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1. INTRODUCTION




Plasma Description

> Most theoretical models are based on a fluid description (L » A )
requiring the solution of highly nonlinear hyperbolic / parabolic P.D.E.,

e.g.

ij)—erV-(pU) S Euler equations
ot
d (pv .
gzL)JrV-(pva)Jer = pa+V-II
OF
E+V-[(E+p)'v] = pv-a+V- (v 1)+ V. F,
dp o
En +V-(pv) = 0 Single Fluid
, 2 MHD equations
dg:(U)JrV-[pva—BBT]+V(p+BT) = pa+ V-1l
0B | B .
E—\_/x(va) = -V x (nJ)
%—FV'[(E‘FPT)’U—(B-’UJB] = pv-a—-V-nJ xB)+V.(v-1I)+ V- -F,




Why Numerical Simulations ?

> Exact solutions possible under very restrictive assumptions, e.g.
stationarity (0/0t = 0), self-similarity, spherically symmetry or
similar.

> Nonlinear, time-dependent systems can be studied only by means
of numerical simulations.

> Grid-Based fluid approach via Finite Volume/Difference:

> Fluid variables are discretized on a spatial grid (static or adaptive) and evolved
in time.
» Numerical solution of hyperbolic PDE in presence of discontinuous waves

» Shock-Capturing (or Godunov-type) schemes.




A computational example:
Rayleigh-Taylor unstable flows

> Problem:

Supernova remnants morphology &
Rayleigh Taylor Instability
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A computational example:
Rayleigh-Taylor unstable flows

> Problem: 4

Supernova remnants morphology &
Rayleigh Taylor Instability heavy fluid,

» Choose computational domain

Y

Set the number of zones Ly
» Set initial conditions: N

2 for y>0 1 2 light fluid
P{ p=——rpgy, vy=0, Uy:eRll—{-COS( y)] 9 p_1 !

1 for y<0 Ly




A computational example:
Rayleigh-Taylor unstable flows

reflective
> Problem:
Supernova remnants morphology &
Rayleigh Taylor Instability heavy fluid,
p=2

» Choose computational domain

> Set the number of zones O 2
o ©
> Set initial conditions: 2 2
(D) Q
o (@l
= p=——pgy. vx=0, vy=¢€ + cos —
/ 1 for y<0 gl ’ ' ! Ly P—1

9]

» Set boundary conditions

reflective




A computational example:
Rayleigh-Taylor unstable flows

I = 0.00
T T T T T

>Pr0blem.' -'I"'I | L

Supernova remnants morphology &
Rayleigh Taylor Instability

a5

» Choose computational domain
> Set the number of zones

> Set initial conditions:

2 for Yy > 0 1 oy
p=y o p= ey =0 :fﬁll+cos( )]
1 for y<0 v ! y L,

> Set boundary conditions
> Set final integration time & Run!




2a. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE

FINITE DIFFERENCE
AND
FINITE VOLUME METHODS




Numerical Discretizations

0q (9q _ 0

Ot 8:1;

> Two popular methods for performing discretization:

> Finite Differences (FD);
> Finite Volume (FV);

> For some problems, the resulting discretizations look identical, but
they are distinct approaches;

> We begin using finite-difference as it will allow to quickly learn
some important concepts.




Finite Difference Approach

> A finite-difference method stores the solution at specific points in
space and time;

-1 i i+1

> Associated with each grid point is a function value,
LT . T
q; = q(xi,t")

> We replace the derivatives in our PDE with differences between
neighbor points




Finite Volume Approach

> In a finite volume discretization, the unknowns are the spatial
averages of the function itself:

1 it d
q); = Ar ) q(xv.t)dx

T2

where x;_,, and x;,,, denote the location of the cell interfaces.

I+ 7

I-1/2 I+,

-1 i i+1
> The solution to the conservation law involves computing fluxes
through the boundary of the control volumes




Finite Volume Formulation

> The conservative form of the equations provides the link between
the differential form of the equation,

dq OF
ot Or

and the integral form, obtained by integrating the equations over

0

a time interval At = t"*1 — t" and cell size Ax = x;,;/,, = X;.1»

tn—l—l

Yies (0q  OF
. £ 1 (8t | ax)dtdﬂf
i— 3




Finite Volume Formulation

> Performing the spatial integration yields

_(_?’I—l—l

1 Tiyl
with (q), = A—x/ = q(r,t)dxr being a spatial average.

d

A (q), + (FH; _ F,i%)] dt = 0

ﬁ:?.l_%

> A second integration in time gives

Ar( (@) = (@)} )+ At (FlL, —FLy) =0

t’n—l—l

= = Ay F(q(il?ii;;t)) dt is a temporal average




Finite Volume Formulation

> Rearranging terms vyields

At /- - n
n+1 o n T 1
(@); " =(q); — N (Fz'+§ i—%) Integral form

with spatial and temporal averages given by

1 IH’% ~n 1
(q); = A—x/ q(x.t)de  Fg1 = At . F(Q(xiilat)) dt

1
. 2

> This is an EXACT evolutionary equation for the spatial averages of g.

