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The Higgs recently turned one year old 

Happy Birthday Higgs!



In the past year we have learned a lot about the properties of the Higgs...



Indeed, a Higgs mass of 125 GeV is a dream-come-true for experimentalists. 

Nearly all of its decay modes are accessible at the LHC.

But for theorists, the Higgs at 125 GeV continues to haunt our dreams. 

Why did Nature choose this value?? Is the EW scale natural or fine tuned??



Higgs Mass in the MSSM

• In the MSSM, the Higgs mass is constrained to be less than mZ at 
tree-level, because the quartic is tied to the gauge couplings.  

• This is easiest to see in the decoupling limit:

• So we need loop corrections to lift the Higgs to 125 GeV.
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Figure 8.1: A contour map of the Higgs potential, for a typical case with tan β ≈ − cotα ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H
0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.
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Figure 8.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

basis and with masses mt̃1
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much greater than the top quark mass mt, one finds a large positive
one-loop radiative correction to eq. (8.1.20):
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This shows that mh0 can exceed the LEP bounds.
An alternative way to understand the size of the radiative correction to the h0 mass is to consider

an effective theory in which the heavy top squarks and top quark have been integrated out. The quartic
Higgs couplings in the low-energy effective theory get large positive contributions from the the one-loop
diagrams of fig. 8.3. This increases the steepness of the Higgs potential, and can be used to obtain the
same result for the enhanced h0 mass.

An interesting case, often referred to as the “decoupling limit”, occurs when mA0 # mZ . Then
mh0 can saturate the upper bounds just mentioned, with m2

h0 ≈ m2
Z cos2(2β)+ loop corrections. The

particles A0, H0, and H± will be much heavier and nearly degenerate, forming an isospin doublet that
decouples from sufficiently low-energy experiments. The angle α is very nearly β−π/2, and h0 has the
same couplings to quarks and leptons and electroweak gauge bosons as would the physical Higgs boson
of the ordinary Standard Model without supersymmetry. Indeed, model-building experiences have
shown that it is not uncommon for h0 to behave in a way nearly indistinguishable from a Standard
Model-like Higgs boson, even if mA0 is not too huge. However, it should be kept in mind that the
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Figure 8.3: Integrating out the top quark and top squarks yields large positive contributions to the
quartic Higgs coupling in the low-energy effective theory, especially from these one-loop diagrams.
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• In more detail

• Here the “A-term” At is responsible for mixing the two stops, and 
MS is the SUSY scale set by the stop masses:

• So there are two ways to lift the Higgs mass in the MSSM: 

• raise the stop masses

• dial At to maximize the second term.
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Need MS  ≳ 10 TeV or At ~√6  MS to achieve 125 GeV. 
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FIG. 5. Messenger scale required to produce su�ciently large |A
t

| for m
h

= 123 GeV (left) and m
h

= 125 GeV
(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
�. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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FIG. 6. Higgs mass as a function of M
S

, with X
t

= 0. The
green band is the output of FeynHiggs together with its as-
sociated uncertainty. The blue line represents 1-loop renor-
malization group evolution in the Standard Model matched
to the MSSM at M

S

. The blue bands give estimates of errors
from varying the top mass between 172 and 174 GeV (darker
band) and the renormalization scale between m

t

/2 and 2m
t

(lighter band).
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Very Heavy Stops

• “Mini-split SUSY” 

• Highly unnatural EW tuning 
but simplicity in “model 
space”

• 100-1000 TeV stops 
motivated by anomaly 
mediation, flavor problem, 
R-symmetry 

• Can accommodate 
unification, dark matter.
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FIG. 3. The allowed parameter space in the tan��Msc plane for a Higgs mass of 125.7±0.8 GeV,

for µ = msc. The solid blue lines delimit the 2� uncertainty. The dashed blue lines show the e↵ect

of the 1� uncertainty in the top mass, mt = 173.2 ± 0.9 GeV [45]. We take the gaugino spectrum

predicted by AMSB (including the heavy Higgsino threshold) with the gravitino mass m3/2 = 500

