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1. INTRODUCTION 



 Most theoretical models are based on a fluid description (L » λmfp) 
requiring the solution of highly nonlinear hyperbolic / parabolic P.D.E., 
e.g.  

 

 

Plasma Description 

Euler equations 

Single Fluid  
MHD equations 



 Exact  solutions possible under very restrictive assumptions, e.g. 
stationarity (/t = 0), self-similarity, spherically symmetry or 
similar. 

 

 Nonlinear, time-dependent systems can be studied only by means 
of numerical simulations. 
 

 Grid-Based fluid approach via Finite Volume/Difference:  
 Fluid variables are discretized on a spatial grid (static or adaptive) and evolved 

in time.  

 Numerical solution of hyperbolic PDE in presence of discontinuous waves 

 Shock-Capturing (or Godunov-type) schemes. 

 

Why Numerical Simulations ? 



A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

     Supernova remnants morphology & 
Rayleigh Taylor Instability 
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Rayleigh-Taylor unstable flows 
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 Set the number of zones 
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 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 

 Set initial conditions: 

 

 

 

 Set boundary conditions 

A computational example:  
Rayleigh-Taylor unstable flows 



A computational example:  
Rayleigh-Taylor unstable flows 

 Problem:  

      Supernova remnants morphology & 
Rayleigh Taylor Instability 

 

 Choose computational domain 

 Set the number of zones 

 Set initial conditions: 

 

 

 

 Set boundary conditions 

 Set final integration time & Run! 



 
F INITE  DIFFERENCE   

AND  

F INITE  VOLUME METHODS  

2a. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE 



Numerical Discretizations 

 

 

 

 Two popular methods for performing discretization: 

 
 Finite Differences (FD); 

 Finite Volume (FV); 

 

 For some problems, the resulting discretizations look identical, but 
they are distinct approaches; 

We begin using finite-difference as it will allow to quickly learn 
some important concepts. 



 A finite-difference method stores the solution at specific points in 
space and time; 

 

 

 

 Associated with each grid point is a function value, 

 

              

 

We replace the derivatives in our PDE with differences between 
neighbor points 

 

Finite Difference Approach 

i+1 i i-1 

i+½ i-½ 



Finite Volume Approach 

 In a finite volume discretization, the unknowns are the spatial 
averages of the function itself: 

 

     

 

 where xi-½  and xi+½  denote the location of the cell interfaces. 

 

 

 

 

 The solution to the conservation law involves computing fluxes 
through the boundary of the control volumes 
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Finite Volume Formulation 

 The conservative form of the equations provides the link between 
the differential form of the equation, 

 

 

 

 and the integral form, obtained by integrating the equations over  

a time intervalt = tn+1 – tn and cell size x = xi+1/2 – xi-1/2 



 Performing the spatial integration yields 

 

 

 

     with                                                        being a spatial average. 

 

 A second integration in time gives 

 

 

 

   where                                                                  is a temporal average     

Finite Volume Formulation 



Finite Volume Formulation 

 Rearranging terms yields 
 
 
 

    with spatial and temporal averages given by 
 
 
 
 
 

 This is an EXACT evolutionary equation for the spatial averages of q. 
 This relation provides an integral representation of the original 

differential equation. 
 The integral form does not make use of partial derivatives! 

Integral form 



The Riemann Problem 

 The previous relations are exact.  

 However, since the solution is known only at tn, some kind of 
approximation is required in order to evaluate the flux through the 
boundary: 

 

 

 This achieved by solving the so-called “Riemann Problem”, i.e., the 
evolution of an inital discontinuity separating two constant states. 
The Riemann problem is defined by the initial condition: 



The Riemann Problem 

qL 

qR 

Left State 

Right State 

x 

Cell Interface 

i i+1 i+½ 

Initial Discontinuity 

t = 0 



The Riemann Problem 

qL 

qR 

Left State 

Right State 

x 

Cell Interface 

i i+1 i+½ 

Discontinuity Breakup 

t > 0 



 
THE L INEAR SCALAR ADVECTION  EQUATION  

2b. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE 



The Advection Equation: Theory 

 First order partial differential equation (PDE) in (x,t): 

 

 

 Hyperbolic PDE: information propagates across domain at finite 
speed  method of characteristics 

 Characteristic curves are the solutions of the equation 

 

 

 So that, along each characteristic, the solution satisfies 

 



The Advection Equation: Theory 

 

 The solution is constant  

     along the characteristic  

     curves. At any point (x,t) we 

     trace the characteristic  

     back to the initial position. 

 

 

 

 

 This defines the physical domain of   dependence. 

