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★ Hanany-Tong, 2003

★ ★ Auzzi et al., 2003             }  

★ ★ ★ Shifman-Yung, 2003 - ...

❖ Gaiotto, 2012 & Gaiotto, Gukov, Seiberg, 2013 
“surface defects”...

Outline: a) Non-Abelian strings in FT (N=2, N=1),
           b) World sheet models,
           c) 2D-4D correspondence,
           d) Applications (e.g. in He-3B) 

SU
SY

Tuesday, August 13, 13



★ Abrikosov strings (1950s);

★ ★ Cosmic strings (Kibble 1970s, Witten 1985);

★ ★ ★ Non-Abelian strings in susy Yang-Mills:

Bulk G×G→CF locking→(Gdiag→H)→G/H coset model
on the world sheet → (susy in bulk→susy on ws)

★ ★ ★ ★ N=2→ N=(2,2)

               N=1 → N=(2,0) nonminimal
               N=0 → N= 0  
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→ NSS
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Abelian   ☚

Cooper pair condensate
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DUAL MEISSNER EFFECT (Nambu-’t Hooft-Mandelstam, ∼1975)                  
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✭ ANO strings are there because of U(1)!
✭  New strings:
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π1(SU(2)×U(1)) = Z2: rotate by π around 3-d axis in SU(2) 
   → -1;  another -1 rotate by π in U(1) 

✭ ANO strings are there because of U(1)!
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SU(2)/U(1) = CP(1)∼O(3) sigma model

classically gapless excitation

“Non-Abelian” string is formed if all non-
Abelian degrees of freedom participate in 
dynamics at the scale of string formation
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Figure 2: Z2 string junction.

have the same tension. Hence, two different strings form a stable junction. Figure 2
shows this junction in the limit

ΛCP(1) ! |∆m| !
√

ξ (4)

corresponding to the lower left corner of Fig. 1. The magnetic fluxes of the U(1) and
SU(2) gauge groups are oriented along the z axis. In the limit (4) the SU(2) flux
is oriented along the third axis in the internal space. However, as |∆m| decreases,
fluctuations of Ba

z in the internal space grow, and at ∆m → 0 it has no particular
orientation in SU(2) (the lower right corner of Fig. 1). In the language of the
worldsheet theory this phenomenon is due to restoration of the O(3) symmetry in
the quantum vacuum of the CP(1) model.

The junctions of degenerate strings present what remains of the monopoles in
this highly quantum regime [11, 12]. It is remarkable that, despite the fact we are
deep inside the highly quantum regime, holomorphy allows one to exactly calculate
the mass of these monopoles. This mass is given by the expectation value of the kink
central charge in the worldsheet CP(N − 1) model (including the anomaly term).

What remains to be done? The most recent investigations zero in on N = 1
theories, which are much closer relatives of QCD than N = 2. I have time to say
just a few words on the so-called M model suggested recently [13] which seems quite
promising.

2.3 M model

The unwanted feature of N = 2 theory, making it less similar to QCD, is the
presence of the adjoint scalar field. One can get rid of it making it heavy. To
this end we must endow the adjoint superfield by a mass term. Supersymmetry of
the model becomes N = 1. Moreover, to avoid massless modes in the bulk theory
(in the limit of very heavy adjoint fields) we must introduce a “meson” superfield
MA

B analogous to that emerging in the magnetic Seiberg dual, see Sect. 1, with an
appropriately superpotential. After the adjoint field is eliminated the theory has no
’t Hooft–Polyakov monopoles in the quasiclassical limit. Nevertheless, a non-Abelian

6

⇠⇠⇠⇠ ⇠⇠⇠⇠ ⇠⇠⇠⇠⇠⇠⇠⇠ ⇠⇠⇠⇠

= kink

Evolution in dimensionless parameter m2/ξ
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Figure 1: Various regimes for monopoles and strings.

was in full swing.1 BPS domain walls, analogs of D branes, had been identified
in supersymmetric Yang–Mills theory. It had been demonstrated that such walls
support gauge fields localized on them. and BPS saturated string-wall junctions
had been constructed [8]. And yet, non-Abelian flux tubes, the basic element of the
non-Abelian Meissner effect, remained elusive.