> This relation provides an integral representation of the original
differential equation.

> The integral form does not make use of partial derivatives!




The Riemann Problem

> The previous relations are exact.

> However, since the solution is known only at t”, some kind of
approximation is required in order to evaluate the flux through the

boundary: e

F.=— F( €. 1,If)dt
=+ T At . q( i+l )

> This achieved by solving the so-called “Riemann Problem”, i.e., the
evolution of an inital discontinuity separating two constant states.

The Riemann problem is defined by the initial condition:

qr for <1
q(x,0) = ’ — gz 1,t) =77
qn for T > Tyl




The Riemann Problem

Left State

/> Cell Interface

q.

Initial Discontinuity

Right State

qr

1+1/2 I+1




The Riemann Problem

t>0

/> Cell Interface
Left State

qL ‘\\\ /”:'/} Q(:E?—I_%j t)
\\\ S ,',

/

! 7 Right State

D
\J

dr

Discontinuity Breakup




2b. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE

THE LINEAR SCALAR ADVECTION EQUATION




The Advection Equation: Theory

> First order partial differential equation (PDE) in (x,t):

dq(x,t) Oq(x,t)
, = 0
ot T oa

> Hyperbolic PDE: information propagates across domain at finite
speed =2 method of characteristics

> Characteristic curves are the solutions of the equation
dx

dt

> So that, along each characteristic, the solution satisfies

—

dg Oq | dxdq

dt ot  dt Oz
R R RRBRRRrRRRBRDRDDREEDEEDDEZD— BB

O




The Advection Equation: Theory

) i Physical domain of dependence
> The solution is constant

R A
4 N

along the characteristic t q(x,t)
curves. At any point (x,t) we i
trace the characteristic At
back to the initial position.
q(x-at,0)
v >
a\t X

> This defines the physical domain of dependence.




The Advection Equation: Theory

> for constant a: the characteristics are straight parallel lines and the
solution to the PDE is a uniform shift of the initial profile:

q(z,1) = ¢(x — at)

> Here ¢(x) = q(«,0) is the initial condition

A




Discretization: the FTCS Scheme

> We need to approximate the derivatives in our PDE

dq(x,1) oq(x,t)
o o

> In time, use forward derivative, since we want to use information
from the previous time level:

8@'(37 t) n+1 q;;,

%Qz

ot At

0

+O(A)

> In space, we use centered derivatives, since it is more accurate:

dq(x,t) N ¢iv1 — Giq
ox 2Ax

+ O(Ax?)




The FTCS Scheme

. n+l _ n n._ __ .n
> Putting all together: qi % . (Qz+1 qz—l) _ 0

At 20

> and solving with respectto ¢

(A

gives

n n O n n
"= - (qm - Qi—l)

where ' = a% is the Courant-Friedrichs-Lewy (CFL) number.

X

> We call this method FTCS for forward in time, centered in space.

> The value at the new time level depends only on quantities at the
previous time steps =2 explicit method.




The FTCS Scheme

> At t=0, the initial condition is a square pulse with periodic
boundary conditions:

IE)-(a-::t. _I
6 L FTCS




The FTCS Scheme

> After some time, the solution looks like this:

IExact
6 | FTCS

i A \
. A TN
|l

> Something isn’t right... why ?
R RRRRRRBRRRRBRBRREREyEEEEDDZDBDTY.,




von Neumann Stablility Analysis

> Let’s perform an analysis of FTCS by expressing the solution as a
Fourier series.

> Since the equation is linear, we only examine the behavior of a
single mode. Consider a trial solution of the form

Q?ZARGHQ? H — kAx

> This is a spatial Fourier expansion. Plugging in the difference
formula:

T TL O T TL T T
qu = 4; — §<Qi+1 _Qi—l) — A" =A"—

%An (619 B 6—19)




von Neumann Stability Analysis

n-+1

> Defining the amplification factor .~ one obtains
An—i—l Cf
=1-— —(619 — 6_19) =1—1Csind
Ar 2
An—i—l
> a method is well-behaved or stable when ' o <1

2
=1+ C?%sin?6 > 1

n+1

> however, for FTCS, one gets ‘

> Indipendently of the CFL number, all Fourier modes increase in
magnitude as time advances

> This method is unconditionally unstable!




