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Phenomelogy of quantum gravity

Various quantum gravity effects could be of important physical implications:
I Infra-red physics

large extra dimensions

weakening of the 4d gravitational force at cosmological scales

Effective mass of a graviton: from geometry, fluxes, higher dimensional
gravity models, string theory,. . .

I Ultraviolet completion dependent
early time quantum fluctuations

Non-decoupling of fundamental degrees of freedom from string theory

choice of vacuum . . .
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Quantum gravity as an effective field theory

I Some physical properties of quantum gravity are universal being
independent of the UV completion
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Quantum gravity as an effective field theory

I Some physical properties of quantum gravity are universal being
independent of the UV completion

[Donoghue] has explained that one can evaluate some long-range infra-red
contributions in any quantum gravity theory and obtain reliable answers
independent of the UV completion.

We are interested in quantum gravity contributions at loop order that depend
only on the structure of the effective tree Lagrangian

At one-loop order these will be infra-red contributions involving only the struc-
ture of the tree amplitudes and independent of the UV completion
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Black-Hole entropy and AdS/CFT

[Sen] has showed that the log correction to the entropy of non-extremal black
holes can be computed in any quantum gravity theory

S =
Area
4`2p

+ c log

(
A
`2p

)
+ · · ·

matches the prediction from string theory but fails to be reproduced by loop
quantum gravity models.

The coefficient c is universal because it only depends on the low-energy
spectrum determined by the massless fields and their coupling to the
background
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated reliably using
effective field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated reliably using
effective field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections

I If λ =  h/(m1 + m2) is the Compton wavelength

C
GNm1m2(m1 + m2)

(r ± λ)2 ' C
GNm1m2(m1 + m2)

r2 ± C
GNm1m2

 h︷          ︸︸          ︷
(m1 + m2)λ

r3

I Q in the potential V(r) is ambiguous but V(r) is not observable
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated reliably using
effective field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein]

V(r) = −
GNm1m2

r

(
1 + C

GN(m1 + m2)

r
+ Q

GN  h

r2

)
+ Q ′G2

Nm1m2δ
3(~x)

I C is the classical correction and Q and Q ′ are quantum corrections

I The coefficients of 1/
√
−q2 and log(−q2) in the amplitude are

unambiguously defined

V(q2) =
GNm1m2

q2 +C
G2

Nm1m2(m1 + m2)√
−q2

+QG2
Nm1m2 h log(−q2)+Q ′G2

Nm1m2
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated reliably using
effective field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein]

V(q2) =
GNm1m2

q2 +C
G2

Nm1m2(m1 + m2)√
−q2

+QG2
Nm1m2 h log(−q2)+Q ′G2

Nm1m2

I C is the classical correction and Q and Q ′ are quantum corrections

I Q ′ is the short distance UV divergences of quantum gravity

I Need to add the R2 term [’t Hooft-Veltman]

S =

∫
d4x|− g|

1
2

[
2

32πGN
R+ c1R

2 + c2RµνRµν + · · ·
]
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Corrections to Newton’s potential

One-loop corrections to Newton’s potential can be calculated reliably using
effective field theory approach to gravity [Donoghue; Bjerrum-Bohr, Donoghue, Holstein]

V(q2) =
GNm1m2

q2 +C
G2

Nm1m2(m1 + m2)√
−q2

+QG2
Nm1m2 h log(−q2)+Q ′G2

Nm1m2

I C is the classical correction and Q and Q ′ are quantum corrections

I Q ′ is the short distance UV divergences of quantum gravity

I Need to add the R2 term [’t Hooft-Veltman]

The coefficients C and Q are independent of the UV completion and any quan-
tum gravity theory should give these computations

The aim of this talk is to discuss the computation of these constant and their
physical interpretation
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Effective theory of quantum gravity

One can try to treat quantum gravity as an ordinary quantum field theory

I In the 60’s Feynman spelled the technics for perturbative
gravity : Quanta = gravitons (massless, spin 2)

