we have the liberty to smear these branes
without breaking the Z2 symmetry (which exchanges the two copies of SU(2)). Furthermore

8



The Hunting Method
Solve first 8 equations for ξ. Integration constants X. 

Use ξ + other 8 eqs. to get ϕ. Integration constants Y

dim ∆ non-norm/norm int. constant
8 r4/r−8 Y4/X1

7 r3/r−7 Y5/X6

6 r2/r−6 X3/Y3

5 r/r−5 −−−
4 r0/r−4 Y7, Y8, Y1/X5, X4, X8

3 r−1/r−3 X2, X7/Y6, Y2

2 r−2/r−2 −−−

X2 and X7 ~ 1/r          non-normalizable



The hard work
Implicit solution - 8 nested integrals

Smart grad students → nested integrals 
can be simplified:

ξ - solved in terms of one integral ! 

ϕ - 2 or 3 nested integrals !

Easy to find all mode profiles numerically



The silver bullet !!!
16 constants - 14 physical ones

Probe D3 brane attracted by anti-D3’s

Force is universal: KKLMMT 

We get

Only depends on 1 of the 14 constants !!!

Only force-mode is ξ1

As we will show in detail in section 4, it is rather straightforward to compute the UV asymptotic
expansion of ξ̃1 by expanding the integrand in (53) for large values of τ :

ξ̃1 = X13(1− 4τ)e−4τ/3 +O(e−10τ/3) (47)

By expanding in the ultraviolet e−2x0 as well

e−2x0 =
8

3P 2(4τ − 1)
+O(e−2τ ) , (48)

we can see that the UV expansion of the force felt by a probe D3 brane in the first-order perturbed
solution is always

Fτ ∼ X1e
−4τ/3 +O(e−10τ/3) . (49)

Recalling that in the UV, τ is related to the canonical radial coordinate

r = eτ/3 , (50)

it follows that

Fr ∼
X1

r5
+O

�
1

r11

�
(51)

and thus the potential goes like

V ∼ C +
X1

r4
. (52)

Having obtained this simple universal result, we pause to consider its physical implications. First,
the force is largely independent of which modes perturb the KS solution and on whether these
modes are normalizable or non-normalizable; it may be zero in certain solutions (such as [?],
where X1 = 0) but when non-zero it has a universal form (51). Out of the 14 physically-relevant
SU(2)× SU(2)× Z2-preserving perturbation parameters, only one enters in the force.

Second, this result agrees with that obtained in [?]. In that paper, the force felt by a probe
anti-D3 brane in KS with D3 branes at the bottom was shown to scale like 1/r5 and to be linear
in the D3 charge. It was also argued using Newton’s third law that the same force should be felt
by a probe D3-brane in KS with anti-D3 branes at the bottom. Our result implies therefore that
in order to describe anti-D3 branes in the infrared, one must have a nontrivial ξ̃1, and furthermore
that the constant X1 must be proportional to the number of anti-D3 branes.

We would also like to note that in the ultraviolet the mode (in the φi) proportional to X1 is
a normalizable mode decaying as r−8, in fact this is the most convergent of the 14 modes. The
necessity for having such a mode in order to find the r−5 force predicted by [?] was discussed in [?],
although the mode itself was not identified. However, the force analysis alone in no way supports
or disfavors the possibility that an anti-D3 brane sources a non-normalizable mode. The force has
exactly the same r-dependence regardless of whether non-normalizable modes are turned on or
not. Hence, the cancelation of terms in the force up to order 1/r4 is universal.

4 The Space of Solutions

In this section we find the generic solution to the system (17-33), which depends on sixteen inte-
gration constants (although only fourteen are physical). As we will see, the full solution involves
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Look in the infrared
Kill very divergent guys + ξ1 must be nonzero !!!

Physical divergence: anti-D3 smeared on S3

Warp factor diverges

Curvature diverges: R ∼ F 2
(5) ∼ τ−4

∼ τ−1

H
2
(3) ∼ F

2
(3) ∼ τ

−2 Must be there !!!