2.1 Non-Abelian flux tubes

They were first found [9, 10] in U(2) super-Yang–Mills theories with extended su-
persymmetry, N = 2, and two matter hypermultiplets. If one introduces a non-
vanishing Fayet–Iliopoulos parameter ξ the theory develops isolated quark vacua,
in which the gauge symmetry is fully Higgsed, and all elementary excitations are
massive. In the general case, two matter mass terms allowed by N = 2 are unequal,
m1 != m2. There are free parameters whose interplay determines dynamics of the
theory: the Fayet–Iliopoulos parameter ξ, the mass difference ∆m and a dynamical
scale parameter Λ, an analog of the QCD scale ΛQCD. Extended supersymmetry
guarantees that some crucial dependences are holomorphic, and there is no phase
transition.

The number of colors can be arbitrary. The benchmark model supporting non-
Abelian flux tubes has the gauge group SU(N)×U(1) and N flavors. The N =
2 vector multiplet consists of the U(1) gauge field Aµ and the SU(N) gauge field Aa

µ,

1This program started from the discovery of the BPS domain walls in N = 1 supersymmetric
gluodynamics [7].

4
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Kink = Confined Monopole

✵ Kinks are confined in 4D (attached to strings).
✵ ✵ Kinks are confined in 2D: 
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Dewar flask

4D ↔ 2D Correspondence

☛     World-sheet theory ↔ strongly coupled bulk 

theory inside   
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  I.  N = 2 SUSY bulk N = (2,2) CP(N-1) model  
subject to the constraint

n̄i ξ
i = 0 , ξ̄i n

i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1

e2
0

(
1

4
F 2

µν + |∂µσ|2 +
1

2
D2 + λ̄ iσ̄µ∂µ λ

)
+ i D

(
n̄in

i − 2β
)

+
∣∣∇µn

i
∣∣2 + ξ̄i iσ̄

µ∇µ ξi + 2
∑

i

∣∣∣∣σ − mi√
2
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2

|ni|2

+ i
√

2
∑

i

(
σ − mi√

2

)
ξ̄Ri ξ

i
L − i

√
2 n̄i

(
λRξi

L − λLξi
R

)

+ i
√

2
∑

i

(
σ̄ − m̄i√

2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.

8

)

subject to the constraint
n̄i ξ

i = 0 , ξ̄i n
i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1

e2
0

(
1

4
F 2

µν + |∂µσ|2 +
1

2
D2 + λ̄ iσ̄µ∂µ λ

)
+ i D

(
n̄in

i − 2β
)

+
∣∣∇µn

i
∣∣2 + ξ̄i iσ̄

µ∇µ ξi + 2
∑

i

∣∣∣∣σ − mi√
2

∣∣∣∣
2

|ni|2

+ i
√

2
∑

i

(
σ − mi√

2

)
ξ̄Ri ξ

i
L − i

√
2 n̄i

(
λRξi

L − λLξi
R

)

+ i
√

2
∑

i

(
σ̄ − m̄i√

2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.

8

subject to the constraint
n̄i ξ

i = 0 , ξ̄i n
i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1

e2
0

(
1

4
F 2

µν + |∂µσ|2 +
1

2
D2 + λ̄ iσ̄µ∂µ λ

)
+ i D

(
n̄in

i − 2β
)

+
∣∣∇µn

i
∣∣2 + ξ̄i iσ̄

µ∇µ ξi + 2
∑

i

∣∣∣∣σ − mi√
2

∣∣∣∣
2

|ni|2

+ i
√

2
∑

i

(
σ − mi√

2

)
ξ̄Ri ξ

i
L − i

√
2 n̄i

(
λRξi

L − λLξi
R

)

+ i
√

2
∑

i

(
σ̄ − m̄i√

2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.

8

subject to the constraint
n̄i ξ

i = 0 , ξ̄i n
i = 0 . (3.5)

Needless to say, the auxiliary field Aµ has a complex scalar superpartner σ and a

two-component complex spinor superpartner λ; both enter without derivatives. The
full N = (2, 2) -symmetric Lagrangian is 2

L =
1

e2
0

(
1

4
F 2

µν + |∂µσ|2 +
1

2
D2 + λ̄ iσ̄µ∂µ λ

)
+ i D

(
n̄in

i − 2β
)

+
∣∣∇µn

i
∣∣2 + ξ̄i iσ̄

µ∇µ ξi + 2
∑

i

∣∣∣∣σ − mi√
2

∣∣∣∣
2

|ni|2

+ i
√

2
∑

i

(
σ − mi√

2

)
ξ̄Ri ξ

i
L − i

√
2 n̄i

(
λRξi

L − λLξi
R

)

+ i
√

2
∑

i

(
σ̄ − m̄i√

2

)
ξ̄Li ξ

i
R − i

√
2ni

(
λ̄Lξ̄Ri − λ̄Rξ̄Li

)
, (3.6)

where mi are twisted mass parameters, and the limit e2
0 → ∞ is implied. Moreover,

σ̄µ = {1, iσ3} , (3.7)

see Appendix A.