I Rules for Feynman diagrams given from the linearization of
gauge fixed Einstein-Hilbert action gmn = ηmn + κ(4) hmn

I Very similar to other gauge theories but huge gauge
symmetry from diffeomorphism invariance
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Perturbative technics

Classical Newton’s potential is obtained in the non-relativistic limit

V(q2) =
GNm1m2

q2 V(r) = −
GNm1m2

r

m1 m2

q2

hµν

is derived by a tree-level graph exchanging a graviton
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Gravitational compton scattering

Gravitational Compton scatting off a massive particle of spin s = 0, 1
2 , 1

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

using Feynman rules and DeWitt or Sannan’s 3- and 4-point vertices this is a
big mess
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Tree-level amplitudes in Yang-Mills

I We consider tree-level amplitudes in Yang-Mills with gauge group G

I Tree-level amplitudes are decomposed into color-ordered sub-amplitudes

A(1, . . . , n) ∼
∑

σ∈Sn−1/Z2

Tr (λa1λaσ(2) · · · λaσ(n)) A(1,σ(2, . . . , n))

I λa are generators in the fundamental representation of the gauge group G

I A(1,σ(2, . . . , n)) are the (n − 1)!/2 color-ordered amplitudes

Pierre Vanhove (IPhT & IHES) universal quantum gravity 12/08/2013 9 / 23



Tree-level amplitudes in Yang-Mills

X

X

X

X

X

X

X

X X X X X X X
0 1 ∞

I Tree-level YM amplitudes from α ′ → 0 of disc open string amplitudes

I PSL(2,R) invariance z1 = 0, zn−1 = 1 and zn = +∞. (3 marked points)

A(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

∏
16i<j6n

f (xi − xj) (xi − xj)
2α ′ki·kj dn−3x

I The function f (x) does not have branch cut but has poles.
I Depends on the polarisation and momenta of the external states.
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Monodromies from contour deformation

Contour deformation

I The monodromy lead to a linear system of equations relating different
ordering of the external states

I In string theory

0 = sin(2πα ′k2 · k3)A(1324) + sin(2πα ′k2 · (k1 + k3))A(3124)

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-bohr, Damgaard, Feng, Søndergaard; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]
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Monodromies from contour deformation

Contour deformation

I The monodromy lead to a linear system of equations relating different
ordering of the external states

I In field theory α ′ → 0

0 = (k2 · k3)A(1324) + k2 · (k1 + k3)A(3124)

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]
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Monodromies from contour deformation

Contour deformation

1 2

n-1n-2

i-1 i+1

... ...

i

I The monodromy lead to a linear system of equations relating different
ordering of the external states ∀βSn−2∑

σ∈Sn−2

S[σ(2, . . . , n − 1)|β(2, . . . , n − 1)]k1An(n,σ(2, . . . , n − 1), 1) = 0

[Bern, Carrasco, Johansson; Bjerrum-bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-bohr, Damgaard, Feng, Søndergaard; Bjerrum-bohr, Damgaard, Søndergaard, Vanhove]
Pierre Vanhove (IPhT & IHES) universal quantum gravity 12/08/2013 11 / 23



Momentum kernel

Contour deformation

1 2

n-1n-2

i-1 i+1

... ...

i

I The α→ 0 limit leads to an object named momentum kernel S

S[i1, . . . , ik|j1, . . . , jk]p :=

k∏
t=1

(p · kit +

k∑
q>t

θ(t, q) kit · kiq)

I θ(t, q) = 1 if (it − iq)(jt − jq) < 0 and 0 otherwise

[Bern, Carrasco, Johansson; Bjerrum-Bohr, Damgaard, Vanhove; Stieberger; Mafra, Schlotterer]

[Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard, Søndergaard, Vanhove]
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Gravity as a square of Yang-Mills