Another divergence - no obvious reason

Subleading singularity ~ ξ1

Everything depends on it !!!



Anti-D3 in KS is normalizable 

Dual to gauge theory metastable vacuum 

Nice physics - vev’s etc.

Hunt for gauge theory dual

If singularity physical:

Dymarsky
Klebanov 
Seiberg

AdS can be uplifted to dS
Landscape of dS vacua alive and frisky 

No Scapezilla



If singularity unphysical:
anti-D3 sources non-normalizable modes

IR couplings to log mode ( H3 ) - mess up UV

No more dS landscape - SCAPEZILLA
  

Reminder -BPS solution:

F5 x F3 → H3

H3 x F3 → F5
2-sphere

3-sphere



If singularity unphysical:

anti-D3 
dissolved in flux

(-F5) x  F3   →  - H3

(-H3) x  F3  →  - F5

Sign of D3 charge dissolved in flux not fixed !!!

Only F3 flux on S3 fixed. 

Only physical solution with 
anti-D3 is anti-KS !!!



Is this generic ?
Do anti-branes always hate charge dissolved in flux ?

I hope not ...
M-theory version of Klebanov-Strassler - CGLP
Cvetic, Gibbons, Lu, Pope 
M2 + transverse 8D Stenzel Space, magnetic F4 + F4

M2 charge in fluxes 

add anti-M2 → metastable 
Klebanov, Pufu

Perturbative solution = singular !

Idem for anti-D2 in CGLP, A8 

Insane antibranes      Giecold, Orsi, Puhm

3-sphere

4-sphere



What about non-extremal fuzzballs ?

We have many many many BPS or extremal 
horizonless microstate geometries (fuzzballs):

Bena, Bobev, Bossard, Dall’Agata, deBoer, Giusto, Niehoff, Ruef, Shigemori, Vasilakis, Warner 
&  friends



Common in String Theory

?

Non-Extremal

Extremal Black Hole

Resolution “backwards in time” !!!



where ds23 is the flat metric on R3. The full details of the background geometry, including the
background four-form flux, are given in appendix A. Note that the inverse of the warp factors
ZI are also the electric potentials for the four-form and hence they determine the M2 charges at
each background center. The two charges Q1 and Q2 of the supertube are parallel to those of the
background and correspond to M2 branes along the first and second T 2. The dipole charge, d3,
corresponds to an M5 brane extended along those two tori wrapping the fiber of the Gibbons-
Hawking space. If the tube is supersymmetric, then the fully-backreacted solution is again in
the class (4); the warp factors Z1 and Z2 will have a singularity at the location of the tube, and
the Born-Infeld description of the supertube captures all the aspects of the backreacted solution
[46].

Figure 2: A smooth three-charge bubbling geometry with a supertube (red) placed on one of the cycles
along ψ.

However, since we are trying to study non-supersymmetric supertubes, for which no fully-
backreacted description has been constructed so far, we will work in a probe approximation,
ignoring the backreaction of the supertube. This is best done in a duality frame where the
dynamics of the supertube can be described by a Born-Infeld action, and such a frame is obtained
for example by reducing the 11-dimensional system along a torus direction.

We find that the Hamiltonian of a two-charge supertube in a multi-center three-charge back-
ground with Gibbons-Hawking base is:5

H =

√
Z1Z2Z3V 3

d3(Z1Z2Z3V − µ2V 2)

�

Q̃2
1 + d23

Z1Z2Z3V − µ2V 2

Z2
2V

2

�

Q̃2
2 + d23

Z1Z2Z3V − µ2V 2

Z2
1V

2

+
µV 2

d3(Z1Z2Z3V − µ2V 2)
Q̃1Q̃2 −

1

Z1
Q̃1 −

1

Z2
Q̃2 −

d3µ

Z1Z2
+Q1 +Q2 ,

(8)

where we have introduced

Q̃1 ≡ Q1 + d3(K
2/V − µ/Z2) , Q̃2 ≡ Q2 + d3(K

1/V − µ/Z1) (9)

and the harmonic functions K1 and K2 encode two of the three dipole moments of the back-
ground. Although the calculation yielding this result treats the two charges of the supertube
differently, the final Hamiltonian is symmetric under interchange of indices (1 ↔ 2), which is a

5See appendix B for the derivation.