TeV, resulting in a wino LSP at 2.6 TeV, and a gluino mass of 14.4 TeV. However, the Higgs mass

is highly insensitive to the gaugino spectrum, and a gravitino mass of 50 TeV yields essentially the

same plot above.

the wino mass vanishes! Of course, without soft masses, electroweak symmetry breaking at

a scale much smaller than m3/2 would require Bµ/µ2 ! 1, in which case the wino retains

⇠ 40% of its standard MSSM value. Without sequestering, however, soft masses generally

reduce the threshold e↵ect, and the operator HuHdWhid adds to the magnitude of the wino
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Large A-terms

Large A-terms allow for TeV-scale stops. Fine tuning is greatly reduced. 
Here the challenge is to generate the A-terms from a UV model. 
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• The A-terms are trilinear soft-SUSY 

breaking couplings

• How to generate large A-terms in a 
flavor-blind way? Gauge mediation 
does not do it...

• We will return to this shortly...
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Beyond the MSSM

• Add new states to the MSSM which couple to Higgs with O(1) 
strength and break SUSY => new contributions to Higgs quartic

• Generally, the focus is on tree-level, since otherwise we’re not 
doing better than the MSSM. 

• See however the many works on extra vector-like generations.

• Two options:

• “non-decoupling F-terms”: new states couple to the Higgs via the 
superpotential

• “non-decoupling D-terms”: new states couple to the Higgs via the gauge 
potential



Non-decoupling F-terms

• The NMSSM is a prime example of non-decoupling F-terms:

• Well-known problems with fundamental singlets... 

• No Landau pole for λ => another upper bound on tree-level 
Higgs mass. Only a slight improvement over the MSSM tuning.

• Relaxing Landau pole constraint => motivated by Seiberg duality? 
aka “λ-SUSY”, aka “Fat Higgs”
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Non-decoupling D-terms

• The basic idea: charge the Higgs under additional gauge group. 
When this gauge symmetry is broken non-supersymmetrically, an 
additional D-term potential for the Higgs is generated.

• A simple U(1)x toy model: (Hu, Hd, Φ+, Φ- ) charges (+1,-1,+1,-1)

• In the presence of Vsoft,  the Higgs quartic gets a new term:
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Non-decoupling D-terms

• Models with nonabelian groups (e.g. SU(2)) were also 
constructed

• Gauge coupling unification is nontrivial, but can be 
accommodated with enough complications (Batra, Delgado, Kaplan & Tait; 
Maloney, Pierce & Wacker; ...)

• Fine tuning ameliorated but not eliminated -- scales like 1/mX2. 
For max 10% tuning consistent with EWPT and direct searches, 
must have mX~3-10 TeV (Maloney, Pierce & Wacker)

• These models generically predict enhanced coupling to bb. Could 
be observable at LHC/ILC, but not necessarily. (Blum, D’Agnolo, Fan; 
Azatov, Chang, Craig, Galloway)



More on models for 
A-terms



Overview of the strategies

• A-terms from MSSM RGs

• The only option for pure gauge mediation models

• A-terms at the messenger scale

• Requires direct messenger-MSSM interactions

• Weakly-coupled models

• Strongly-coupled models
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A-terms through RG

• Large weak-scale A-terms can arise through the RG.

• This is a highly constrained scenario. Requires M3 ≳ 3 TeV 
and Mmess ≳ 108 GeV.
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FIG. 5. Messenger scale required to produce su�ciently large |A
t

| for m
h

= 123 GeV (left) and m
h

= 125 GeV
(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.
A variation on this “heavy stop” scenario is Split Su-

persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
�. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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A-terms through Messengers

• A-terms can also arise through integrating out the messengers of 
SUSY-breaking.

• Gauge interactions not enough! Need direct MSSM-messenger 
couplings.