I Holomorphic factorization. Relative ordering of the contours

M(1, . . . , n) =
∫

Cx

dn−3x
∫

Cy

dn−3y
∏

16i<j6n

(xi − xj)
α ′ki·kj

2 (yi − yj)
α ′ki·kj

2 f (xij)g(yij)

Mn = (−1)n−3
∑

σ,γ∈Sn−3

S[γ(2, . . . , n − 2)|σ(2, . . . , n − 2)]k1

×An(1,σ(2, . . . , n − 2), n − 1, n)Ãn(n − 1, n,γ(2, . . . , n − 2), 1)

[Bern, Carrasco, Johansson] [Kawai,Lewellen, Tye; Tye, Zhang;Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard,

Søndergaard, Vanhove]
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Gravity as a square of Yang-Mills

I Holomorphic factorization. Relative ordering of the contours

M(1, . . . , n) =
∫

Cx

dn−3x
∫

Cy

dn−3y
∏

16i<j6n

(xi − xj)
α ′ki·kj

2 (yi − yj)
α ′ki·kj

2 f (xij)g(yij)

AYM
n = Avector ⊗ S⊗Ascalar

MGrav
n = Avector ⊗ S⊗Avector

[Bern, Carrasco, Johansson] [Kawai,Lewellen, Tye; Tye, Zhang;Bjerrum-Bohr, Damgaard, Feng, Søndergaard; Bjerrum-Bohr, Damgaard,

Søndergaard, Vanhove]
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Tree amplitudes with massive external legs

We are interested into pure gravity amplitudes of gravitons scattering off
massive particles

Avector(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

dn−3x f (xi − xj)
∏

16i<j6n

(xi − xj)
2α ′ki·kj

I Massive state vop are of the form V =: (∂X)n+1eik·X : with α ′k2 = n

I The OPE between the plane-wave still gives (xi − xj)
2α ′ki·kj
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Tree amplitudes with massive external legs

We are interested into pure gravity amplitudes of gravitons scattering off
massive particles

Avector(σ(1, . . . , n)) =
∫

xσ(1)<···<xσ(n)

dn−3x f (xi − xj)
∏

16i<j6n

(xi − xj)
2α ′ki·kj

I The function f (xi − xj) develops new poles 1/(xi − xj)
m with m integer

I This shifts 2α ′(ki · kj) + m = 2α ′(ki + kj)
2 to accommodate for the

masses α ′(k2
i + k2

j ) = m

Since the momentum kernel and the amplitudes relations are expressed in
terms of the scalars products ki · kj they are still valid in the same form for
massive external states
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes

M(Xsg→ Xsg) = GN × (p1 · k1)As(1234)Ã0(1324)

As(1234) is the color ordered amplitudes scattering a gluon off a massive spin
s state Xsg→ Xsg
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

We express the gravity Compton scattering as a product of two Yang-Mills
amplitudes

I using the monodromy relations

(k1 · k2)As(1234) = (p1 · k2)As(1324)

I then

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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Gravitational compton scattering

g g

X X

g g

X X

= + ++

X

X

g

g

g

X

g

X

g g

X X

The gravity Compton scattering is expressed as the square of QED (abelian)
Compton amplitudes

++=

M(Xsg→ Xsg) = GN
(p1 · k1)(p1 · k2)

k1 · k2
As(1324)Ã0(1324)
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A natural value for the Gyromagnetic ratio I

A first physical consequence of the relation between the gravitational
Compton amplitudes and the QED amplitudes is a natural derivation of the
natural value g = 2 of the gyromagnetic ratio

The classical value of the g-factor for the electron is g0 = 2 and Quantum
mechanically g = g0 + quantum corrections

gelectron = g0

(
1 +

α

2π
+ · · ·

)
= 2× 1.00115965

There was the question of the natural value of g0 for spin S particle.