5

Figure 8: Illustration of the tunneling process. Supertubes are depicted as red circles wrapping
the Gibbons-Hawking fiber ψ. A metastable supertube close to one center can tunnel to a stable
supertube close to the other center, reducing in the process the flux on the two-cycle between
these two centers.

Although we have only illustrated the existence of metastable vacua for a very specific ex-
ample, we believe it is a generic phenomenon that can occur in all multicenter three-charge
backgrounds, and in particular in the smooth solutions with long throats that give microstates
of three-charge extremal supersymmetric black holes in five dimensions. The resulting metastable
configurations should then represent microstates of non-extremal black holes. It would be in-
teresting to extend our proof-of-concept analysis to such more complicated backgrounds, and to
argue that the fuzzballs of extremal black holes survive off-extremality.

Of course, to fully run this argument, and to understand the properties of non-extremal
microstates in the same regime of parameters where the classical black hole exists, one would
need to calculate the backreaction of the metastable supertubes, at least to first order. One might
argue by analogy with other antibrane backreaction calculations [6, 7, 8, 9, 10] that this may
completely wreck the structure of the solution. One counter-argument might be that because
our solutions are asymptotically flat, they will be less susceptible to backreaction problems.

The calculation of the backreacted solution would also reveal whether the non-extremal mi-
crostates obtained from metastable supertubes have ergospheres, as one expects [53] from the
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Non-extremal microstates ?
Add metastable supertube wrapping GH fiber:
Bena, Puhm, Vercnocke

Decays via brane-flux annihilation      
May be only way to construct stationary non-
extremal microstate geometries         Gibbons, Warner 





Is singularity physical ?
If not physical:

antibranes cannot coexist with charge in fluxes

maybe no more dS landscape ☹
maybe no systematic way to build non-extremal 
stationary microstate geometries (fuzzballs) ☹
brane of codimension 6 + fluxes → log modes 

So it must be physical !!!
Proof   by 

wishful thinking



Is singularity physical ?

One should a-priori take only normalizable modes in UV, 
and accept whatever exists in the IR 

Maybe, but not in AdS-CFT 

IR regularity crucial to relate NNM with NM. Otherwise 
get wrong physics:

AdS-QCD-CMT without incoming b.c. at black hole

Confinement from Klebanov-Tseytlin

Incorrect AdS-CFT

Scapezilla not easy to kill 



Is singularity physical ?

No intention:                                     Bena, Grana, Kuperstein, Massai

1. Eliminate IR singularity
2a. Find full solution in an IR expansion to order τ 10

2b. Examine r.h.s. of nonlinear equations

Only possible solution with anti-D3 is anti-KS

Anti-D3 singularity @ first-order backreaction  

May go away at full backreaction       Dymarsky

Anti-D3‘s are singular to the bitter end

Anti-M2‘s as well



Is singularity physical ?
Integral of divergent energy density is finite ! 

We can be agnostic about origin of singularity 

Accept everything with finite IR action

After all, AdS-CFT relates bulk and boundary actions

Negative-mass Schwarzschild

Integral of divergent energy density is finite 

Must be eliminated if AdS-CFT is to make any sense

Klebanov
(Dymarsky)

Counter-argument:
Horowitz-Myers

Furthermore, anti-M2 and anti-D2 singularities have 
divergent IR action

GRAVITY PEOPLE WILL KILL 

YOU & DRINK YOUR BLOOD !!!