MSSM

Messengers

SUSY
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• Note:

• The Higgs-type A-terms are automatically MFV (proportional to the Yukawas)

• The squark-type A-terms are not automatically MFV

Effective operators for A-terms

• The A-terms originate from the following effective operators:
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An obstacle to large A-terms

• Problem: the effective operators for A-terms and for mass-
squareds are very similar.

• So they tend to be generated at the same loop order: 

• This is disastrous!
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Analogy with μ/Bμ
• The A/m2 problem is completely analogous to the more well-

known μ/Bμ problem. 

• The operators for μ and Bμ also only differ by one power of X:

• Before the Higgs was discovered at 125 GeV, we were not forced 
to confront the A/m2 problem.  

• Now it is on the same footing as the μ/Bμ problem!

cµ

Z
d4✓

X†

M
HuHd vs. cBµ

Z
d4✓

X†X

M2
HuHd



Analogy with μ/Bμ
• The A/m2 problem is completely analogous to the more well-

known μ/Bμ problem. 

• The operators for μ and Bμ also only differ by one power of X:

• Before the Higgs was discovered at 125 GeV, we were not forced 
to confront the A/m2 problem.  

• Now it is on the same footing as the μ/Bμ problem!

• Suggests there should be a common solution?
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Classifying the models

MSSM

Messengers

SUSY

hXi = ✓2F

It is useful to classify the models for large A-terms 
based on whether the messengers and SUSY-

breaking sectors are weakly or strongly coupled.

Weak Strong

Weak Fully calculable. 
Must be MGM

Incalculable? 
No loop factor, 
no problem?

Strong
Partially calculable. 

Hidden-sector 
sequestering?

Incalculable? 
No loop factor, 
no problem?

Messenger

SUSY



Weakly-coupled Models



• Most general renormalizable superpotential with weakly-coupled 
messengers + spurion SUSY-breaking:

• Disastrous one-loop m2 is avoided only if X is the sole source of 
mass in the messenger sector. (Craig, Knapen, DS, Zhao)

• The messengers must be those of Minimal Gauge Mediation! 
(Dine, Nelson, Shadmi, Shirman)
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MSSM-
messenger-
messenger
“Type I”

MSSM-MSSM-
messenger
“Type II”