It is clearly seen that the auxiliary field σ enters in (3.6) only through the com-
bination

σ − mi√
2

. (3.8)

By an appropriate shift of σ one can always redefine the twisted mass parameters in
such a way that the constraint (2.1) is satisfied. The U(1) gauge symmetry is built
in. This symmetry eliminates one bosonic degree of freedom, leaving us with 2N − 2

dynamical bosonic degrees of freedom inherent to CP(N − 1) model.

3.2 Switching on the heterotic deformation

The general formulation of N = (0, 2) gauge theories in two dimensions was addressed

by Witten in [7], see also [29]. In order to deform the CP(N − 1) model breaking

2This is, obviously, the Euclidean version.

8

+ fermions

+ Tr (∇µΦ)† (∇µΦ) +
g2
2

2

[

Tr
(

Φ†T aΦ
)]2

+
g2
1

8

[

Tr
(

Φ†Φ
)

− Nξ
]2

+
1

2
Tr

∣

∣

∣aaT a Φ + Φ
√

2M
∣

∣

∣

2
+

i θ

32 π2
F a

µνF̃
a µν

}

, (46)

where Dµ is a covariant derivative acting in the adjoint representation of SU(N) and

M is a mass matrix for scalar quarks Φ. We assume that it has a diagonal form

M =

















m1 ... 0

... ... ...

0 ... mN

















, (47)

with the vanishing sum of the diagonal entries,

N
∑

A=1

mA = 0 . (48)

Later on it will be convenient to make a specific choice of the parameters mA, namely,

M = m × diag
{

e2πi/N , e4πi/N , ..., e2(N−1)πi/N , 1
}

, (49)

where m is a single common parameter, and the constraint (48) is automatically

satisfied. We can (and will) assume m to be real and positive.

In fact, the model (46) presents a less reduced bosonic part of the N = 2 super-

symmetric theory than the model (3) on which we dwelled above. In the N =

2 supersymmetric theory the adjoint field is a part of N = 2 vector multiplet. For

the purpose of the string solution the field aa is sterile as long as mA = 0. Therefore,

it could be and was ignored in the previous sections. However, if one’s intention is to

connect oneself to the quasiclassical regime, mA %= 0, and the adjoint field must be

reintroduced.

For the reason which will become clear shortly, let us assume that, although

mA %= 0, they are all small compared to
√

ξ,

m &
√

ξ ,

26

mi∼
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mΛ

σ

n

Λ

Figure 1: Plots of n and σ VEVs (thick lines) vs. m in the N = (2, 2)CP(N − 1)model

with twisted masses as in (2.2).

where we assumed for simplicity that m ≡ m0 is real and positive. (This is by no

means necessary; we will relax this assumption at the end of this section.) Note that
the phase factor of σ in (4.22) does not follow from (4.19). Rather, its emergence

is explained by explicit breaking of the axial U(1)R symmetry down to Z2N through
the anomaly and non-zero masses (2.2), see Appendix D, with the subsequent spon-

taneous breaking of Z2N down to Z2. Once we have one solution to (4.19) with the
nonvanishing σ we can generate all N solutions (4.22) by the Z2N transformation [6].

Although we derived Eq. (4.19) in the large-N approximation, the complexified

version of this equation,
N−1∏

i=0

(√
2σ − mi

)
= ΛN , (4.23)

is in fact, exact, since this equation as well as the solution (4.22) follow from the
Veneziano–Yankielowicz-type effective Lagrangian exactly derived in the N = (2, 2)
CP(N − 1) model in [35, 36, 7, 37, 28]. The Veneziano–Yankielowicz Lagrangian

implies (4.23) even at finite N .

17

Evac=0 always, SUSY unbroken, 
Z2N always broken, (N degenerate vacua)
Crossover instead of phase transition
Strong-coupling ↔ Higgs regime
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  II.  N = 1 SUSY bulk
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N = (0,2) CP(N-1) model  

Supersymmetry is broken, generally speaking !!!
Phase transitions possible

All phase transitions are of the second kind!
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Break N = 2 down to  N = 1 in the bulk 

Deformation of the bulk:   W= μ(Aa)2 + μ′A2

Lheterotic = z†
R i∂L zR +

⇥
gzR R

�
i∂Lf†�yR +H.c.

