

M. Shifman W.I. Fine Theoretical Physics Institute, University of Minnesota

NBIA, August 13, 2013

Non-Abelian strings in Yang-Mills theories and beyond: 2D-4D correspondence, spin-orbit interaction generating unexpected Goldstone modes, and all that ★ Hanany-Tong, 2003

★ ★ Auzzi et al., 2003

★ ★ ★ Shifman-Yung, 2003 – ...

Gaiotto, 2012 & Gaiotto, Gukov, Seiberg, 2013 "surface defects"...

Outline: a) Non-Abelian strings in FT (N=2, N=1), b) World sheet models, c) 2D-4D correspondence, d) Applications (e.g. in He-3B)

Abrikosov strings (1950s);

★ ★ Cosmic strings (Kibble 1970s, Witten 1985); ★ ★ ★ Non-Abelian strings in susy Yang-Mills: Bulk $G \times G \rightarrow CF$ locking $\rightarrow (G_{diag} \rightarrow H) \rightarrow G/H$ coset model on the world sheet \rightarrow (susy in bulk \rightarrow susy on ws)

DUAL MEISSNER EFFECT (Nambu-'t Hooft-Mandelstam, ~1975)

M. Shifman 4

The Meissner effect: 1930s, 1960s

DUAL MEISSNER EFFECT (Nambu-'t Hooft-Mandelstam, ~1975)

M. Shifman 4

★ ANO strings are there because of U(1)!
 ★ New strings:

 \star ANO strings are there because of U(1)! ★ New strings: $\pi_1(SU(2) \times U(1)) = Z_2$: rotate by π around 3-d axis in SU(2) \rightarrow -1; another -1 rotate by π in U(1) $\pi_1(U(1) \times SU(2))$ nontrivial due to Z₂ center of SU(2) Ζ **ANO** $\sqrt{\xi} e^{i\alpha} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ string X T=4πξ Non-Abelian $\sqrt{\xi} \begin{pmatrix} e^{i\alpha} \\ 0 \end{pmatrix}$ $T_{U(1)} \pm T^3_{SU(2)}$ X0 ← string center in perp. plane T=2πξ $SU(2)/U(1) \leftarrow orientational moduli; O(3) \sigma model$ M. Shifman 5

"Non-Abelian" string is formed if all non-Abelian degrees of freedom participate in dynamics at the scale of string formation

classically gapless excitation

 $SU(2)/U(1) = CP(1) \sim O(3)$ sigma model

$$S = \int d^2x \left\{ \frac{2}{g^2} \frac{\partial_\mu \bar{\phi} \partial^\mu \phi - (\Delta m)^2 \bar{\phi} \phi}{(1 + \bar{\phi} \phi)^2} + fermions \right\}$$

M. Shifman 6

Evolution in dimensionless parameter m^2/ξ

Kinks are confined in 4D (attached to strings).
Kinks are confined in 2D:

Kink = Confined Monopole

■ World-sheet theory ↔ strongly coupled bulk theory inside

M. Shifman 9

Dewar flask

I. N = 2 SUSY bulk \longrightarrow N = (2,2) CP(N-1) model

$$\bigcap_{i=1}^{n} e^{2\pi i/N}, e^{4\pi i/N}, ..., e^{2(N-1)\pi i/N}, 1$$

$$\mathcal{L} = \frac{1}{e_0^2} \left(\frac{1}{4} F_{\mu\nu}^2 + |\partial_\mu \sigma|^2 + \frac{1}{2} D^2 \right) + i D \left(\bar{n}_i n^i - 2\beta \right) \\ + \left| \nabla_\mu n^i \right|^2 + 2 \sum_i \left| \sigma - \frac{m_i}{\sqrt{2}} \right|^2 |n^i|^2$$

+ fermions

M. Shifman 10

II. N = 1 SUSY bulk

N = (0,2) CP(N-1) model

Supersymmetry is broken, generally speaking !!! Phase transitions possible

All phase transitions are of the second kind!

Deformation of the bulk: $W = \mu(A^a)^2 + \mu'A^2$

Heterotic deformation the of the World-sheet theory:

(2,2) supersymmetry is broken down to (0,2)

 $L_{heterotic} = \zeta_R^{\dagger} i \partial_L \zeta_R + \left[\gamma \zeta_R R \left(i \partial_L \phi^{\dagger} \right) \psi_R + H.c. \right] - g_0^2 |\gamma|^2 \left(\zeta_R^{\dagger} \zeta_R \right) \left(R \psi_L^{\dagger} \psi_L \right)$

at small γ ζ_R is Goldstino

$$\mathcal{E}_{vac} = |\mathbf{\gamma}|^2 \left| \langle R \psi_R^{\dagger} \psi_L \rangle \right|^2$$

(0,2) supersymmetry is spontaneously broken!