# Coupling |�b| Best Point { ⇤

M ,�} |At| /MS Mg̃ MS |µ| Tuning

I.1 Hu�
5,L�1,S Nm {0.375, 1.075} 1.98 3222 1842 777 3400

I.2 Hu�10,Q�10,U 3Nm {0.25, 1.075} 1.99 3178 1828 789 2450
I.3 Hu�

5,D�
10,Q 4 {0.25, 1.3} 2.05 2899 1709 668 3200

I.4 Hu�
5,L�10,E 4 {0.125, 0.95} 0.58 11134 8993 2264 4050

I.5 Hu�
5,L�24,S 6 {0.225, 1.000} 0.54 13290 9785 3408 3850

I.6 Hu�
5,L�24,W 6 {0.15, 1.025} 0.67 11835 8637 3259 3410

I.7 Hu�
5,D�

24,X 6 {0.3, 1.425} 2.04 3020 1743 576 3500
I.8 Q�

10,Q�1,S 3Nm {0.534, 1.5} 2.82 4336 1274 2056 1015
I.9 Q�

5,D�
5,L Nm {0.353, 0.858} 2.67 4247 1342 2058 1015

I.10 Q�
10,U�5,Hu 4 {0.51, 1.788} 2.65 4040 1318 2301 1275

I.11 Q�
10,Q�

5,D 4 {0.378, 1.245} 2.76 4020 1257 2292 1260
I.12 U�

10,U�1,S 3Nm {0.476, 1.622} 2.62 3815 1347 2070 1030
I.13 U�

5,D�
5,D 2Nm {0.301, 0.908} 2.91 3829 1199 2061 1020

I.14 U�
10,Q�5,Hu

4 {0.37, 1.352} 2.81 3575 1220 2312 1285
I.15 U�

10,E�
5,D 4 {0.51, 1.972} 2.63 3526 1312 2310 1280

II.1 QU�
5,Hu 1 {0.55, 1.64} 2.02 769 1965 2738 1800

II.2 UHu�10,Q 3 {0.009, 1.067} 2.14 2203 1628 543 850
II.3 QHu�10,U 3 {0.269, 1.05} 2.27 2514 1458 439 1500
II.4 QD�

5,Hd
1 {0.37, 1.2} 1.78 2597 1829 3553 3020

II.5 QHd�
5,D 1 {0.15, 1.19} 1.45 2497 2108 3773 6050

II.6 QQ�
5,D 1 {0.45, 0.1} 0.22 7943 9870 3610 5000

II.7 UD�
5,D 1 {0.21, 1.26} 2.34 1374 1334 2998 2150

II.8 QL�
5,D 1 {0.14, 1.2} 1.51 1501 1204 2203 3700

II.9 UE�
5,D 1 {0.445, 1.46} 1.89 2004 1750 3373 2730

II.10 HuD�
24,X 5 {0.42, 1.45} 2.13 2943 1649 282 3500

II.11 HuL�1,S 1⇤ {0.15, 0.675} 0.54 7103 8166 3714 4930
II.12 HuL�24,S 5 {0.296, 0.96} 0.53 12629 9660 3333 3780
II.13 HuL�24,W 5 {0.212, 0.96} 0.65 11487 8710 3687 3380
II.14 HuHd�1,S 1⇤ {0.125, 0.675} 0.55 7049 8051 3255 5000
II.15 HuHd�24,S 5 {0.20, 1.00} 0.57 12047 9213 1628 4220
II.16 HuHd�24,W 5 {0.2, 0.946} 0.64 11571 8789 3665 3460

Table 1. All possible marginal MSSM-messenger couplings compatible with a perturbative SU(5) framework
are tabulated here. The point with the least tuning in each model is also presented. The tuning measure
used is defined in (3.7) and is discussed more in Appendix B. Additionally, the values of |At| /MS , Mg̃, MS

and |µ| at this least tuned point are shown. Models with |At| /MS < 1 rely on heavy stops as opposed to
mixed stops. Models II.11-13 generate large neutrino masses. Models II.14-16 possess a µ/Bµ problem. In
the third column, |�b| refers to the messenger contribution to the SU(5) beta function. As the singlet does
not contribute to GMSB, models II.11 and II.14 are assigned an additional �5 � �5.

�FT ⇠ 103. Many of the models involving Higgs fields have very large MS (and small |At| /MS)
because they are relying on heavy stops to generate mh = 125, as opposed to using maximal mixing.
As these models are unable to achieve maximal mixing without substantial tuning entering elsewhere
(due to the little A/m2

Hu
problem), we make no e↵ort to optimize the tuning in these models by

scanning regions of parameter space where the MSSM-messenger contributions are small. Details
concerning the various models will be discussed in the next subsections.
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We recently classified all MSSM-messenger couplings consistent with 
perturbative SU(5) unification (Evans & DS). There are 31 couplings in all.

Turning on one coupling at a time, we surveyed the phenomenology of 
the resulting models.  

The models 
with the best 
tuning are the 
type I squark 
models and the 
top-Yukawa-like 
type II models

Work in progress: 
investigating the 
constraints from 
flavor violation on 
these models....
(Evans, Thalapallil & 
DS)
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Figure 6. The spectra for some of the better models at their points of least tuning are shown. All type I
squark models are shown to the left (Q: I.8-11 and U : I.12-15), type II models, including the three models
which mix the top Yukawa with the messenger field and the UD�D (II.7) are shown to the right. I.90 and I.130

denote the best point within the distinct region of comparable tuning accessible in these two models (see fig. 3)
which present a very di↵erent spectra. In the plot, thick, large lines denote colored particles – g̃, t̃1, t̃2, b̃1, b̃2
and q̃ (the nearly degenerate first-generation squarks) are shown. The thinner lines denote uncolored particles
– ˜̀, �̃0 and �̃± are shown. All four neutralinos and both charginos are displayed. In nearly all models, all
right-handed sleptons and all left-handed sleptons/sneutrinos are approximately degenerate.

suggests that the non-observation of SUSY and the presence of a heavy Higgs may be correlated issues
rather than two distinct problems of SUSY.