Is singularity physical ?
Singularity indicates new physics 

Instabilities

Polarization:

Probe anti-D3’s polarize into NS5 branes/S2 ⊂ S3 
this could resolve singularity à la Polchinski-Strassler

Smearing wipes out this polarization channel:

PS has many channels: D5 branes/S2 ⊂ T1,1 survive smearing

No smeared anti-D3+D5  →  no localized anti-D3+D5  ⥵
no localized anti-D3+NS5 branes either !!!



Why Polchinski-Strassler does not save 
the landscape               

as ξa and ξ̃a (the upper signs in the ± give the ξa and the lower signs to the ξ̃a’s), where

ξ1 ≡ ξx −
ξp

3
+

ξA

3
, ξ2 ≡ ξx +

ξp

6
+

ξA

3
, ξ3 ≡ ξp − ξA . (2.12)

2.1 Flux singularity

In [5] it has been shown that the only regular solution compatible with anti–D3 IR boundary
conditions is supersymmetric. Thus, to find any sensible anti–D3 solution we should allow for
the same kind of singularity which are present in the linearized solution [4]. This means that the
general IR behavior of the fluxes is the following:

f = const + Y
5
2 τ

2 +O(τ 3) , F = Y
7
1 τ +O(τ 2) , f − k = 2Y 7

1 C8 +O(τ) . (2.13)

From the IR behavior (2.13) and the Ansatz (2.2), together with the τ
2 IR scaling of the S

2, it
follows that the two constants Y 5

2 and Y
7
1 give singular energy densities for the fluxes [Check].

The fact that the difference f − k is given by the linear term of F follows from solving the
equations of motion. Getting the relation between Y

5
2 and Y

7
1 from the equations of motion

is much less obvious. It is also possible that to fix these one need to impose UV boundary
conditions. However, we will keep these two constants unfixed and we will show that the results
will not depend on the actual value of these constants.

3 D5 brane potential

Here we follow [1]. We want to study a possible polarization channel in which the anti–D3 branes
polarize into a D5 brane in the direction R3,1 × S

2, at a finite τ = τ
∗. The D5 action is

SD5 = SDBI + SWZ , (3.1)

where

SDBI = −µ5

�

S2×R3,1

�
g�(g⊥ + 2πα�

F)
�1/2

, SWZ = µ5

�

S2×R3,1

�
C6 + 2πα�

F ∧ C4

�
. (3.2)

For simplicity in what follow we don’t explicitly write factors with dilaton dependence, since our
solution is in the Einstein frame while the D5 action is in string frame. The appropriate factors
should then be checked. From the metric Ansatz we find:

√
g� = e

4A+4p−2x
,

√
g⊥ = e

x+y
. (3.3)

Here 2πα�F = 2πα�
F2 −B2 and the integral of F2 over the S

2 gives the induced anti–D3 charge
on the D5 worldvolume: �

S2

F2 ∼ n . (3.4)

There are three different contributions to the D5 potential. One is the linear in n term, which
comes from DBI + C4 WZ, one is the cubic term which is independent of n and comes from C6

WZ and the other is the 1/n term in the expansion of the DBI action:

V (τ) ∼ (2πn) a2τ
2
− a3τ

3 +
1

2πn
a4τ

4
. (3.5)

3
Finally, we should compute the 1/n term in the expansion of the DBI action. It is easy to

show that this is completely fixed from the IR Ansatz. From the expansion of h e2x+2y we see
that we have a4 = 1/8. To summarize, we find the following coefficients:

a2 =
1

3p2

�
4λ2

f + 3λ2
F

�
, a3 =

2

3p
λf , a4 =

1

8
. (3.23)

We can now check if the bound for polarization (3.6) is satisfied for our solution. The condition
is:

4

9
λ
2
f <

4

27

�
4λ2

f + 3λ2
F

�
. (3.24)

Interestingly, we see that the contribution of the constant λF is always positive in the rhs, so
this can only make polarization more difficult. We thus study polarization in the case λF = 0.
Surprisingly, this seems already enough to rule out the D5 polarization, since (3.24) is always
satisfied in this case. It is important to note that a factor of 2 can change this result, so it is
crucial to [check the numerical factors very carefully].