⇤
�g2

0|g|2
⇣

z†
R zR

⌘⇣
Ry†

LyL

⌘

at small γ
ζR is Goldstino

Evac = |g|2
���hRy†

R yLi
���
2

(0,2) supersymmetry is 
spontaneously broken!

(2,2) supersymmetry is broken down to (0,2)

 Heterotic deformation the of the World-sheet theory:
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Coulomb/confining.
Chiral ZN unbroken

Higgs phase
Weak coupling
Chiral ZN broken

 SUSY restored here
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No-supersymmetry applications
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★ Internal symmetries G→ H,

       ν”rel” = νG - νH ,   ν”non-rel” = (νG - νH)/2.

★ ★ This is not the case for geometric 

       symmetries! (Ivanov-Ogievetsky, 1975; Low-
       Manohar, 2002)
★ ★ ★ E.g. (structureless) string breaks two 

translations and two rotations, but one should consider 
only translational zero modes!!! zy

xMzx & Mzy broken,
Tx & Ty broken .

ANO vortex string 
(flux tube)
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☞ Goldstone modes (gapless excitations) on strings
★ Internal symmetries G→ H,

       ν”rel” = νG - νH ,   ν”non-rel” = (νG - νH)/2.

★ ★ This is not the case for geometric 

       symmetries! (Ivanov-Ogievetsky, 1975; Low-
       Manohar, 2002)
★ ★ ★ E.g. (structureless) string breaks two 

translations and two rotations, but one should consider 
only translational zero modes!!! zy

xMzx & Mzy broken,
Tx & Ty broken .

ANO vortex string 
(flux tube)
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Mzx(z) ~ Tx

What if order parameter carries 

Lorentz indices?
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Perpendicular plane

x

0

z

Low-energy excitations (gapless modes) on vortices 

◊◊  ΔΗGL = (T/2)(∂zxperp ∂zxperp)  + h.d.      ➟ time derivatives can be linear. 
or quadratic.     Nambu-Goto → String Theory

Kelvin modes or Kelvons
2 NG gapless modes in relat.
1 NG gapless mode in non-rel.

Eexcit<< mγ∼ev

L

Estr = TL + C/L

Counts # of gapless modes !

y
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3He-B example

⇠⇠⇠⇠

In the ground state 
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Spin 1/2

P-wave paring

3He atoms

 L=1, S=1  ➟  Cooper pair order parameter eμi        3×3 matrix

Spin-orbit small, symmetry of H is 

1 Introduction

In this paper we report a new phenomenon which occurs in superfluids with a tensorial order
parameter.

Superfluid 3Helium is definitely one of the most interesting states of matter which can be
realized and studied experimentally [1]. It is also one of the most well-studied systems from a
theoretical point of view [2–5]. Unlike conventional superfluids, 3He atoms are fermions, and
can thus condense only after forming Cooper-like bosonic pairs [2]. The attractive interaction
between 3He atoms, which can be modeled by Van der Walls potentials, has a very strong
short-range repulsive core. This fact entails the dominance of the P -wave pairing. Moreover,
each 3He atom is a spin 1/2 particle. The (anti)-symmetry of the wave function for a pair
of identical fermions then implies that the 3He atoms form bound states with unit angular
momentum and unit spin. The consequence of this fact is that the order parameter describing
the condensate has a tensorial structure, and has to be described by a 3 by 3 matrix eµi,
where µ denotes spin and i orbital indices [3, 6, 7].

Low-energy physics of superfluids can be described by gapless exciatations of the Nambu-
Goldstone modes associated with spontaneously broken global symmetries. Two most im-
portant physical consequences of this are: (i) phonons associated with spontaneously broken
phase U(1)p symmetry and (ii) magnons associated with spontaneously broken SO(3) spin
symmetry [8], as well as topologically stable (global) vortices winding around the broken
symmetry. In the conventional superfluid, the breaking of an Abelian phase symmetry

Up(1)⇥ 1

leads to the existence of phonon excitations in the bulk. Moreover, the same breaking
implies the existence of topologically stable superfluid vortices [9]. A lattice of vortices can
be generated in a superfluid by rotating the sample [10–12].

In this paper we point out that, in addition to the Nambu-Goldstone modes in the bulk,
there exist novel Nambu-Goldstone modes – to be referred to as non-Abelian – localized on
the vortices.

As predicted long ago by Lord Kelvin, vortices support vibrating modes, called Kelvons,
which correspond to helical fluctuations of the vortex line [13, 11, 14]. These modes can be
interpreted as the Nambu-Goldstone modes arising because of the breaking of translational
and rotational symmetries by the vortex. Both, the bulk and the Kelvin excitations have
been recently observed [15].