4.1 Type I squark models

In the region of least tuning (the base of the horn in fig. 3), the type I squark models have heavy
gluinos and first generation squarks falling between ⇠3.5-5 and ⇠3-4.5 TeV respectively, while the
lightest stop (as well as the sbottom in Q

3

models) has a mass between ⇠0.5-1 TeV. Additionally,
there is almost always an NLSP ⌧̃ or co-NLSP ˜̀s generally between ⇠300-500 GeV (although these
sometimes appear even heavier than 700 GeV). However, the other region of low tuning appearing in
models I.9 and I.13 (in the center of the horn) has a rather di↵erent profile (the best points of this
second region are denoted by I.90 and I.130 in fig. 6). Here, the models have heavier stops, ⇠1.2-2
TeV, but since ⇤ has dropped significantly, the gluinos and first-generation squarks are now much
lighter ⇠2.0-3.5 TeV and ⇠1.5-3 TeV, respectively. Surveying these points with less tuning, it is clear
that the mass of the lightest stop and the masses of the gluino and first-generation squarks tend to be
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All but one of the best-tuned points with mh=125 GeV were out 
of reach at 7+8 TeV LHC, but could be accessible at 14 TeV LHC. 

(taus+MET, multileptons, stop searches) 

Is the fact that we haven’t seen superpartners yet an inevitable 
consequence of mh=125 GeV?



Strongly-coupled 
Hidden Sectors



Hidden-sector sequestering

• Suppose X is not a spurion, but is 
part of a strongly interacting SCFT

• Anomalous dimensions could be 
used to “sequester” Bμ and solve 
the μ/Bμ problem. (Dine et al ’04; 
Murayama, Nomura & Poland ’07; Roy & 
Schmaltz ’07)

• Our proposal: the same mechanism 
could simultaneously solve the A/m2 
problem! (Craig, Knapen & DS)MSSM
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General Messenger Higgs Mediation
(Craig, Knapen & DS)

• We recently took a fresh look hidden-sector sequestering using 
the correlator formalism of General Gauge Mediation.

• We derived general formulas for soft parameters valid for any hidden and 
messenger sector. Sequestering follows as a special case.

• Previous approaches to sequestering were cast in terms of the 
RG.  This is more like a fixed order calculation.  

• It allows for more control over the final answer! 

MSSMHidden

E ∼

√

F E ∼ M

Om

Ou,d

Messenger
κOhOm λuOuHu + λdOdHd

Oh

Fig. 1: The general setup of GMHM, assuming doublet portals connecting the
Higgs sector to the messenger sector. The messengers are characterized by a scale

M , and they communicate via another perturbative superpotential interaction with
the hidden sector, which is characterized by a SUSY-breaking scale

√
F .

Computing soft parameters in the framework of GMHM involves a double expansion

in λu,d and κ. Carefully performing this double expansion and manipulating the resulting

correlators, we will derive fully general formulas for Higgs soft parameters in any setup of

the form in fig. 1:

µ = λuλdκ
∗ 〈Q̄2O†

h〉h
∫

d4y Cµ(y)

Au,d = |λu,d|2κ∗ 〈Q̄2O†
h〉h

∫
d4y CAu,d

(y)