While the result seems to rule out the polarization, we note that the condition we find is not
very robust, in the sense that a factor of 2 is sufficient to change the result completely. Maybe
it would be important to adress the question if the smearing procedure can alter the solution in
such a way that the condition for polarization is changed.

3.1 We already knew it

It is also surprising that in the case λF = 0 the situation is exactly the same as for the D8
polarization [7]. Let us briefly recall the structure of that solution. One define a function λ

which parametrize deviation from BPS condition

H3 = λ(τ) ∗ F3 , (3.25)

and the IR behavior of that function is singular:

λ =
λ0

τ
+ λ1 + λ2τ + . . . (3.26)

In [7] it was shown that the constant λ0 is the only one that enters in the study of the polarization
of a D8 brane. The D8 potential has the universal form (3.5) and the explicit form of the
coefficients is given in eq. (3.13) of [7], were they are called ci. They have the structure:

c2 ∼ (F0λ0)
2
, c3 ∼ F0λ0 , c4 ∼ const (3.27)

which clearly is very similar to (3.23) if one set λF = 0 (one can show that also the factors of p
basically match) and identify λ0 with λf (up to the factor of the Romans mass F0). Even more
surprisingly, the condition for no D8 polarization in [7] is given by

1

9
<

4

27
, (3.28)
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The bound for polarization is given by the inequality

(a3)
2
<

32

9
a2a4 . (3.6)

If this is satisfied, then the potential has no minima at finite τ and there is no polarization. Since
most of these various combinations vanish for a supersymmetric background, we expect that it
is possible to write the potential in the backreacted anti–D3 brane background in terms of the
functions ξa and ξ̃a defined in [5]. We now compute the coefficients a2, a3 and a4.

We first consider the expansion of the DBI action:

SDBI ∼ −µ5(2πn)

�
√
g�

�
1 +

1

2

g⊥

(2πn)2

�
= −µ5(2πn)

�
e
4A+4p−2x

�
1 +

1

2

e
2(x+y)

(2πn)2

�
. (3.7)

the term linear in n combine with the C4 term in the WZ action. We recall that in our solution
we have

C4 = α dx0 ∧ · · · ∧ dx
3
, α = −

�
dτ e

4A+4p−4x
K , (3.8)

and
K = kF + f(2P − F ) . (3.9)

It is useful to rewrite the linear in n term of the action as follows:

SDBI + SWZ = −µ5(2πn)

�

S2×R3,1

�
dτ

�
∂τe

4A+4p−2x + e
4A+4p−4x

K

�
(3.10)

= −µ5(2πn)

�

S2×R3,1

�
dτ

�
2e−2x

ξ̃1

�
. (3.11)

One should be careful in checking the relative sign between the DBI and WZ part. However,
one can argue that this expression should vanish for a supersymmetric solution and since we’re
considering a D5 brane with anti–D3 brane charge one should get ξ̃1 instead of ξ1. [Check this!].
We note that a quick counting argument:

ξ̃1 ∼ τ
2
, e

−2x
∼

1

τ
, (3.12)

shows that this term contribute as τ 2 to the potential as expected, and thus gives the coefficient
a2 in (3.5). Note that if we use ξ1 and not ξ̃1, then the term start from τ and this is further
evidence that we correctly fixed the relative sign. [But check again]. To compute this we
only need to know the leading behavior of the function ξ̃1 in the anti–D3 solution. From the IR
Ansatz one finds:

ξ̃1 = −(C3)
4(C4)

2
�
2Y 3

1 + Y
4
1 + (Y 7

1 )
2(C3)

6
C8

�
τ
2 + . . . , (3.13)

where Y a
i is the coefficient of τ i in the scalar φa. We now use the equations of motion for φa (see

Appendix A). One finds that the previous expression becomes:

ξ̃1 = −
(C3)10(C4)2

3C8

�
4(Y 5

2 )
2 + 3(Y 7

1 )
2(C8)

2
�
τ
2 + . . . . (3.14)
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Same potential terms as in PS !