 

 



The Advection Equation: Theory  

 for constant a: the characteristics are straight parallel lines and the 
solution to the PDE is a uniform shift of the initial profile: 

 

 

 Here                               is the initial condition 



Discretization: the FTCS Scheme 

We need to approximate the derivatives in our PDE 

 

 

 In time, use forward derivative, since we want to use information 
from the previous time level: 

 

 

 

 In space, we use centered derivatives, since it is more accurate:  



The FTCS Scheme 

 Putting all together:  

 

 and solving with respect to                gives  

 

 

 

    where                       is the Courant-Friedrichs-Lewy (CFL) number. 

 

We call this method FTCS for forward in time, centered in space. 

 The value at the new time level depends only on quantities at the 
previous time steps  explicit method. 



The FTCS Scheme 

 At t=0, the initial condition is a square pulse with periodic 
boundary conditions: 



The FTCS Scheme 

 After some time, the solution looks like this: 

 

 

 

 

 

 

 

 

 

 Something isn’t right… why ? 



von Neumann Stability Analysis 

 Let’s perform an analysis of FTCS by expressing the solution as a 
Fourier series.  

 

 Since the equation is linear, we only examine the behavior of a 
single mode. Consider a trial solution of the form 

 

 

 This is a spatial Fourier expansion. Plugging in the difference 
formula: 

 

 



von Neumann Stability Analysis 

 Defining the amplification factor                one obtains 

 

 

 

 a method is well-behaved or stable  when  

 

 however, for FTCS, one gets   

 

 Indipendently of the CFL number, all Fourier modes increase in 
magnitude as time advances 

 This method is unconditionally unstable! 



Forward in Time, Backward in Space 

 Let’s try a difference approach. Consider the backward formula for 
the spatial derivative: 

 

 

 Apply von Neumann stability analysis on the resulting discretized 
equation: 

 

 

 Solving for the amplification factor gives 

 

 



Forward in Time, Backward in Space 

 The method is stable when                                   

 

 for a < 0 the method is unstable, but 

 for a > 0 the method is stable  when    

 

t = 0.09 t = 0.18 t = 1 



Forward in Time, Forward in Space 

 Repeating the same argument for the forward derivative 

 

 

 

 Gives 

 

 

 If a > 0 the method will always be unstable 

 

 However, if                              , then this method is stable; 

 



 Summarizing: the stable discretization makes use of the grid point 
where information is coming from: 

 

 

 

 

 

 

 This is ”upwind”: 

 

 This is also called the first-order Godunov method; 

The 1st Order Godunov Method 

a>0 a<0 



We define the “flux” function 

    so that Godunov method can be cast in conservative form 

 

 

   

 

 

 

 

 The conservative form ensures a correct description of 
discontinuities in nonlinear systems, ensures global conservation 
properties and is the main building block in the development of 
high-order finite volume schemes. 

Conservative Form 

a > 0 a < 0 



The CFL Condition 

 Since the advection speed a is a parameter of the equation, x is 
fixed from the grid, the previous inequality is a stability constraint 
on the time step 

 

 

 

 t cannot be arbitrarily large but, rather, less than the time taken 
to travel one grid cell (CFL)  condition. 

 

 In the case of nonlinear equations, the speed can vary in the 
domain and the maximum of a should be considered instead. 

 



 File name: advection.c 

 Purpose: solve the linear advection  

                     equation using the 1st-order  

                     Godunov method. 

 Usage:   

 
> gcc –O advection.c –o advection 

> ./advection 

 

 Output: two-column ascii data file. 

Code Example 



SYSTEM OF L INEAR  EQUATIONS  

2c. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE: 



System of Equations: Theory 

We turn our attention to the system of equations (PDE) 

 

 

     where                                           is the vector of unknowns. A is a 
m  m constant matrix. 

 For example, for m=3, one has 



System of Equations: Theory 

 The system is hyperbolic if A has real eigenvalues,  1  …  m 
and a complete set of linearly independent right and left 
eigenvectors   rk  and lk  (rj lk =jk) such that 

 

 

 

 For convenience we define the matrices   = diag(k), and 

 

 

 

 

 So that  AR = R, LA = L , LR = RL = I, LAR = .  

 



 The linear system can be reduced to a set of decoupled linear 
advection equations. 

Multiply the original system of PDE’s by L on the left: 

 

 

 

 Define the characteristic variables   w=L q  so that  

 

 

 

 Since    is diagonal, these equations are not coupled anymore. 

System of Equations: Theory 



System of Equations: Theory 

 In this form, the system decouples into m independent advection 
equations for the characteristic variables: 

 

 

   

     where                             (k=1,2,…,m)  is a characteristic variable. 