Bµ = λuλd|κ|2
∫

d4yd4y′ 〈Q4[O†
h(y)Oh(y

′)]〉hCBµ
(y, y′;λu,d)

m2
Hu,d

= −|µ|2 + |λu,d|2|κ|2
∫

d4yd4y′ 〈Q4[O†
h(y)Oh(y

′)]〉hCm2
Hu,d

(y, y′;λu,d)

(1.8)

where Q4 = Q2Q̄2. Cµ, etc. are integrated correlation functions of messenger-sector oper-

ators; explicit expressions for them will be given in Section 2. Since we have expanded to

NLO in λu,d, CBµ
and Cm2

Hu,d

contain O(|λu,d|2) corrections.
These formulas have broad applicability, as they may be used to compute Higgs soft

parameters for any model with Higgs-messenger couplings in which the messenger sector

and SUSY-breaking hidden sector factorize. We will illustrate this in several ways, starting

with showing how they reproduce the results of the weakly-coupled spurion models of [6].

In these models, the hidden sector has no dynamics, and so

〈Q4[O†
h(y)Oh(y

′)]〉h → |〈Q2Oh〉|2 (1.9)

We will show how the A/m2
H problem is a generic property of the integrated messenger

correlators
∫
Cm2

Hu,d

and
∫
CAu,d

, and how the little A/m2
H problem (made explicit in

(1.5)) arises from the disconnected part of Cm2
Hu,d

.

4



General Higgs Mediation

• The correlator formalism of GGM was first applied to Higgs-
messenger interactions by Komargodski & Seiberg ’08.

• They derived formulas for μ,  Bμ,  A and mHu,d
2 to leading order 

(“one-loop”) in λu,d, assuming a unified hidden+messenger sector.

• To study sequestering, we extended the KS results in two ways:

• Expanded to NLO (“two-loops”) in λu,d for Bμ and mHu,d
2 so that we can 

compare against LO μ2 and Au,d
2

• Separated messenger and hidden sectors so we can take F<<M2 

(cf Dumitrescu, Komargodski, Seiberg & DS ’10). 



Final GMHM Formulas

• Dimension 1 parameters:

• Dimension 2 parameters:

Bμ and mHu,d
2 depend on the same 

hidden-sector 2-pt function
Answers organize themselves into full 
correlators (connected + disconnected)

/ ??

µ = �u�d̄ hQ̄2O†
hih

Z
d4y

⌦O†
m(y) . . .

↵
m

Au,d = |�u,d|2̄ hQ̄2O†
hih

Z
d4y

⌦O†
m(y) . . .

↵
m

Bµ = �u�d||2
Z

d4yd4y0
D
Q4

⇣
O†

h(y)Oh(y
0)
⌘E

h,full

⌦O†
m(y)Om(y0) . . .

↵
m,full

m2
Hu,d

= |�u|2||2
Z

d4yd4y0
D
Q4

⇣
O†

h(y)Oh(y
0)
⌘E

h,full

⌦O†
m(y)Om(y0) . . .

↵
m,full

/
p
F

�h+1



• Because of the messenger correlator, the integral is dominated by 

• If the hidden sector is close to a fixed point at the scale M, we 
can use the OPE to simplify the 2-pt function!

• Then Bμ (and mHu,d
2) becomes:

3.2. Models with hidden sector SCFTs

In these models we take
√
F " M , with the hidden sector described by an approximate

SCFT at and above the scale M . Then, as discussed below (2.6), the hidden sector

correlator 〈Q4[O†
h(y)Oh(y′)]〉h,full is always pinned by the messenger sector correlator at

|y − y′| ! 1
M " 1√

F
, i.e. at short distance. So we can apply the OPE of the SCFT to it:

Oh(y)O†
h(y

′) ∼ |y − y′|−2∆h1+ C∆|y − y′|γO∆(y′) + . . . (3.5)

where

γ ≡ ∆− 2∆h (3.6)

Here 1 is the unit operator (it drops out under the action of Q4), and O∆ (with dimension

∆) is the lowest-dimension scalar operator in the UV fixed point of the hidden sector. The

