Coupling Multiple Scales Magnetic Reconnection and Coupling Issues (for scalar hyperbolic PDEs)

Rony Keppens

including work with O. Porth et al.

Centre for mathematical Plasma-Astrophysics Department of Mathematics, KU Leuven

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 1 / 76

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Ideal to resistive MHD: magnetic reconnection basics
 - \Rightarrow double GEM challenge: long-term, chaotic dynamics
 - $\Rightarrow\,$ coupling challenges for reconnection
- scalar hyperbolic PDE models for coupling strategies
- Outlook

- lecture material from modern (2004 & 2010) textbooks
 - ⇒ Goedbloed et al., Cambridge University Press
 - \Rightarrow chapter 14 on resistive MHD ...

Advanced Magnetohydrodynamics

With Applications to Laboratory and Astrophysical Plasmas

J. P. (Hans) Goedbloed Rony Keppens and Stefaan Poedts

COMBINE

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 3 / 76

The induction equation:

• evolutionary equation for **B** in ideal MHD: Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times \underbrace{(\mathbf{v} \times \mathbf{B})}_{-\mathbf{E}} = \mathbf{0}$$

- \Rightarrow field lines are frozen in plasma
- $\Rightarrow\,$ unimpeded flow along B, flow \perp B displaces field line

 \Rightarrow analytically: if $\nabla \cdot \mathbf{B} = 0$ initially, then always

electric field in co-moving frame for perfectly conducting fluid

$$\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \mathbf{0}$$

< ロ > < 同 > < 回 > < 回 >

The induction equation:

• evolutionary equation for **B** in ideal MHD: Faraday's law

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times \underbrace{(\mathbf{v} \times \mathbf{B})}_{-\mathbf{E}} = \mathbf{0}$$

- \Rightarrow field lines are frozen in plasma
- $\Rightarrow\,$ unimpeded flow along B, flow \perp B displaces field line
- \Rightarrow analytically: if $\nabla \cdot \mathbf{B} = 0$ initially, then always
- electric field in co-moving frame for perfectly conducting fluid

$$\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \mathbf{0}$$

< ロ > < 同 > < 回 > < 回 >

Ideal MHD and conservation laws:

- ideal MHD case: referred to as 'frozen-in' conditions
- equivalent formulation of ideal MHD induction equation

 \Rightarrow conservation law

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot (\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v}) = \mathbf{0}$$

second rank tensor

- term ∇ × (**v** × **B**) represents conversion of mechanical energy to electromagnetic induction
 - \Rightarrow when conductor moves with velocity **v** in magnetic field **B**
 - \Rightarrow process creates an electromotive force $\mathbf{v} \times \mathbf{B}$ (emf)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ideal versus resistive MHD

• consider medium with constant resistivity η , Ohm's law

 $\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}.$

⇒ electric field in comoving frame proportional to current density, hence $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \frac{1}{\mu_0} \nabla \times \mathbf{B}$ ⇒ induction equation then given by (for constant η)

$$rac{\partial \mathbf{B}}{\partial t} =
abla imes (\mathbf{v} imes \mathbf{B}) + rac{\eta}{\mu_0}
abla^2 \mathbf{B}$$

timescale for resistive diffusion

$$\tau_R \sim \frac{\mu_0 l_0^2}{\eta}$$

\Rightarrow also: Ohmic heating term ηj^2 in energy equation

Rony Keppens (KU Leuven)

Coupling Challenges

Ideal versus resistive MHD

• consider medium with constant resistivity η , Ohm's law

 $\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}.$

⇒ electric field in comoving frame proportional to current density, hence $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \frac{1}{\mu_0} \nabla \times \mathbf{B}$ ⇒ induction equation then given by (for constant η) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B}$ timescale for resistive diffusion

$$au_R \sim rac{\mu_0 l_0^2}{\eta}$$

\Rightarrow also: Ohmic heating term ηj^2 in energy equation ,

Rony Keppens (KU Leuven)

Coupling Challenges

Ideal versus resistive MHD

• consider medium with constant resistivity η , Ohm's law

 $\mathbf{E}' = \mathbf{E} + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}.$