 

 

When m=3 one has, for instance:  

 

 

 



System of Equations: Theory 

 The m advection equations can be solved independently by applying the 
standard solution techniques developed for the scalar equation. 

 

 In particular, one can write the exact analytical solution for the k-th 
characteristic field as 

 

   

     i.e., the initial profile of wk shifts with uniform velocity k , and 

 

     

     is the initial profile. 

 The characteristics are thus constant along the curves dx/dt = k  

 

 



System of Equations: Exact Solution 

 Once the solution in characteristic space is known, we can solve the 
original system via the inverse transformation 

 

 

 

 The characteristic variables are thus the coefficients of the right 
eigenvector expansion of q. 

 The solution to the linear system reduces to a linear combination of m 
linear waves traveling with velocities  k . 

 Expressing everything in terms of the original variables q,  

 

 



Riemann Problem for Discontinuous Data 

 If q is initially discontinuous, one or more characteristic variables 
will also have a discontinuity. Indeed, at t = 0, 

 

 

 

 

 In other words, the initial jump qR - qL is decomposed in several 
waves each propagating at the constant speed k  and 
corresponding to the eigenvectors of the Jacobian A: 

 

 

     where                                            are the wave strengths  

 



Riemann Problem for Discontinuous Data 

 For the linear case, the exact solution for each wave at the cell 
interface is: 

 

 

 

 The complete solution is found by adding all wave contributions: 

 

 

 

 and the flux is finally computed as  



The Riemann Problem 

 

 

 

 

qL qR 

q*L 

q*R 

x=1t 
x=2t 

x=3t 

x 

t 

xi+½-2t 

(xi+½,t) 

xi+½-3t xi+½-1t 

Point (X0,T) falls to the right of the 1 characteristic emanating from  

the initial jump, but to the left of the other 2, so the solution is: 



System of Equations: Numerics 

We suppose the solution at time level n is known as qn and we wish 
to compute the solution qn+1 at the next time level n+1. 

 

 Our numerical scheme can be derived by working in the 
characteristic space and then transforming back: 

 

 

 

 

     where 

 

     is the Godunov flux for a linear system of advection equations. 



NONLINEAR SCALAR EQUATION  

2d. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE: 



Nonlinear Advection Equation 

We turn our attention to the scalar conservation law 

 

 

 

Where f(u) is, in general, a nonlinear function of u.  

 

 To gain some insights on the role played by nonlinear effects, we 
start by considering the inviscid Burger’s equation: 



We can write Burger’s equation also as 

 

 In this form, Burger’s equation resembles the linear advection 
equation, except that the velocity is no longer constant but it is 
equal to the solution itself. 

 The characteristic curve for this equation is 

 

 

 

 u is constant along the curve dx/dt=u(x,t)  characteristics  are 
again straight lines: values of u associated with some fluid element 
do not change as that element moves. 

Nonlinear Advection Equation 



 From 

 

    one can predict that, higher values of u will propagate faster than 
lower values: this leads to a wave steepening, since upstream 
values will  advances faster than downstream values. 

Nonlinear Advection Equation 



Nonlinear Advection Equation 

 Indeed, at t=1 the wave profile will look like: 

 

 

 

 

 

 

 

 

 

 the wave steepens… 



Nonlinear Advection Equation 

 If we wait more, we should get something like this: 

 

 

 

 

 

 

 

 

 

 A multi-value functions ?!  Clearly NOT physical ! 



Nonlinear Advection Equation 

 The correct physical solution is to place a discontinuity there:  

     a shock wave.  

 

 

 

 

 

 

 

 Since the solution is no longer smooth, the differential form is not 
valid anymore and we need to consider the integral form. 

Shock position 



Nonlinear Advection Equation 

 This is how the solution should look like: 

 

 

 

 

 

 

 

 

 

 Such solutions to the PDE are called weak solutions. 



Nonlinear Advection Equation 

 Let’s try to understand what happens by looking at the 
characteristics. 