. . . denotes terms with higher-dimension operators; we neglect them here as they will be

further suppressed by F/M2. Substituting this into (2.6) we obtain

Bµ ≈ λuλd|κ|2C∆〈Q4O∆〉h
∫

d4y d4y′ |y − y′|γ
〈
Om(y)O†

m(y′)XBµ

〉

m,full

m2
Hu,d

≈ −|µ|2 + |λu,d|2|κ|2C∆〈Q4O∆〉h
∫

d4y d4y′ |y − y′|γ
〈
Om(y)O†

m(y′)Xm2
Hu,d

〉

m,full

(3.7)

As in the spurion limit, the general expressions for µ and Au,d again remain unchanged with

respect to (2.5). So if γ > 0 (i.e. ∆ > 2∆h) and
√
F " M , the contributions proportional

to 〈Q4O∆〉h are subleading with respect to those proportional to |〈Q2Oh〉h|2, and they

are suppressed relative to µ2 and A2
u,d. This is precisely the phenomenon of hidden-sector

sequestering [14-16], as seen from the point of view of GMHM. From (3.7), we note that

the −|µ|2 contribution to m2
Hu,d

is the only unsequestered contribution to the soft masses;

in particular, there is no unsequestered contribution involving the OPE coefficient. We

will comment more on the physical interpretation of this fact, and its relation to previous

work, in the following section.

The idea of hidden-sector sequestering was originally proposed in order to solve the

long-standing µ/Bµ problem. Now with the need for large A-terms forced upon us by a

Higgs at 125 GeV, we also have the A/m2
H problem to contend with. We see from (3.7)

that sequestering has the potential to solve both problems simultaneously. But despite its

theoretical elegance, this approach suffers from a number of practical challenges. Foremost,

it is difficult to achieve proper electroweak symmetry breaking with the fully sequestered
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OPE and sequestering
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Sequestering!



Applications of our result

• We are currently working on applying our result to study models 
where the sequestering is not total.

• Total sequestering would be                                        . This boundary 
condition actually has a lot of trouble achieving EWSB (Perez, Roy, Schmaltz; Asano, 
Hisano, Okada, Sugiyama)

• Total sequestering requires long enough running with large enough anomalous 
dimension γ. However there are strong bounds on γ from the conformal 
bootstrap that limit this possibility. (Poland, Simmons-Duffins, Vichi)

Bµ = �u�d||2 hQ4O�ih
Z

d4yd4y0 |y � y0|� ⌦O†
m(y)Om(y0) . . .

↵
m,full

Bµ = 0, m2
Hu,d

= �|µ|2



Using this relation, our upper bound on dim(X†X) in figure 7 translates into a lower bound
on the running distance ΛUV/ΛIR, shown in figure 9. Note in particular that a small dim(X)
requires a very large running distance, since our bound on γX†X approaches zero as dim(X) →
1. Consequently, viable models should at least have dim(X) ! 1.3. Note that dim(X) can
almost always be calculated using a-maximization in concrete examples, so a bound on the
required running distance can be easily read from figure 9 for specific models.

d

ΛUV/ΛIR

Running distance needed to solve µ/Bµ

1 1.2 1.4 1.6 1.8

103

109

1012

1015

106

Figure 9: An approximate lower bound on the running distance required for solving the µ/Bµ
problem with strong conformal dynamics, as a function of d = dim(X). The middle curve
corresponds to a loop factor suppression: cX†X(ΛIR) = 1

16π2 c2X(ΛIR), while the outer curves
correspond to suppressions within factors of 2 and 5 of a loop factor.