Forward in Time, Backward in Space

> Let’s try a difference approach. Consider the backward formula for
the spatial derivative:

oq(x,t) @ — a4y
ox Ax

+ O(Ax)
> Apply von Neumann stability analysis on the resulting discretized

equation:
@t =g @ —q
1 7 a 7 11— — O
At " ( Ax )

> Solving for the amplification factor gives

2

=1—-2C(1—-C)(1 —cosb)

An—H
An




Forward in Time, Backward in Space

An—H

A <1 2 201-C)=>0

> The method is stable when '

> for a < 0 the method is unstable, but
» for a > 0 the method is stable when 0 <a— <1

1it=0.09 | Tt=018 | it=1

..............




Forward in Time, Forward in Space

> Repeating the same argument for the forward derivative

n+1 n n n

4 —4q; Qiv1 — 4;

a =0
At " ( Ax )

2
=14+2C(1+ C)(1 — cosh)

> Gives

An

| An+1

> If a > 0 the method will always be unstable

> However, if — 1 < a% < (0 , then this method is stable;
W




The 1st Order Godunov Method

> Summarizing: the stable discretization makes use of the grid point
where information is coming from:

—> 27 7 <
a>0 o} a<0

( aAt
G = g - A (qzn — q;"’_1> for a>0

R ) . ” i

» This is “upwind”: \ 1 A

n+l n ' n n .

L ¢ = 4 —A—$(qi+1 —qi) for a <0

> This is also called the first-order Godunov method;




Conservative Form

n a 7 ’(1’
> We define the “flux” function FH B (Qz+1 T ¢, ) 5 (%H —q; )

so that Godunov method can be cast in conservative form

At
n+l _ n _ Fro — Fn )
¢ i A;zj ( +3 3
a>0 a<Q ]
n ClAt n n \&At n n
q; = Qz o A_ (Qz o QZ 1) q; o = 4; — A_CC (Qi-l—l — ({; )

> The conservative form ensures a correct description of
discontinuities in nonlinear systems, ensures global conservation
properties and is the main building block in the development of
high-order finite volume schemes.




The CFL Condition

> Since the advection speed a is a parameter of the equation, Ax is
fixed from the grid, the previous inequality is a stability constraint
on the time step

At < 27
al

> At cannot be arbitrarily large but, rather, less than the time taken
to travel one grid cell (CFL) condition.

> In the case of nonlinear equations, the speed can vary in the
domain and the maximum of a should be considered instead.




Code Example

° .
> FI le n a‘ ] ] e : adve c t l O n ° C Df Cihcygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Advection\advection.c - Notepad ++ = @ | zg ‘

File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
. H H eABREREHRI 4Dk et 2 BREIEDIDENBBEsY @Y
» Purpose: solve the linear advection ]
1 #include <stdio.h> i
e . 2 #include <stdarg.h>
equatlon USIng the 1St-order 3 #include <string.h>
4 #include <math.h>
d h d 5 #include <stdlib.h>
G t s
O u n OV m e O * 7 double Initial Condition (double x);
8 void Integrate (double *u@, double #*ul, double dtdx, int ibeg, int iend);
° 9
> Usa e ° 10 #define PI 3.14159265358979
11 #define NGHOST 2
12 #define NX 100
13 #define a 1.0
14 #define FTCS 1 /* -- forward in time, centered in space -- */
> gcc _O advection . c _O advection iz #define UPWIND 2 /* -- choose depending on the sign of a -- */
. 17
> ./advection 19
19 #define METHOD UPWIND /* -- either UPWIND or FTCS -- */
20
21 /% =/
22 int main()
23 I*
» Output: two-column ascii data file e
. . 25 * Solve the linear advection equation with a first-order
26 * method.
27 | *
28 * Last Modified 14 Nov 2011 by A. Mignone (mignone@ph.unito.it)
29 * i
C source file length : 3380 lines: 161 Ln:1 Col:1 Sel:0 UNIX ANSI INS .




2c. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE:

SYSTEM OF LINEAR EQUATIONS




System of Equations: Theory

> We turn our attention to the system of equations (PDE)
oq oq
ot ox

where 9 = {q1, 92, .--@m } is the vector of unknowns. A is a
M x M constant matrix.