In an unconventional superfluid, such as 3He, however, the gapless mode situation is
more complicated and interesting. Since the order parameter is a tensor, spatial rotations
are usually broken by the condensate. Moreover, several phases are possible, with di�erent
symmetry breaking patterns.

If we neglect spin-orbit interaction, rotations of spinorial and orbital indices can be
performed independently; the full symmetry of 3He is

G = U(1)p � SOS(3)� SOL(3) ,

where SOS(3) and SOL(3) are spin and angular momentum of condensates. Two possible
phases in thee dimensions are theoretically predicted and experimentally observed in the ab-
sence of external magnetic fields. In the A-phase in three dimensions the symmetry breaking

2

in the bulk is as follows1 (in the absence of external magnetic fields):

G = Up(1)� SOS(3)� SOL(3)⇥ HA = U(1)� � U(1)S,

while in the more symmetric B phase, the ground state preserves a locked SO(3) symmetry:

G = Up(1)� SOS(3)� SOL(3)⇥ HB = SO(3)S+L.

In field-theoretical language, we identify the locked SO(3)S+L symmetry as a usual spatial ro-
tation. The expressions above imply that both phases admit a non-trivial set of non-Abelian
Goldstone bosons in the bulk, generated by the breaking of non-Abelian global symmetries.
The number of the Nambu-Goldstone excitations in the bulk is dim G - dim HA,B. This more
complicated than usual spectrum of the gapless bulk excitations is one of the peculiarities
of 3He, which distinguishes 3He from conventional superfluids.

Both phases described above, A and B, support a stable lattice of superfluid vortices
appearing once the sample is rotated. The breaking of translational invariance by the vortices
leads to the presence of gapless Kelvin modes on the vortices. Both the non-Abelian bulk
modes and the Kelvin modes were studied and observed in experiments with superfluid 3He
refs[?].

We will argue that a new type of gapless modes localized on the vortices in the B-phase
of superfluid 3He exists. While Kelvons can be interpreted as the Nambu-Goldstone modes
arising from the breaking of translations, excitations we propose arise independently, from
the breaking of the spatial rotation symmetry HB = SO(3)S+L by the vortex solution.

It is known that the B phase is divided into two sub-phases according to the core structure
of the mass vortices: either axially symmetric core under rotations around the vortex or
axially asymmetric core [16, 17]. Note that the breaking of the axial symmetry in the core
of the mass vortices has already been observed []. Such a breaking of the axial symmetry
gives rise to a U(1) Nambu-Goldstone mode localized on the given mass vortex. Therefore,
the conventional U(1) Nambu-Goldstone mode on the mass vortex exists or does not exist
depending on whether the core is asymmetric or symmetric, respectively.

Now, our assertion is as follows. There exist two more gapless modes, in addition to
the above mode, due to breaking of the bulk symmetry HB = SO(3)S+L on the vortex. In
other words, in total there exist two or three gapless modes having linear dispersions, in
accordance with the fact that

SO(3)S+L/U(1)z ⇤ S2

relevant for the axially symmetric core while SO(3)S+L for the asymmetric core.
As far as we know, this new type of excitations was not discussed in the literature, neither

observed in experiments. This is the first example of spatially localized non-Abelian Nambu-
Goldstone modes in condensed matter physics. The arguments that lead us to this conclusion
are explained in detail in Section 3. They can be applied in general to unconventional
superfluids with tensorial order parameters. We are motivated by analogous developments
in high-energy physics, in certain gauge field theories.

1The unbroken U(1)0 symmetry in the A phase appears as a combination of the Up(1) and one of the
SO(3) generators.

3

Hence, contrived NG modes in the bulk!
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 Sworld sheet =(μ2/2β)∫ d2x (∂μSi) (∂μSi)

                      SiSi = 1

Clasically two “rotational” zero modes.

                     QMechanically may be lifted
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◊      Assume χi is spin field!   