Our bound can also apply to models of conformal sequestering [19, 20, 22–27, 32] which
contain chiral gauge singlets, where the idea is that a large dim(X†X) can lead to suppression
of flavor-dependent soft-mass operators,

cij

∫
d4θ

1

M2
∗
X†Xφ†

iφj . (3.13)

Let us for example assume a gravity mediated scenario, where the cutoff scale is M∗ ∼ Mpl

and conformal running occurs between Mpl and an intermediate scale Λint ∼ 1011GeV.
Viable flavor physics then roughly requires dim(X†X)− 2 ! 1 [26], and from figure 7 we see
that such models should also have dim(X) ! 1.35 or so.11 Our bounds similarly constrain

11However, it’s possible that one could avoid these constraints by having ‘safe’ flavor currents appear in
the OPE (as discussed in [26]).
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∆0

∆0 = 2d

d

Upper bound on dim(Φ†Φ)

1 1.2 1.4 1.6 1.8

2.5

3

3.5

4

4.5

5

5.5

Figure 7: An upper bound on the dimension of Φ†Φ, where Φ is a chiral primary scalar of dimension
d in an SCFT. The dashed line is the factorization value ∆ = 2d. Here we show k = 2, . . . , 11.

γΦ†Φ = dim(Φ†Φ)−2 dim(Φ) is always non-positive. This possibility was investigated recently
for theories with a weakly-coupled gravity dual in [56], with inconclusive results; effective
field theories in AdS5 allow for both positive and negative contributions to γΦ†Φ. However,
it’s possible that additional constraints might be present in those theories which admit a
consistent UV completion.

Another possibility is that the bound converges above the factorization line, with a shape
similar to the k = 11 curve in figure 7. In that case, one might wonder about the significance
of the cusp near d = 1.4, which appears to be a common feature of each curve with k ≥ 4. A
previous example of a dimension bound with a cusp is the 2D real scalar dimension bound,
presented in [50] (building on the first 2D results of [49]). There, an actual theory, the 2D
Ising model, exists very near the cusp, so that the bound is close to the best possible at that
value of d. By analogy, one might speculate that an N = 1 SUSY ‘minimal model’ exists in
the cusp in figure 7.

3.4.1 Phenomenological Applications

Our bound on dim(Φ†Φ) has implications for several models that use strong superconformal
dynamics to tailor soft parameters in the MSSM. One example is the solution to the µ/Bµ
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Applications of our result

• We are currently working on applying our result to study models 
where the sequestering is not total. (Knapen & DS)

• Total sequestering would be                                        . This boundary 
condition actually has a lot of trouble with achieving EWSB 
(Perez, Roy, Schmaltz; Asano, Hisano, Okada, Sugiyama)

• Total sequestering requires long enough running with large enough anomalous 
dimension γ. However there are strong bounds on γ from the conformal 
bootstrap that limit this possibility. (Poland, Simmons-Duffins, Vichi)

• This motivates us to study “partially sequestered” models where 
Bμ and mHu,d2+|μ|2 are not completely set to zero. 

• For this the GMHM formulas are absolutely essential!

Bµ = �u�d||2 hQ4O�ih
Z

d4yd4y0 |y � y0|� ⌦O†
m(y)Om(y0) . . .

↵
m,full

Bµ = 0, m2
Hu,d

= �|µ|2



Summary

• In this talk, we have surveyed the different ways to achieve 
mh=125 GeV in supersymmetric models.

• Very heavy stops (“mini-split SUSY”)

• Large A-terms (“maximal mixing”)

• Non-decoupling F-terms (e.g NMSSM)

• Non-decoupling D-terms

• No option is particularly compelling. Each has pros and cons. The 
tuning ranges from ~10% in the best cases to ~10-8 in the worst.

• Maybe we’re not “measuring” tuning correctly... 



Summary

• Focusing on minimal SUSY, we also surveyed the different ways to 
generate large A-terms from UV models

• A-terms from RG

• need heavy gluinos and high messenger scale

• A-terms from MSSM/messenger interactions

• the A/m2 problem

• weakly coupled: messengers must be MGM-type

• strongly coupled: hidden sector sequestering is a viable option. 

• New framework of GMHM provides a powerful unified framework for 
describing all models of direct messenger-Higgs couplings. 



The End