— 0

- A -

> For example, for m=3, one has

8(]1 8(] aq 8(13

A= A2+ A -
875 + A1 —— 9 + Ao — o + A3 — 9 =0
dgo 8@1 aQQ 8@3 o
9, 0 0 0
;; + Az ;1 + Aszz 8(]2 + Ass c‘igj =0




System of Equations: Theory

> The system is hyperbolic if A has real eigenvalues, A! <... <A™
and a complete set of linearly independent right and left
eigenvectors r* and I* (i 1¥=¢,) such that

(AP = \rph
- L for k=1,....m
; I" - A=1")\
> For convenience we define the matrices A = diag(A¥), and
11
[ s )
R = (rl\r2\...|rm) , L =R 1= .
\ 1/

» Sothat AR=RA,LA=AL,LR=RL=1],L-AR=A.
R RRRRRRRRRRBRBRRBRRRRRRADBDRH_DEDDDRS




System of Equations: Theory

> The linear system can be reduced to a set of decoupled linear
advection equations.

> Multiply the original system of PDE’s by L on the left:

dq dg\ . Jq dq
L (Ot 1+ A- m)‘L 0{+LARL o =0

> Define the characteristic variables w=L-qg so that

Ow Ow
| A — O
ot ox

> Since A is diagonal, these equations are not coupled anymore.




System of Equations: Theory

> In this form, the system decouples into m independent advection
equations for the characteristic variables:

ow Ow " ow"
gw 9w ko _
or TN e TV = gt =0

where w* =17 . q (k=1,2,...,m) is a characteristic variable.

Ow? |/\18w —0

ot
> When m=3 one has, for instance: ow? | )\2 ow? 0
ot Jxr
3 3




System of Equations: Theory

> The m advection equations can be solved independently by applying the
standard solution techniques developed for the scalar equation.

> In particular, one can write the exact analytical solution for the k-th
characteristic field as

w®(z,t) = w"(x — \*t, 0)
i.e., the initial profile of wk shifts with uniform velocity A%, and

wh(x — N¥t,0) =17 - q(x — A\*t,0)

is the initial profile.
> The characteristics are thus constant along the curves dx/dt = AX




System of Equations: Exact Solution

> Once the solution in characteristic space is known, we can solve the
original system via the inverse transformation

k=—m E=m

q(z,t) = R-w(x,t) = Z w(x,t)r" = Z w” (z — \*t, 0)r"
k=1 k=1

> The characteristic variables are thus the coefficients of the right
eigenvector expansion of g.

> The solution to the linear system reduces to a linear combination of m
linear waves traveling with velocities A .

> Expressing everything in terms of the original variables g,

k=m
q(x,t) = Z 1" - q(x — \*t,0)r"
k=1




Riemann Problem for Discontinuous Data

> If g is initially discontinuous, one or more characteristic variables
will also have a discontinuity. Indeed, at t = 0,

k _ gk -
w; =1"-qp it <z

2 k
w"(x,0) =1"-q(x,0) =
wh =1".q, if T >,

> In other words, the initial jump q; - q, is decomposed in several
waves each propagating at the constant speed A and
corresponding to the eigenvectors of the Jacobian A:

1,1 2,2
drp —q; =o' r +a‘r 4+ - -+ a"r"

where ok =1, (qR — qL) are the wave strengths




Riemann Problem for Discontinuous Data

> For the linear case, the exact solution for each wave at the cell
interface is:

wh if  MN>0
wk(as- ;,t):wk( 1—/\kt O) -
2 titsy wh o if AP <0

> The complete solution is found by adding all wave contributions:

(z+2 ) Zer+Zer

k:Ap>0 k: A <0

» and the flux is finally computed as 132-% =A-q (SUH%; t)




The Riemann Problem

Xi+%_ﬂ“3t Xi+%'/12t Xi+%_;tlt

Point (X,,T) falls to the right of the A! characteristic emanating from
the initial jump, but to the left of the other 2, so the solution is:

IS 2,2 3.3
q(xz-Jr%,t)—wR'r +wyrt +wr




System of Equations: Numerics

> We suppose the solution at time level n is known as g"” and we wish
to compute the solution g"*! at the next time level n+1.

» Our numerical scheme can be derived by working in the
characteristic space and then transforming back:

A
n—l—l Zwk ;n—+1 l{: _ q@ At (Fn L — Fn )
T Pl

n q? —I_ q’l n
where FH% = A H ——Z’/\k’lk i1~ qq:)"'k

is the Godunov flux for a linear system of advection equations.