⇒ electric field in comoving frame proportional to current density, hence $\mathbf{E} = -\mathbf{v} \times \mathbf{B} + \eta \frac{1}{\mu_0} \nabla \times \mathbf{B}$ ⇒ induction equation then given by (for constant η) $\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B}$

timescale for resistive diffusion

$$\tau_R \sim \frac{\mu_0 l_0^2}{\eta}$$

 \Rightarrow also: **Ohmic heating term** ηj^2 in energy equation

Rony Keppens (KU Leuven)

Coupling Challenges

Resistive MHD

- current $\mathbf{J} = \nabla \times \mathbf{B}$: dissipation through resistivity
 - $\Rightarrow\,$ from ideal to resistive (non-ideal) MHD
- spatio-temporal resistivity profile $\eta(\mathbf{x}, t)$ introduces
 - \Rightarrow Ohmic heating term in energy equation

$$S_{e} =
abla \cdot (\mathbf{B} imes \eta \mathbf{J})$$

 \Rightarrow diffusion term in induction equation

$$\mathbf{S}_{B} = -
abla imes (\eta \mathbf{J})$$

 \Rightarrow uniform resistivity: $\eta \left(J^2 + \mathbf{B} \cdot \nabla^2 \mathbf{B} \right)$ and $\eta \nabla^2 \mathbf{B}$

Rony Keppens (KU Leuven)

- ideal ($\eta = 0$) versus resistive MHD
 - \Rightarrow topological constraint on **B** alleviated
 - \Rightarrow field lines can reconnect in regions of strong currents

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 8 / 76

A b

Petschek reconnection

- Petschek model (1964) for fast magnetic field annihilation
 - \Rightarrow two regions containing oppositely directed field lines
 - \Rightarrow realize steady-state with X-type magnetic neutral point
- steady state contains pair of stationary slow shocks
 - $\Rightarrow~$ where ${\bf B}$ bends towards shock front normal
- at X-point: flow controlled by diffusion
- within region bounded by slow shocks: purely B_x , 'constant' ρ
 - \Rightarrow shock front half-width $\delta(y) = \frac{\rho_e}{\rho_i} \frac{v_{x,e}}{V_{A,e}} | y |$ (external/internal)
 - \Rightarrow fronts have fixed opening angle (away from neutral point)
 - $\Rightarrow\,$ fluid moves to boundary layer and is ejected along it

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

stationary configuration

 \Rightarrow use symmetry to simulate corner region $[0, 1] \times [0, 4]$ only

Rony Keppens (KU Leuven)

August 2013, NBIA school 10 / 76

solve resistive MHD equations incorporating resistivity profile

$$\eta(\mathbf{x}, \mathbf{y}) = \eta_0 \exp\left[-(\mathbf{x}/l_x)^2 - (\mathbf{y}/l_y)^2\right]$$

 \Rightarrow anomalous η centered on origin

- \Rightarrow parameters $\eta_0 = 0.0001$, $I_x = 0.05$, $I_y = 0.1$
- initial field configuration $\mathbf{B} = (0, \tanh(x/L))$

 \Rightarrow initial current sheet width L = 0.1

 $\Rightarrow \gamma = 5/3, \, p(x) = 1.25 - B_y^2(x)/2 \text{ and } \rho(x) = 2p(x)/\beta_1$

 \Rightarrow isothermal initial condition with $\beta_1 = \beta(x = 1) = 1.5$

- fix Alfvén Mach number of inflow at x = 1: $v_x(x = 1) = -0.04$ consistently evolves to Petschek reconnection configuration
- VAC test for implicit scheme: Tóth et al, A&A, 332, 1159 (1998)

 \Rightarrow checks with theoretical opening angle in steady-state!