 Consider two states initially separated by a jump at an interface: 

 

 

 

 

 

 

 Here, the characteristic velocities on the left are greater than those 
on the right. 

uL 

uR 

u(x) 

x 



Nonlinear Advection Equation 

 The characteristic will intersect, creating a shock wave: 

 

 

 

 

 

 

 

 

 The shock speed is such that (uL) > S > (uR). This is called the 
entropy condition.  

t 

x 

t 

x 



Nonlinear Advection Equation 

 The shock speed S can be found using the Rankine-Hugoniot jump 
conditions, obtained from the integral form of the equation: 

 

 

 

 For Burger’s equation f(u) = u2/2, one finds the shock speed as 



Nonlinear Advection Equation 

 Let’s consider the opposite situation: 

 

 

 

 

 

 

 

 Here, the characteristic velocities on the left are smaller than those 
on the right. 

uL 

uR u(x) 

x 



Nonlinear Advection Equation 

 Now the characteristics will diverge: 

 

 

 

 

 

 

 

 Putting a shock wave between the two states would be incorrect, 
since it would violate the entropy condition. Instead, the proper 
solution is a rarefaction wave.  

t 

x 

t 

x 

tail 

head 



Nonlinear Advection Equation 

 A rarefaction wave is a nonlinear wave that smoothly connects the 
left and the right state. It is an expansion wave. 

 

 The solution between the states can only be self-similar and takes 
on the range of values between uL and uR 

 

 The head of the rarefaction moves at the speed (uR), whereas the 
tail moves at the speed (uL). 

 

 The general condition for a rarefaction wave is (uL)<(uR) 

 

 Both rarefactions and shocks are present in the solutions to the 
Euler equation. Both waves are nonlinear. 

 



Nonlinear Advection Equation 

 These results can be used to write the general solution to the 
Riemann problem for  Burger’s equation: 
 If uL > uR  the solution is a discontinuity (shock wave). In this case 

 

 

 
 If uL < uR   the solution is a rarefaction wave. In this case 

 



Nonlinear Advection Equation 

 Solutions look like 

 

 

 

 

 

 

 

 

   for a rarefaction and a shock, respectively. 



 File name: burger.c 

 Purpose: solve Burger’s equation  

                     using 1st-order Godunov   

                     method. 

 Usage:   

 
 > gcc –O burger.c –o burger 

 > ./burger 

 

 Output: two-column ascii data files 

                   “data.nnnn.out” 

Code Example 



NONLINEAR SYSTEMS  

2e. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE: 



Nonlinear Systems 

Much of what is known about the numerical solution of hyperbolic 
systems of nonlinear equations comes from the results obtained in 
the linear case or simple nonlinear scalar equations. 

 

 The key idea is to exploit the conservative form and assume the 
system can be locally “frozen” at each grid interface. 

 

 However, this still requires the solution of the Riemann problem, 
which becomes increasingly difficult for complicated set of 
hyperbolic P.D.E.   



Euler Equations 

 System of conservation laws describing conservation of mass, 
momentum and energy: 

 

 

 

 

 

 Total energy density E is the sum of  

     thermal + Kinetic terms: 

 

 Closure requires an Equation of State (EoS).  

    For an ideal gas one has 



Euler Equations: Characteristic Structure 

 The equations of gasdynamics can also be written in “quasi-linear” 
or primitive form. In 1D: 

 

 

 

 

 

    where V = [,vx,p] is a vector of primitive variable, cs = (p/)1/2  is 
the adiabatic speed of sound. 

 

 It is called “quasi-linear” since, differently from the linear case 
where we had A=const , here A = A(V). 



Euler Equations: Characteristic Structure 

 The quasi-linear form can be used to find the eigenvector decomposition 
of the matrix A: 
 
 
 
 
 

 Associated to the eigenvalues: 
 
 
 

 These are the characteristic speeds of the system, i.e., the speeds at 
which information propagates. They tell us a lot about the structure of 
the solution. 



 By looking at the expressions for the right eigenvectors, 

 

 

      

 

  we see that across waves 1 and 3, all variables jump. These are nonlinear  
waves, either shocks or rarefactions  waves. 

 

 Across wave 2, only density jumps. Velocity and pressure are constant. 
This defines the contact discontinuity. 

 

 The characteristic curve associated with this linear wave is dx/dt = u, and 
it is a straight line. Since vx is constant across this wave, the flow is 
neither converging or diverging. 

Euler Equations: Riemann Problem 



 The solution to the Riemann problem  looks like 
 
 
 
 
 
 
 
 
 
 
 

 The outer waves can be either shocks or rarefactions. 
 The middle wave is always a contact discontinuity. 
 In total one has 4 unknowns:                         , since only density jumps across the 

contact discontinuity. 

Euler Equations: Riemann Problem 

x 

t (contact) 

(shock or rarefaction) 
(shock or rarefaction) 



Euler Equations: Riemann Problem 

 Depending on the initial discontinuity, a total of 4 patterns can 
emerge from the solution: 
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Euler Equations: Shock Tube Problem 

 The decay of the discontinuity defines what is usually called the “shock tube 
problem”,  

 

 Left Values: 

 

 

 Right Values: 



Euler Equations: Shock Tube Problem 

 The one dimensional jet problem reduces to a shock-tube with a S-C-S structure: 

 

 Left Values: 

 

 

 Right Values: 



 File name: euler.f 

 Purpose: solve 1D Euler’s equation  

                     using a 1st-order   

                     Lax-Friedrichs method. 