Belinfante conjectured that g0 = 1/S - but various arguments favored g0 = 2
independently of the spin
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A natural value for the Gyromagnetic ratio II
Massive spin 1 Compton amplitudes have a piece that diverges for m2 → 0 if
g0 , 2

(g0 − 2)2

m2

(ns

s
−

nt

t

)

If g , 2
I Violation of unitarity for photon of energy E ∼ m

I QED gets strongly coupled at energies E ∼ m/e
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A natural value for the Gyromagnetic ratio III

I from the expression of the gravity compton scattering as the product of
the QED scattering on can extract expression of g factor

M(Xsg→ Xsg) = GN
p1 · k1 p1 · k2

k1 · k2
As(1324)Ã0(1324)

I [Holstein] showed that the amplitudes As(1324) are the QED Compton
amplitude for spin s particle and a (bare) value of the g-factor g0 = 2

I It is the two derivative nature of gravity that removes the 1/m2 for m→ 0

The relation gravity ∼ (gauge)2 leads to g0 = 2 for all values of the spin S
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Corrections to Newton’s potential

The corrections to Newton’s potential between two non-relativistic masses m1
and m2 extracted from a one-loop amplitude

m1 m2

q2

hµν

hµν

hµν

m1

m2
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Corrections to Newton’s potential I

In the non-relativistic limit the second order potential reads

M(2)(q2) ' C
G2

Nm1m2(m1 + m2)√
−q2

+ QG2
Nm1m2 h log(−q2)

We consider cuts that will gives the 1/
√

−q2 and log(−q2) coefficients the
coefficients of (q2)n/

√
−q2 and (q2)n log(−q2) are negligible.

The coefficient C and Q have a spin-independent and a spin-orbit contribution

C, Q = C, QS−I 〈S1|S1〉 〈S2|S2〉+ C, QS−O
1,2 〈S1|S1〉~S2 ·

~p3 × p4

m2
+ (1↔ 2)
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The one-loop amplitude

hµν

hµν
m1

m2

We are not interested in the full amplitude so only the massless graviton cut is
enough.
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The one-loop amplitude

hµν

hµν
m1

m2

We are not interested in the full amplitude so only the massless graviton cut is
enough.

I The singlet cut gives a scalar box

M|non−singlet cut =

∫
d4−2ε`

`21`
2
2
∏4

i=1 `1 · pi

I The non-singlet cut gives

M|non−singlet cut =

∫
d4−2ε`

<e
(

tr−(/̀1/p1
/̀2/p2)

)4

`21`
2
2
∏4

i=1 `1 · pi
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The one-loop amplitude

hµν

hµν
m1

m2

We are not interested in the full amplitude so only the massless graviton cut is
enough.

I The result is given by

M(2) = G2
Nm1m2

 6π︸︷︷︸
C

m1 + m2√
−q2

−
41
5︸ ︷︷ ︸

Q

log(−q2)


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Universality of the result

Remarkably the coefficients are universal independent of the spin of the
external states, a property noticed by [Holstein, Ross].

This is a consequence of
I The reduction to the product of QED amplitudes
I the low-energy theorems of [Low, Gell-Mann, Goldberger] and [Weinberg]

In the non-relativistic limit the QED Compton amplitudes take a simplified
form given by

A(Xsγ→ Xsγ) ' 〈S|S〉A(X0γ→ X0γ) + Â~S · p1 × p2

m
The KLT formula gives that the tree gravity amplitude take the same generic
form

M(Xsg→ Xsg) ' 〈S|S〉M(X0g→ X0g) + M̂~S · p1 × p2

m

I In the cut this leads to universality of the result [Bjerrum-Bohr, Donoghue, Vanhove]
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Outlook

Recent progresses from string theory technics, on-shell unitarity, double-copy
formalism simplifies a lot perturbative gravity amplitudes computations

I The amplitudes relations discovered in the context of massless
supergravity theories extend to the pure gravity case with massive matter

I The use of quantum gravity as an effective field theory allows to
compute universal contributions from the long-range corrections

Pierre Vanhove (IPhT & IHES) universal quantum gravity 12/08/2013 23 / 23