Rony Keppens (KU Leuven)

August 2013, NBIA school 12 / 76

2D Harris sheet evolution: GEM

- 2D current-sheet setup: 'Harris sheet'
 - \Rightarrow horizontal field as $B_x(y) = B_0 \tanh(y/\lambda_B)$
 - \Rightarrow constant T_0 and pressure-balancing density from

$$\rho(\mathbf{y}) = \rho_0 \cosh^{-2} \left(\mathbf{y} / \lambda_B \right) + \rho_{\infty}$$

- \Rightarrow add deterministic magnetic perturbation
- $\Rightarrow\,$ solve compressible, resistive MHD with uniform η

- Harris sheet evolution, at fixed resistivity $\eta = 0.005$
 - \Rightarrow 2D resistive MHD, GEM Challenge
 - \Rightarrow reconnection at $\eta = 0.005$

Rony Keppens (KU Leuven)

August 2013, NBIA school 14 / 76

• exactly same, at reduced resistivity $\eta = 0.001$

 \Rightarrow 2D resistive MHD, GEM Challenge, $\eta =$ 0.001 case

Rony Keppens (KU Leuven)

August 2013, NBIA school 15 / 76

4 A >

• Harris Sheet evolution (tanh magnetic profile)

 \Rightarrow reconnection at $\eta = 0.005$, $\eta = 0.001$, $\eta = 0.0001$

⇒ Rapid changes in complex flow!

- run on Macbook pro with effective 1920 \times 1920 resolution, several days \ldots
 - \Rightarrow current evolution for $\eta = 0.001$
 - \Rightarrow schlieren plot evolution for $\eta = 0.001$

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 16 / 76

3

< 日 > < 同 > < 回 > < 回 > < □ > <

• Harris Sheet evolution (tanh magnetic profile)

 \Rightarrow reconnection at $\eta = 0.005$, $\eta = 0.001$, $\eta = 0.0001$

⇒ Rapid changes in complex flow!

- run on Macbook pro with effective 1920×1920 resolution, several days . . .
 - \Rightarrow current evolution for $\eta = 0.001$
 - \Rightarrow schlieren plot evolution for $\eta = 0.001$

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 16 / 76

• GEM/Newton (driven from boundary) challenges

 $\Rightarrow\,$ resistive MHD, Hall-MHD, hybrid and kinetic models

 \Rightarrow reconnection rate: smaller in resistive MHD [but η reached did not enter the chaotic, fast reconnection regime!]

 \Rightarrow at least having Hall term included speeds up reconnection

 $\Rightarrow\,$ anomalously raised, local resistivity models can allow fast reconnection in resistive MHD

A D b 4 A b

Double GEM setup

recent (PoP, submitted) resistive MHD code comparison

 \Rightarrow double periodic setup on square $[-15, 15]^2$

 \Rightarrow lower/upper current layer

$$B_x(y) = B_0 \left[-1 + \tanh(y - y_{\text{low}}) + \tanh(y_{\text{up}} - y) \right]$$

 $\Rightarrow\,$ again deterministic field perturbation, 10% amplitude (non-linear!)

 $\Rightarrow\,$ compared finite volume, difference and PIC-type (visco-)resistive MHD evolutions

resolving long-term, chaotic dynamics for lower η

- Note: resistive MHD governed by conservation laws!
 - \Rightarrow double periodic setup allows easy reality check
 - \Rightarrow monitor total energy and its contributions on domain V

$$E_{\text{Total}} = \frac{1}{V} \int \int \left(\frac{p}{\gamma - 1} + \frac{B^2}{2} + \frac{\rho v^2}{2}\right) dx dy$$
$$E_{\text{Magnetic}} = \frac{1}{V} \int \int \left(\frac{B^2}{2}\right) dx dy$$
$$E_{\text{Internal}} = \frac{1}{V} \int \int \left(\frac{p}{\gamma - 1}\right) dx dy$$

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 19 / 76

A D N A B N A B N A B N

• case $\eta = 0.001$: long-term evolution

 \Rightarrow energy evolution for perturbed-unperturbed case: deviations beyond *t* \approx 150

- \Rightarrow Ohmic heating remains small (integral under curve)
- ⇒ peak current enhancements at sufficient resolution!