◊◊      Add  ΔL = ε (∂iχi)( ∂kχk )
                                

✸ If  ε → 0, geometric symmetry is enhanced
               Poincaré × O(3)
          

✸✸  Two extra zero modes 
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What if ε≠0 but small?
ΔCP(1)Sworld sheet = ε∫d2x {(∂zS3)2 - M2[1-(S3)2]}
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string world sheet is

S =
∫

dt dz
(

LO(3) + Lx⊥

)

,

LO(3) =

{

1

2g2

[

(

∂aS
i
)2

+ ε
(

∂zS
3
)2

]

}

−M2
(

1− (S3)2
)

, (5)

Lx⊥
=

T

2
(∂a#x⊥)

2 − M̃2
(

S3
)2

(∂z#x⊥)
2 , (6)

where #x⊥ = {x(t, z), y(t, z)} are the translational moduli fields, three orien-
tational (quasi)moduli fields Si(t, z) are constrained (i = 1, 2, 3),

Si Si = 1 , (7)

a = t, z, are the string world-sheet coordinates, and T is the string tension.
The constants g2, M2, and M̃2 are

g2 ∼ βγ , M2 ∼ M̃2 ∼ εµ2/β , (8)

assuming µ2 ∼ v2. If ε → 0 (i.e. M2 = M̃2 = 0) we recover the standard
O(3) sigma model, with the target space O(3)/O(2) and two moduli fields
(gapless excitations). With nonvanishing but small ε the gapless rotational
excitations become quasigapless 4 (note that M2 ∼ ε). The two-dimensional
Lorentz boost is no longer a symmetry, since (as was mentioned above), the
Lorentz boosts are explicitly broken by the ε(∂iχi)2 term in four dimensions,
see (4).

In high-energy physics M2 is referred to as the twisted mass [11]. In
condensed matter the ε = 0 limit of LO(3) is known as the Heisenberg an-
tiferromagnet model. Then the last term in (5) can be interpreted as an
external magnetic field of a special form giving rise to an isotropy term (e.g.
[12] and discussion therein).

The impact of the mass term in (5) depends on the sign of M2 (inherited
from ε). If M2 is positive the ground state of the theory – the vacuum –
is achieved at S3 = ±1, i.e. the spin vector in the flux tube core is aligned
with the tube axis (the so-called easy axis). If M2 is negative, the ground
state is achieved at S3 = 0, i.e. the spin vector is perpendicular to the
axis [12] (the so-called easy plane). Then the vacuum manifold is developed

4We assume that M2 $ T . At weak coupling in the bulk γ $ 1 and, hence, g2 $ 1.

4

★    EXTRA (quasi)gapless modes ★
★ ★  Translational (Kelvon) and 

orientational (spin) modes mix with 
each other ★ ★
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the breakdown of the perturbative expansion and a qual-
itatively new ingredient is needed. The energy of the
anomalous level is roughly independent of the radius.
This suggests that the most straightforward way to ex-
plain this level is the introduction of a massive pseu-
doscalar particle � on the worldsheet. The leading in-
teraction compatible with non-linearly realized Lorentz
invariance for such a particle is a coupling to the topo-
logical invariant known as the self-intersection number of
the string worldsheet

Sint =
↵

8⇡

Z
d2��Ki

↵�K
j�
� ✏↵�✏ij , (11)

where Ki
↵� is the extrinsic curvature of the worldsheet.

The existence of this worldsheet ✓-term for a string
in a four-dimensional target space was pointed out by
Polyakov [16], and it was suggested that it should be
generated on the flux tube worldsheet in the presence of
the bulk ✓-term [17]. Given this coupling, it is natural to
refer to the field � as the worldsheet axion.

The axion appears as a resonance in the scattering of
Goldstone bosons with antisymmetric flavor wave func-
tion and it also contributes to the scattering in the scalar
and symmetric tensor channels through t- and u-channel
diagrams. It is thus readily included in the TBA equa-
tions. By following the strategy outlined above, i.e. by
making use of the GGRT expressions (7), (8) and (9) for
winding corrections, we arrive at the following modified
quantization condition

cp̂R+ 2�PS + 2�res = 2⇡ , (12)

where

2�res = �1
↵2`4sp̂

6

8⇡2(4p̂2 +m2)
+ 2�2 tan

�1

✓
↵2`4sp̂

6

8⇡2(m2 � 4p̂2)

◆

is the axion contribution to the phase shift as derived
from (11) with �1 = (�1, 1, 1), �2 = (0, 0, 1), for scalar,
symmetric and antisymmetric channels correspondingly.
By solving the periodicity condition (12) and plugging
the result in (1) with the GGRT expression (9) for the
winding correction WE we arrive at the final result for
the energies.

By fitting the two free parameters (the axion mass m
and the coupling ↵) to the data, we obtained the spec-
trum shown as solid lines in Fig. 2, which corresponds to
m`s = 1.85+0.02

�0.03, confirming the heuristic analysis of [2],
and ↵ = 9.6± 0.1. The error bars represent the statisti-
cal uncertainty only. Based on a comparison of the two
symmetric tensor levels and a comparison of the states
with zero and one unit of longitudinal momentum, we
estimate the systematic and theoretical uncertainties to
be about a factor of five larger.