2d. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE:

NONLINEAR SCALAR EQUATION




Nonlinear Advection Equation

> We turn our attention to the scalar conservation law

ou  0f(w

ot ox =0

> Where f(u) is, in general, a nonlinear function of u.

> To gain some insights on the role played by nonlinear effects, we
start by considering the inviscid Burger’s equation:

Ou | 9 (W) _y
ot oz \ 2 )




Nonlinear Advection Equation
ou ou

> We can write Burger’s equationalsoas ~—~ 4 ;, 7~ —
ot Ox
> In this form, Burger’s equation resembles the linear advection

equation, except that the velocity is no longer constant but it is
equal to the solution itself.

> The characteristic curve for this equation is

dx (2.1) — du  Ou n ou dx
— = u(x, — = — 4+ — —
dt dt ot Ox dt
> =2 u is constant along the curve dx/dt=u(x,t) = characteristics are

again straight lines: values of u associated with some fluid element
do not change as that element moves.

=0




Nonlinear Advection Equation

» From @+ au—()

U— =
ot Ox
one can predict that, higher values of u will propagate faster than

lower values: this leads to a wave steepening, since upstream
values will advances faster than downstream values.

t=0

1r >

0.8

0.6

u(x)

0.4

0.2

) e LT




Nonlinear Advection Equation

> Indeed, at t=1 the wave profile will look like:

=0 ——
16 t=1
0.8
0.6
=
e
=
0.4
0.2
0 ................................................
4 2 0 2 4

> the wave steepen:s...




Nonlinear Advection Equation

> If we wait more, we should get something like this:

/

~—______— —>

> A multi-value functions ?! = Clearly NOT physical !
R RRRRRRRRRCEREEDDEDRB—B—B—_RIGESDB——,




Nonlinear Advection Equation

> The correct physical solution is to place a discontinuity there:
a shock wave.

Shock position

~

/ s

T~

> Since the solution is no longer smooth, the differential form is not
valid anymore and we need to consider the integral form.




Nonlinear Advection Equation

> This is how the solution should look like:

111
M=o

;

ucx)

> Such solutions to the PDE are called weak solutions.




Nonlinear Advection Equation

> Let’s try to understand what happens by looking at the
characteristics.

> Consider two states initially separated by a jump at an interface:

u(x)‘ U

Ur

»
»

X
> Here, the characteristic velocities on the left are greater than those

on the right.




Nonlinear Advection Equation

> The characteristic will intersect, creating a shock wave:

» The shock speed is such that A(u,) >S > A(ug). This is called the
entropy condition.




Nonlinear Advection Equation

> The shock speed S can be found using the Rankine-Hugoniot jump
conditions, obtained from the integral form of the equation:

flur) — f(ur) = S(ur —ur)

> For Burger’s equation f(u) = u?/2, one finds the shock speed as

ur, + U
S:L R

2




Nonlinear Advection Equation

> Let’s consider the opposite situation:

u(x) - Ug

X

> Here, the characteristic velocities on the left are smaller than those
on the right.




Nonlinear Advection Equation

> Now the characteristics will diverge:

X

> Putting a shock wave between the two states would be incorrect,
since it would violate the entropy condition. Instead, the proper
solution is a rarefaction wave.




Nonlinear Advection Equation

> A rarefaction wave is a nonlinear wave that smoothly connects the
left and the right state. It is an expansion wave.

> The solution between the states can only be self-similar and takes
on the range of values between u, and u,

» The head of the rarefaction moves at the speed A(u,), whereas the
tail moves at the speed A(u,).

» The general condition for a rarefaction wave is A(u,)<A(ug)

> Both rarefactions and shocks are present in the solutions to the
Euler equation. Both waves are nonlinear.




Nonlinear Advection Equation

> These results can be used to write the general solution to the
Riemann problem for Burger’s equation:

> If u > u, the solution is a discontinuity (shock wave). In this case

uj, it z—S5t<0

ur, +u
S:L R

u(,t) = ur if z—5t>0 7~ 2

> If u <u, the solution is a rarefaction wave. In this case

( uy, if .SC/tg”LLL

u(z,t) = < z/t it up <z/t<up

ur if x/t>ug
\




Nonlinear Advection Equation

> Solutions look like

U
ugxd

> for a rarefaction and a shock, respectively.