M. Shifman 13

No-supersymmetry applications

 \star Internal symmetries $G \rightarrow H$,

 $V''_{rel} = V_G - V_H, V''_{non-rel} = (V_G - V_H)/2.$

 \star \star This is not the case for geometric symmetries! (Ivanov-Ogievetsky, 1975; Low-Manohar, 2002) ★ ★ 🛨 E.q. (structureless) string breaks two translations and two rotations, but one should consider only translational zero modes!!! ANO vortex string M_{zx} & M_{zy} broken, (flux tube) $T_x \& T_y$ broken.

M. Shifman 16

Goldstone modes (gapless excitations) on strings

 \star Internal symmetries G \rightarrow H,

 $V''_{rel}'' = V_G - V_H$, $V''_{non-rel}'' = (V_G - V_H)/2$.

 \star \star This is not the case for geometric symmetries! (Ivanov-Ogievetsky, 1975; Low-Manohar, 2002) ★ ★ ★ E.q. (structureless) string breaks two translations and two rotations, but one should consider only translational zero modes!!! ANO vortex string M_{zx} & M_{zy} broken, (flux tube) $T_x \& T_y$ broken.

M. Shifman 16

Low-energy excitations (gapless modes) on vortices

In the ground state $U_p(1) \times SO_S(3) \times SO_L(3) \rightarrow H_B = SO(3)_{S+L}$

Hence, contrived NG modes in the bulk!

M. Shifman 19

Sworld sheet = $(\mu^2/2\beta)\int d^2x (\partial_{\mu}S^i) (\partial_{\mu}S^i)$

$$S^iS^i = 1$$

Clasically two "rotational" zero modes.

QMechanically may be lifted

♦ Assume χ^i is spin field!
♦♦ Add $\Delta L = \varepsilon (\partial_i \chi^i) (\partial_k \chi^k)$

* If ε → 0, geometric symmetry is enhanced Poincaré × O(3)

****** Two extra zero modes

What if $\epsilon \neq 0$ but small? $\Delta_{CP(1)}S_{World sheet} = \epsilon \int d^2 x \{(\partial_z S^3)^2 - M^2[1-(S^3)^2]\}$

$$\mathcal{L}_{x_{\perp}} = \frac{T}{2} \left(\partial_a \vec{x}_{\perp} \right)^2 - \tilde{M}^2 \left(S^3 \right)^2 \left(\partial_z \vec{x}_{\perp} \right)^2,$$

★ EXTRA (quasi)gapless modes ★ ★ ★ Translational (Kelvon) and orientational (spin) modes mix with each other ★ ★

S. Dubovsky, R. Flauger, V Gorbenko, 2013

$$dd\mathbf{x}_{perp} dd\mathbf{x}_{perp}$$
$$dd\mathbf{x}_{perp} dd\mathbf{x}_{perp}$$
$$S_{int} = \frac{\alpha}{8\pi} \int d^2\sigma \phi K^i_{\alpha\gamma} K^{j\gamma}_{\beta} \epsilon^{\alpha\beta} \epsilon_{ij} , \qquad (11)$$

where $K^i_{\alpha\gamma}$ is the extrinsic curvature of the worldsheet.

SQED with two flavors

$$S_{0} = \int d^{4}x \left\{ -\frac{1}{4g^{2}} F_{\mu\nu}^{2} + \left| \mathcal{D}_{\mu}\varphi^{A} \right|^{2} - \lambda \left(|\varphi^{A}|^{2} - \xi \right)^{2} \right\}$$

$$\beta = \frac{2\lambda}{g^2} = 1 \rightarrow \text{SUSY} \rightarrow \beta \gg 1 \text{SUSY}$$

 $\xi \rightarrow$ Fayet–Iliopoulos parameter

$$m_{\gamma} = \sqrt{2}g\sqrt{\xi}, \qquad m_H = m_{\gamma}\sqrt{\beta},$$

 $m_H \gg m_\gamma$

Tuesday, August 13, 13

M. Shifman 24

Hopf solitons in two-component superconductors

$$\mathcal{L} = \frac{F^2}{2} \,\partial_\mu \vec{S} \,\partial^\mu \vec{S} - \frac{\lambda}{4} \,\left(\partial_\mu \vec{S} \times \partial_\nu \vec{S}\right) \cdot \left(\partial^\mu \vec{S} \times \partial^\nu \vec{S}\right)$$

4D Skyrme-Faddeev model: nontriv. $S_3 \rightarrow S_2$

M. Shifman 25

Conclusions ★ Non-Abelian strings in SUSY bulk → CP(N-1) models (heterotic & nonheterotic) on string; a wealth of phase transitions. \star 2D \leftrightarrow 4D Correspondence brings fruits and a treasure trove of novel 2D models with intriguing dynamics!

★ Unexpected applications in condensed matter (poorly explored).