No polarization if:

Long calculation:

Could have worked, but it does not !!!

Good intuition

revenge on Bousso-Polchinski  ☺



Maybe we are not smart-enough to understand resolution

“Good, Bad, Ugly”criterion:                                   Gubser

Good singularities can be cloaked by horizon 

If physical  ⇒ ∃ BH in KS/KT with negative charge 

Is singularity physical ?

Black hole in Klebanov-
Strassler/Tseytlin

All KS/KT black holes must have 
positive charge: 

Bena, Buchel, Dias

Aharony, Buchel, Kerner; Buchel



Maybe artifact of smearing

Localized anti-branes may not have this problem

⇔	 Localized BH with anti-D3 charge in KS exists

Is singularity physical ?

Can be anywhere on S3

Could be smeared

Smeared BH with negative 
charge does not exist

Bena, Buchel, Dias



Is singularity physical ?

Nobody could have predicted it a-priori !

No a-posteriori physical reason for accepting it

Several highly nontrivial calculations that could have 
worked either for or against - all worked against 



What would help
Localized anti-D3 in KS

Localized BH in KS 

Non-BPS solution, 2 variables

Separation of scales

No smeared BH solution → no localized BH solution

Is this always true ? If not why ?

Solution for smeared anti-M2, anti-D2 black holes in CGLP, A8

Would confirm whether anti-D3 story is generic or not 

One variable - shooting or relaxation - straightforward.



Metastable supertube solution

cannot smear  →  2 variables !
supertube charges: (-,-) or (+,-)

Numerics ? ... BlackFold ? ... 
Separation of scales ? ... Inverse scattering ? ... Perturbative ? 

first fully-backreacted microstate geometry of a non-
extremal BH with macroscopic horizon

existence of gazillions of microstates - resolve info paradox 

mechanism that keeps them from collapsing into BH 

(which nobody else has ☺)

What would help

Figure 8: Illustration of the tunneling process. Supertubes are depicted as red circles wrapping
the Gibbons-Hawking fiber ψ. A metastable supertube close to one center can tunnel to a stable
supertube close to the other center, reducing in the process the flux on the two-cycle between
these two centers.

Although we have only illustrated the existence of metastable vacua for a very specific ex-
ample, we believe it is a generic phenomenon that can occur in all multicenter three-charge
backgrounds, and in particular in the smooth solutions with long throats that give microstates
of three-charge extremal supersymmetric black holes in five dimensions. The resulting metastable
configurations should then represent microstates of non-extremal black holes. It would be in-
teresting to extend our proof-of-concept analysis to such more complicated backgrounds, and to
argue that the fuzzballs of extremal black holes survive off-extremality.

Of course, to fully run this argument, and to understand the properties of non-extremal
microstates in the same regime of parameters where the classical black hole exists, one would
need to calculate the backreaction of the metastable supertubes, at least to first order. One might
argue by analogy with other antibrane backreaction calculations [6, 7, 8, 9, 10] that this may
completely wreck the structure of the solution. One counter-argument might be that because
our solutions are asymptotically flat, they will be less susceptible to backreaction problems.

The calculation of the backreacted solution would also reveal whether the non-extremal mi-
crostates obtained from metastable supertubes have ergospheres, as one expects [53] from the

15



Conclusions

If unphysical:
A lot of string cosmology and phenomenology to be revisited. 

 SCAPEZILLA:  AdS landscape ≠  dS landscape     

Find other ways to uplift  AdS to dS (Kahler uplifting ? 
nonperturbative effects ? nothing ? ) 

Find other ways to build non-extremal fuzzballs (JMaRT-type 
centers ? motion on moduli space ? inverse scattering ? numerics ?)

Probe antibranes uplift AdS to dS

Probe antibranes give stationary near-extremal fuzzballs

Backreacted antibranes have singularity

No reason to accept it. So far all evidence against.