Note that unlike the heuristic formulae of [2], designed
to fit the pseudoscalar channel only, the TBA analysis
predicts also the energy shifts in the scalar and symmetric

tensor channels associated with the same resonance. As
seen in Fig. 2 these shifts result in a significantly better
agreement with the data.
Further support for existence of this axion comes from

data for the next excited level in the pseudoscalar chan-
nel. We reverse the logic and use the TBA equations to
determine the scattering phase shift from the finite vol-
ume spectrum, which is the standard approach in lattice
QCD. The resulting phase shifts for the pseudoscalar,
scalar and symmetric tensor channel are shown in Fig. 3.
For the pseudoscalar, it exhibits a characteristic reso-
nance shape with the phase shift crossing ⇡/2. The phase
shift extracted from the data for the pseudoscalar state
we discussed so far is shown in light red. The dark red
points show the phase shift extracted from the data for
the next excited pseudoscalar state also taken from [2].
Let us stress that presenting the data this way provides
a very convincing case for the existence of a pseudoscalar
resonance (by the very definition of what a resonance is),
without relying on any fitting procedure.
In summary, the TBA approach provides better theo-

retical control over flux tube spectra than the standard
perturbative expansion. Presently, this is the only avail-
able method for calculating the spectrum of flux tube ex-
citations for the flux tube lengths probed on the lattice.
We conclude that existing lattice data provides strong
evidence for the existence of a new particle – the world-
sheet axion. In a forthcoming publication [18] we will
present the details of our analysis and elaborate on the
diagrammatic interpretation of the TBA method. We
will also show the evidence for the same resonance in the
lattice data for more highly excited states.
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sions. This work is supported in part by the NSF grant
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consider a class of field configurations in which the field χ vanishes nowhere except,
perhaps, spatial infinity. 4 For such field configurations one can define α = Arg(χ)
at all spatial points except, perhaps, infinity. Then consider the following integral 5

h =

∫

d3x c εijkFij∂kα , (2.12)

where c is a normalizing constant. It is obvious that h is an integral over a full
derivative. For field configurations with no zeros of χ it is well defined. Moreover,
if for a given field configuration h != 0 then this field configuration describes, say, a
“twisted torus” similar to the Hopf solitons. The above twisted torus is classically
stable. Instability occurs through tunneling.

As was mentioned, the model considered above does not possess honest-to-god
Hopf invariant. Below we will demonstrate that a slightly more complicated renor-
malizable model – four-dimensional QED, with two scalar flavors and a potential of a
special form in the Higgs regime – reduces exactly to the Skyrme-Faddeev model (1.1)
in the low-energy limit m2

γ → ∞, and thus supports the Hopf invariant. We then
formulate a condition under which a stable vorton exists in this model. Although the
condition of existence is likely to be met, the corresponding arguments are heuristic
rather than rigorous. The relation between the vorton in two-flavor scalar QED and
Hopfions obtained numerically e.g. in [8, 9, 10] (see also [7]) remains unclear.

3 The basic model and its low-energy limit

3.1 The basic model

To begin with we will analyze four-dimensional scalar QED with two flavors and the
self-interaction potential of a special form. The model is non-supersymmetric but
the form of the potential is supersymmetry-inspired.

The action can be written as follows:

S0 =

∫

d4x

{

− 1

4g2
F 2

µν +
∣

∣Dµϕ
A
∣

∣

2 − λ
(

|ϕA|2 − ξ
)2

}

, (3.1)

4This is a dynamical requirement, of course, demanding the toric flux tube’s length to be much
larger than its thickness.

5Note that in this simple example the Hopf-like charge (2.12) is nothing but the integral of the
charge density component of the conventional Goldstone-Wilczek anomalous current. It can be
identified as the anomalous contribution to the electric or axial charges depending on the parity of
the scalar field.