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school

20/76

 \Rightarrow current evolution for $\eta = 0.001$

- secondary islands appear (induced tearing), merge with larger island structure, when resolution suffices!
 - \Rightarrow initial phase and final endstates rather insensitive
 - \Rightarrow no 'strong convergence' (perturbations grow from noise)
 - ⇒ similar for FLIP-MHD (PIC) or FD Stagger (hyperdiffusion!)

- 4 周 ト 4 戸 ト 4 戸 ト

lowering η = 0.0001: modern computational challenge!
 ⇒ energetic views at increasing resolution 240² to 1920²

Magnetic $\eta = 0.0001$ $Magnetic_y$ $Magnetic_y$ $Magnetic_y$

Rony Keppens (KU Leuven)

August 2013, NBIA school 23 / 76

- global trend in energetics
 - \Rightarrow magnetic \leftrightarrow internal through compressive interactions
 - \Rightarrow peak current/velocity: chaotic phase agrees qualitatively
 - \Rightarrow evolution for $\eta = 0.0001$

stringent local peak current/velocity trends

 \Rightarrow variations with η : chaotic phase beyond $\eta = 0.001$

 $\Rightarrow\,$ shock-mediated island-coalescence, complex wave interferences, Petschek-like realizations at islands

Summary on resistive MHD

high magnetic reynolds number regime: challenging

 \Rightarrow anomalous resistivity or hyperdiffusion treatments exploited: difficult to quantify precise Reynolds number; discretization versus physics effects

 $\Rightarrow\,$ smaller scales: may necessitate beyond resistive MHD approach!

 \Rightarrow resistive to Hall-MHD, 2-fluid, multi-species, kinetic ...?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Hall-MHD

extend to generalized Ohm's law with electric field

$$\mathbf{E} = -\mathbf{v} imes \mathbf{B} + rac{1}{en_e} \mathbf{J} imes \mathbf{B} + \eta \mathbf{J}$$

 \Rightarrow rewrite with Hall parameter $\eta_h \propto m_i/eZ$ to

$$\mathbf{E} = -\left(\mathbf{v} - \frac{\eta_h}{\rho}\mathbf{J}\right) \times \mathbf{B} + \eta \mathbf{J}$$

 \Rightarrow minimal ion-electron decoupling, as $\mathbf{v} = \mathbf{u}_i$ while electron bulk speed is $\mathbf{u}_e = \mathbf{v} - \mathbf{J}/e n_e$

Rony Keppens (KU Leuven)

August 2013, NBIA school 27 / 76

3

イロト 不得 トイヨト イヨト

- Hall-MHD: simple one-fluid extension to ideal-resistive MHD, extra term in induction equation
 - \Rightarrow for $\eta = 0$ (ideal case): modifies wave speeds
 - \Rightarrow linearize about cold state $p_0 = 0$ with uniform **B**₀
 - \Rightarrow modified dispersion relation for plane waves $e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)}$

$$\left(\omega^2 - \omega_A^2\right)^2 = \left(\omega_A^4 / \Omega_i^2\right) \omega^2$$

⇒ fast/Alfvén waves (LHS) dispersive due to finite ion gyrofrequency $\Omega_i = ZeB_0/m_i$, where $\omega_A = k_{\parallel}v_A$

 \Rightarrow shortest wavelengths travel fastest, highest ω arrive first

 \Rightarrow 'whistler' waves, trouble for (explicit) numerical schemes

• redo GEM reconnection in Hall-MHD with $\eta_h = 1$, $\eta = 0.005$ \Rightarrow Hall-MHD implies out-of-plane (2.5D) field components

 \Rightarrow wave interference patterns due to whistler wave dynamics

• schematic suggests: use $\eta(\mathbf{x})$ and $\eta_h(\mathbf{x})$ prescriptions where the spatial dependence incorporates that all models (ideal, resistive, Hall-MHD) are one-fluid representations, 'coupled' through (known overall dimensions of the) diffusion region

⇒ any effect at boundaries/overlap regions?

 reality for collisionless reconnection much worse: need to descend in model hierarchy

 $\Rightarrow\,$ one-fluid MHD, Hall-MHD, two-fluid, hybrid, kinetic (particle based) prescriptions

 \Rightarrow latter require coupling of different sets of PDEs, different number of variables, characteristic speeds: how to address this?