 Usage:   

 
 > gfortran –O euler.f –o euler 

 > ./euler 

 

 Output:  4-column ascii data files 

                   “data.out” 

Code Example 



Riemann Problem in MHD 

 7 wave pattern, 

 across the contact wave, for Bn0, only density has a jump; 

 across Alfven waves, []=[pgas]=[vx]=0 

Fast [S/R] 

fast  [S/R] 

x 

Alfven 

entropy slow [S/R]  
Alfven 

UL, left state UR, right state 

t 

slow [S/R]  



An example 



Solving the Riemann Problem 

 The full analytical solution to the Riemann problem for the Euler 
equation can be found, but this is a rather complicated task (see 
the book by Toro).  

 

 In general, approximate methods of solution are preferred.  

 

 The advantage of using approximate solvers is the reduced 
computational costs and the ease of implementation. 

 

 The degree of approximation reflects on the ability to  “capture” 
and spread discontinuities over few or more computational zones.   



Solving the Riemann Problem 

 Exact Riemann solvers (nonlinear) 
 Full nonlinear solution:  

 Expensive / impracticable for heavily usage in upwind codes; 

 

 Linearized Riemann solvers (Roe type) 
 require characteristic decomposition in eigenvectors 

 may be prone to numerical pathologies 

 

 HLL-type Riemann solvers (guess-based) 
 based on guess to the signal speeds and on the integral average of the 

solution over the Riemann Fan; 

 fewer waves are considered in the solution; 

 preserve positivity; 



Resolution of Contact Discontinuity  



HIGH-ORDER SCHEMES  

2f. BASIC DISCRETIZATION METHODS 
FOR HYPERBOLIC PDE: 



High Order Integration in Time 

 A simple and effective way to achieve 2nd or 3rd order accuracy in 
time is to treat the PDE in semi-discrete form: 

 
 

 

 In such a way the PDE becomes a regular ordinary differential 
equation (ODE) in time; 

 

 

 

 Standard integration based on predictor/corrector schemes can 
then be used to solve ODEs. 

 
 

 



Second-Order Runge-Kutta  

 Using the trapezoidal method, the solution of our ODE writes: 

 
 

 

 Problem: the unknown              appears on both side of the equation!!! 

 Solution: use an estimate (predictor) for                with Euler method: 

 

   

 

    

 

 This is the second-order explicit Runge-Kutta method (or Heun’s method) It is 
2nd order  accurate. 



Improving spatial accuracy 

 High order reconstruction can be carried inside each cell by 
suitable oscillation-free polynomial interpolation: 

 
Piecewise  

constant 

 

 

Piecewise  

Linear 

 

 

Piecewise  

parabolic 



Reconstruction Constraints 

 Must be consistent with data representation 

 

 

 

 

 Satisfy monotonicity constraints:      

 

  

  

 

 no new extrema allowed  (Total Variation Diminishing (TVD)    schemes) 

 Oscillation free solution 

 



Example: 2nd order linear reconstruction 

 For 2nd-order interpolant, we use 

 

 

 

 

 

 

 

 

 Use slope limiters to avoid  

     introducing  new extrema: 

 

 Example 

 

 

 

i-1/2 

i+1/2 
i 

Undesired new minimum 



Comparison 

 Improving reconstruction decreases the  amount of numerical 
dissipation: 



Equivalent Advection/Diffusion Equation 

 A discretized PDE gives the exact solution to an equivalent 
equation with a diffusion term; 

 

 Consider 

 

 Use upwind discretization: 

 

 Do Taylor expansion on                and    

 The solution to the discretized equation satisfies exactly  



Algorithm Summary: 

Reconstruct-Solve-Average (RSA)  

 Start from zone averages, 
break the problem into 3 
pieces: 
 

1. Piecewise polynomial 
reconstruction 

 

 

 

2. Solve Riemann problem between 
left and right states 

 

3. Form new averages (evolve) 

 



Multi Dimensional Integration 

 Integration in more than one dimensions can be achieved using 
two distinct approaches: 
 

 Dimensionally Split schemes: solve the PDE as a sequence of 1-D sub-
problems.  

 

 

 

 

 

 Dimensionally Unsplit schemes: solve the full problem: 

   

qn 

 

       q* 
qn+1 = 



Useful Books 



The End 