Code Example

> F' l . b @ Cheygwin\home\Andrea\Presentations\Copenhagen.2013\Codes\Burger\burger.c - Notepad++ - — |[O] 2L |
I e na‘ ] ]e' urger ° C File Edit Search View Encoding Language Settings Macro Run Plugins Window 7 X
eAEE R DR/t x| BRIETED CENEEEaY =LY
> Purpose: solve Burger’s equation ==l
° 1  #include <stdio.h> i
2 #include <stdarg.h>
.
1St_ d G d B #include <string.h> |
USI ng Or er O u nov 4 #include <math.h>» 1
5 #include <stdlib.h>
method 6
° 7 double Initial Condition (double x);
8 void Integrate (double *u@, double *ul, double dtdx, int ibeg, int iend);
9
L]
> Usag e . 10 #define PI 3.14159265358979
11 #define NGHOST 2
12 #tdefine NX 4000
13 /% ®/
14 int main()
=V
> gcc —0 burger.c —o burger N
17 *
> ./burger .
19 */
20 H{
21 int i, nstep, out_freq;
22 int ibeg, iend;
oo . 23 double xbeg, xend;
> Output: two-column ascii data files |« | wee o« moosn, o
25 double u@[NX + 2*NGHOST], ul[MX + 2*NGHOST];
26 double t, tstop, dt, cfl, dtdx;
o 124 ’
data.nnnn.out o | e e
28
29 /* -- default values -- */ -
C source file length: 3495 lines: 171 Ln:1 Col:1 Sel:0 UNIX ANSI INS




2e. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE:

NONLINEAR SYSTEMS




Nonlinear Systems

> Much of what is known about the numerical solution of hyperbolic
systems of nonlinear equations comes from the results obtained in
the linear case or simple nonlinear scalar equations.

> The key idea is to exploit the conservative form and assume the
system can be locally “frozen” at each grid interface.

> However, this still requires the solution of the Riemann problem,
which becomes increasingly difficult for complicated set of
hyperbolic P.D.E.




Euler Equations

> System of conservation laws describing conservation of mass,
momentum and energy:

op B
o +V-(pv) =0 (mass)
0 (C‘;;V) + V. |lpvv+1Ip| =0 (momentum)
E
%—t +V-[(E+p)v]=0 (energy)
> Total energy density E is the sum of v2
L . E = pe+ p—
thermal + Kinetic terms: 2
> Closure requires an Equation of State (EoS). D
For an ideal gas one has Pe=T_1




Euler Equations: Characteristic Structure

> The equations of gasdynamics can also be written in “quasi-linear”

or primitive form. In 1D:
/ Ve P 0 \
A% oV
— + A =0, A= 0 v, 1/p
or o - i
\ 0 pet v, }

where V = [p,v,,p] is a vector of primitive variable, c, = (yp/p)*? is
the adiabatic speed of sound.

> It is called “quasi-linear” since, differently from the linear case
where we had A=const, here A=A(V).




Euler Equations: Characteristic Structure

> The quasi-linear form can be used to find the eigenvector decomposition
of the matrix A:

1 1 1
r'=1| —c/p |, =] 01|, =] c/p
c? 0 c?

S

> Associated to the eigenvalues:

Al:Uﬂj_CSJ AQZU:C, )\3:/033—'_(33

> These are the characteristic speeds of the system, i.e., the speeds at
which information propagates. They tell us a lot about the structure of
the solution.




Euler Equations: Riemann Problem

> By looking at the expressions for the right eigenvectors,

1 1 1
r'=| —c/p |, =0 |, =] ¢/p
c? 0 c?

S S

> we see that across waves 1 and 3, all variables jump. These are nonlinear
waves, either shocks or rarefactions waves.

> Across wave 2, only density jumps. Velocity and pressure are constant.
This defines the contact discontinuity.

> The characteristic curve associated with this linear wave is dx/dt = u, and
it is a straight line. Since v, is constant across this wave, the flow is
neither converging or diverging.




Euler Equations: Riemann Problem

> The solution to the Riemann problem looks like

4 = ut dr = (v, + ¢g)dt

t (gﬁojk ({ﬁ’f r;gfﬁﬁfon) (coptact) (shock or rarefaction)

(p1,, V5, D7)

(pLameﬁpL) (pRgUmRapR)

» The outer waves can be either shocks or rarefactions.
> The middle wave is always a contact discontinuity.

> In total one has 4 unknowns: 01, P> Vs, D since only density jumps across the
contact discontinuity.