6

SQED with two flavorswhere Dµ is the covariant derivative

Dµ = ∂µ − iAµ , (3.2)

A is the flavor index, A = 1, 2, and ξ is a real positive parameter (which can be
identified as the Fayet-Iliopoulos term [24] in supersymmetric QED). Moreover, for
what follows we will introduce a parameter β for the ratio of the coupling constants,

β =
2λ

g2
. (3.3)

In supersymmetric QED we would have β = 1. However, as we will see below,
to stabilize the Hopfion in the semiclassical regime one must require β " 1. The
vacuum energy in (3.1) vanishes. The vacuum manifold is determined by

∣

∣ϕ1
∣

∣

2
+

∣

∣ϕ2
∣

∣

2
= ξ . (3.4)

The above constraint leaves us with three real parameters out of four residing in
ϕ1,2. One extra (phase) parameter can be eliminated by imposing an appropriate
gauge condition. It is easy to see that the vacuum manifold is nothing other than S2,
presenting the target space of the CP(1) model. The U(1) gauge boson is Higgsed.
The spectrum of the model consists of a massive photon, a massive Higgs meson,

mγ =
√

2g
√

ξ , mH = mγ

√

β , (3.5)

and two massless Goldstone particle corresponding to oscillations on the vacuum
manifold. Below we will be interested in the limit β " 1 or, alternatively, mH " mγ ,
known as the London (or Abrikosov) limit in the theory of the ANO strings.

The model (3.4) supports semilocal strings (see e.g. [25, 26]). Their core is
provided by the Abrikosov-Nielsen-Olesen string [3], while the tail is due to the
Belavin-Polyakov two-dimensional instanton [4] of the CP(1) model lifted in four
dimensions.

3.2 Low-energy limit

If excitation energies are lower than mγ , the photon and the Higgs boson can be
integrated out. Then we obtain the low-energy theory for the moduli fields which,
as was mentioned, reduces to the CP(1) sigma model.

In fact, at β = 1 (i.e. in the supersymmetric limit) the answer is known. If we
introduce normalized n fields,

nA =
ϕa

√
ξ

, n̄AnA = 1 (3.6)

7

=1 →SUSY → β>>1 SUSY 

ξ → Fayet-Iliopoulos parameter     
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← Abrikosov/London limit    
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Hopf solitons in two-component superconductors

1 Introduction

Many field theories, in particular, supersymmetric Yang–Mills theories, support topo-
logically stable solitons. Their stability is due to the existence of certain topological
charges (in case of supersymmetry they are usually related to central charges of the
relevant superalgebra [1]). In such cases one can perform the Bogomol’nyi com-
pletion [2] for the energy functional (in the instanton case, for the action) which
selects the filed configuration corresponding to the minimal energy in the sector
with the given topological charge. Well-known examples are the Abrikosov–Nielsen–
Olesen (ANO) strings [3], whose topological stability is due to π1(U(1)) = Z, in-
stantons in the two-dimensional CP(1) model [4] whose topology is determined by
π2(SU(2)/U(1)) = Z, and the Belavin-Polyakov-Schwartz-Tyupkin instantons [5]
in four-dimensional Yang–Mills theory whose topological classification is based on
π3(SU(2)) = Z. Faddeev and Niemi discovered [6] a novel class of solitons, of the
knot type, whose stability is due to the existence of the Hopf topological invariant.

The model with the solitonic knots considered by Faddeev and Niemi is a de-
formed O(3) nonlinear sigma model in four dimensions

L =
F 2

2
∂µ

#S ∂µ#S − λ

4

(

∂µ
#S × ∂ν

#S
)

·
(

∂µ #S × ∂ν #S
)

. (1.1)

where the three-component field #S is an “isotopic” vector subject to the constraint

#S 2 = 1 . (1.2)

The second term in (1.1) presents a deformation of the O(3) model. Sometimes it
is referred to as the Skyrme-Faddeev, or Faddeev-Hopf model, for a review see [7].
The constant F has dimension [m2] while λ is dimensionless.1

The vacuum corresponds to a constant value of #S which we can choose as (#S)vac =
(0, 0, 1). Due to (1.2) the target space of the sigma model at hand is S2. Finiteness
of the soliton energy implies that the vector #S must tend to its vacuum value at the
spatial infinity,

#S → {0, 0, 1} at |#x| → ∞ . (1.3)

The boundary condition (1.3) compactifies the space to S3. Since

π3(S2) = Z ,

1Below we will introduce a different parametrization in which F 2 = ξ/2 and λ = (β − 1)/g2.
Moreover, g2ξ ≡ m2

γ . The origin of this parametrization will become clear shortly.

1

4D Skyrme-Faddeev model: nontriv.  S3→S2
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         Conclusions
★ Non-Abelian strings in SUSY bulk → 

CP(N-1) models (heterotic & nonheterotic) on 
string; a wealth of phase transitions.
★ 2D ↔ 4D Correspondence brings fruits

and a treasure trove of novel 2D models 
with intriguing dynamics!

★ Unexpected applications in condensed 

matter (poorly explored).
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