Euler Equations: Riemann Problem

> Depending on the initial discontinuity, a total of 4 patterns can
emerge from the solution:

V'

tf R C S i s C R

Py
w
w




Euler Equations: Shock Tube Problem

> The decay of the discontinuity defines what is usually called the “shock tube

problem”, N AT R R . 1
[ Density [ Pressure
08 0.8}
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Euler Equations: Shock Tube Problem

> The one dimensional jet problem reduces to a shock-tube with a S-C-S structure:

> Left Values: sof Density 10f Pressure |
2.5 ol
2.0 [
ér
1.5 :
(pLsvzr,pr) = (0.1,10,1) of
0.5 2r

T g0 R

: Velocity Entropy

i S0F ;
(PRs V2R, PR) = (1,0,1)  8f -
6f it
| ol

1 2 3 4 1 2 3 4




Code Example

B D’C:\Lygwin\home\Andrea\PresentatiDns\CDpenhagen.ZO13\C0des\EuIer\euIer.ffNo‘iepad++ - = El‘ 2L |
> Flle name: euler ° f File Edit Search View Encoding Language Settings Macro Run Plugins Window ? X
eDBERHE 4DhElaeciah 2z ERETEEIDNNEER|=EavyEE@y
) . H advection.c |E burgerc [5 eu\erfl
> Purpose: solve 1D Euler’s equation [=7  weewe z
2
. St 3 include ‘common.h’ 3
using a 1st-order .
5 integer i, nt, nv
. . 6 integer ibeg, iend
LaX—FrIed rIChS methOd . 7 real®*Z  u(nvar, nx),v(nvar, nx), flux(nvar, nx)
8 real*s  x(nx)
9 real*s t, dt, cmax, cfl, tstop
> Usa! !e: 10 real*: tfreq, df, dx
11
12 c ** generate grid **
13
14 call grid (x, dx)
15 ibeg = nghost + 1
> gfortran _O eulero f _O eU.ler 16 iend = nx - nghost
17
/ 18 call init (v, x)
> ° euler 19 call prim‘toc;n (v, u, ibeg, iend)
20
21 dt =1.d-4
22 cfl = 0.8d0
23 tstop = 0.2
» Output: 4-column ascii data files A
26 c ** begin computation **
lld 27 27
ata'OUt 28 O do nt = 1, 9999
29 T i
Fortran source file length: 6022 lines: 271 Ln:1 Col:1 Sel:0 UNIX ANSI INS




Riemann Problem in MHD

t
A

slow [S/R] entropy  slow [S/R]

Alfven A|fven

fast [S/R]
Fast [S/R]

U,, left state Ug, right state

> 7 wave pattern, X" (U -Uy)) =F (Uf”) - F (UY)
» across the contact wave, for B #0, only density has a jump;
> across Alfven waves, [p]=[p,,]=[v,]=0




time

1.00

J.98

Q.96

0.94

{.92

0.90

0.5
0.4
0.3
0.2

0.1
0.0

An example

| IDtl='.n5|'lt3,.rI S 1100 — | Elzl | |
| J.98
: 0.98
: 0.94
: 0.92
-l---l--l--l---{'.I.QU - - M I
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
0.2 0.4 0.6 0.8




Solving the Riemann Problem

> The full analytical solution to the Riemann problem for the Euler
equation can be found, but this is a rather complicated task (see
the book by Toro).

> In general, approximate methods of solution are preferred.

> The advantage of using approximate solvers is the reduced
computational costs and the ease of implementation.

> The degree of approximation reflects on the ability to “capture”
and spread discontinuities over few or more computational zones.




Solving the Riemann Problem

> Exact Riemann solvers (nonlinear)
» Full nonlinear solution:
> Expensive / impracticable for heavily usage in upwind codes;

> Linearized Riemann solvers (Roe type)
» require characteristic decomposition in eigenvectors
» may be prone to numerical pathologies

> HLL-type Riemann solvers (guess-based)

> based on guess to the signal speeds and on the integral average of the
solution over the Riemann Fan;

> fewer waves are considered in the solution;

> preserve positivity;




Resolution of Contact Discontinuity

Time: 0.00, 100 zones, HLL Riemann Salver
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2.0 — — 20 l:llllll-l—-l-l-llu-l-l-n-u —
o i ef :
1k .5
4 1k :
1k .5
1.0 — — 1.0 — m-mmmm
08 F L 1 1 L : 08 L 1 1 1 :
Q.0 0.2 0.4 0.8 0.4 1.0 4.0 0.2 0.4 0.8 0.8 1.0




2f. BASIC DISCRETIZATION METHODS
FOR HYPERBOLIC PDE:

HIGH-ORDER SCHEMES




High Order Integration in Time

> A simple and effective way to achieve 2nd or 3rd order accuracy in
time is to treat the PDE in semi-discrete form:

dq dq j[N
- | F _ 2 _ _$F.
/(8t+v )dV 0 = - ds

> In such a way the PDE becomes a regular ordinary differential
equation (ODE) in time;
d(_] n-+1
—=Rl@)=R = QnH—QnZ/ Rdt

> Standard integration based on predictor/corrector schemes can
then be used to solve ODEs.




Second-Order Runge-Kutta

> Using the trapezoidal method, the solution of our ODE writes:

A
gt =q" + 7t (R” + R““) + O(At?)

> Problem: the unknown (}nH appears on both side of the equation!!!
> Solution: use an estimate (predictor) for R™ ! with Euler method:

g = @'+ AtR"+ O(Al)

At
gt = g+ - (R” + R*) + O(At3)

> This is the second-order explicit Runge-Kutta method (or Heun’s method) It is
2nd order accurate.




Improving spatial accuracy

> High order reconstruction can be carried inside each cell by
suitable oscillation-free polynomial interpolation:
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Reconstruction Constraints

> Must be consistent with data representation

1 T, 1
—/ i3 PZ(SU)dCC — ’ITLz'
A.CU?: r. 1

‘T2

> Satisfy monotonicity constraints:

min(P;(x)) > min (’ai—laﬂiaﬂi—l—l)
max(F;(z)) < max (ﬂi—la’sz‘,ﬁz’+1)

> no new extrema allowed (Total Variation Diminishing (TVD) schemes)
> Oscillation free solution




Example: 2" order linear reconstruction

» For 2nd-order interpolant, we use V(z)=V;+ i—v(gj — ;)
x
A e
. Ai-1/2
A,
toren A+ 1/2
: >

Undesired new minimum

> l.Jse sIop? limiters to avoid §V; = lim (Ai—1/2, Ai—|—1/2)
introducing new extrema:
z it |z| <|y|l,zy > 0O
> Example minmod(z,y) = y if |y[ <[z[,zy >0
0 if zy<O




Comparison

> Improving reconstruction decreases the amount of numerical

Time: 0.00, First order Time: 0.00, 2™ order
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20F 20F
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L [ 220 r 11
I'UE ”o Tlime: 0.?0, 2m olrder (Iiml) 1ok :
. 4 B 2.0 ] —
08 L 2 ] o8l . . . . . .
a.0 2'0: 1 4.0 Q.2 1.8 -
18 ] 1.6F 5
1.6:— — 1.4-:— 1
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1.2F . I
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1.0 (— ---é 08: . |
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Equivalent Advection/Diffusion Equation

> A discretized PDE gives the exact solution to an equivalent
equation with a diffusion term;

dq dq

> Consider — 4+ a— =0, a >0
ot ox ’
n+1 n n n
: : N i 4 4% — di—
> : a =0
Use upwind discretization N + A
. n—+1 n
» Do Taylor expansion on (¢ and  ¢;_q

» The solution to the discretized equation satisfies exactly

+ H.O.T.

@_i_a@_an . At\ 0%q
ot or 2 Ax ) Ox?




Algorithm Summary:
Reconstruct-Solve-Average (RSA)

AN

» Start from zone averages,
break the problem into 3 — Uy —
pieces:

1. Piecewise polynomial /\_
reconstruction 72‘!

uj(z) = Pi(x), forz,_1 <z <x;,

1
2 2

V

V

2.  Solve Riemann problem between 4 N
left and right states up = Piiq (37@'+1)
2

3. Form new averages (evolve) ghtl = g0 — =/ [le _ f@-_;}




Multi Dimensional Integration

> Integration in more than one dimensions can be achieved using
two distinct approaches:

» Dimensionally Split schemes: solve the PDE as a sequence of 1-D sub-

problems.
! =q" — AtL,(q")
solve'the full problem:

q" =q" — AtL,(q") — AtL,(q")

qQ-=q" — AtL,(

3

» Dimensionally Unsplit schemes:




Useful Books

Eleuterio F. Toro

Riemann S(_)Ivers
and Numerical
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Fluid Dynamic

A Practical Introduction

@ Springer

CAMBRIDGE TEXTS
IN APPLIED
MATHEMATICS

Finite-Volume
Methods for
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Computational
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The End