• address coupling strategies in analytically tractable case

 $\Rightarrow\,$ instead of full plasma-physical (reconnection) setup, idealize to scalar hyperbolic PDEs

 \Rightarrow multi-dimensional solutions of generic conservation law

$$rac{\partial
ho}{\partial t} +
abla \cdot \mathbf{F}(
ho, \mathbf{x}, t) = \mathbf{0}$$

 \Rightarrow linear advection for $\mathbf{F}(\rho, \mathbf{x}, t) = \rho \mathbf{v}_0$

 \Rightarrow nonlinear generalizations for $\mathbf{F}(\rho, \mathbf{x}, t) = F(\rho(\mathbf{x}, t)) \mathbf{v}(\mathbf{x}, t)$
Test module: pure advection

- \Rightarrow with **U** = ρ , **F** = ρ **v**₀ with **v**₀ uniform velocity
- \Rightarrow testing novel functionality in discretization or adaptivity
- \Rightarrow demonstrating convergence, order of accuracy, ...
- Discontinuity dominated 2D profile: VAC logo
 - \Rightarrow advected diagonally on unit square
 - \Rightarrow after 10 passages, with horizontal cut (different limiters)

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school

33 / 76

Nonlinear Scalar equation: amrvacphys.t.nonlinear
 appar(fluxtype_) switch for different flux expressions
 inviscid Burgers (case 1), nonconvex equation (case 2)

$$ho_t +
abla \cdot \left(rac{1}{2}
ho^2 \mathbf{e}
ight) = \mathbf{0}$$
 $ho_t +
abla \cdot \left(
ho^3 \mathbf{e}
ight) = \mathbf{0}$

 \Rightarrow in any dimensionality as $\mathbf{e} \equiv \sum_{i=1}^{D} \hat{\mathbf{e}}_i$

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 34 / 76

4 D K 4 B K 4 B K 4 B K

Burgers for 2D: 'advection' of Gaussian bell profile

 \Rightarrow smooth initial condition steepens, shock formation

compare Burgers to nonconvex case

⇒ Rankine-Hugoniot relations explain the different propagation speeds

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 35 / 76

Burgers and nonvonvex evolution of Gaussian profile, analytically verified

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school

36 / 76

• what for nested situation: advection+Burgers region?

 \Rightarrow interface treatments needed, two options

 \Rightarrow (1) **conservative coupling**: unique flux at interface, conservative

 $\Rightarrow\,$ (2) **boundary coupling**: communication through scalar values in boundary

• Naive expectation: what happens with a Gaussian pulse when it is advected into a region where Burgers equation holds?

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 38 / 76

4 A N

greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

∃ ▶ ∢ August 2013, NBIA school 39/76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 40 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 41 / 76

greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 42/76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 43 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 44 / 76

- **4 A**

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

▶ ▲ ● ▶ ▲ ■ ▶ ▲ ■ ▶ ▲ ■ ♪ ● ④ Q ○ August 2013, NBIA school 45 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 46 / 76

perfectly conservative (area under curve kept)

 \Rightarrow instantly develops discontinuities at interfaces

 $\Rightarrow\,$ can be understood from Rankine-Hugoniot for stationary case at interface

 \Rightarrow fully ok with AMR, but 'undesired' evolution

(人間) とうきょうきょう

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 48 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 49 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 5

- 4

50 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 52 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 53 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 54 / 76

• greyzone: Burgers and rest of periodic domain is linear advection

Rony Keppens (KU Leuven)

August 2013, NBIA school 5

< A

55/76

• greyzone: Burgers and rest of periodic domain is linear advection

naively expected evolution, but non-conservative (area under curve varies!)

 \Rightarrow full AMR, extension to 2D and multiple regions feasible

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 57 / 76

- B- 6

 2D advection on square, with embedded Burgers (UR) and nonconvex region (LL)

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 58 / 76

• 2D advection on square, with embedded Burgers (UR) and nonconvex region (LL)

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 59 / 76

 2D advection on square, with embedded Burgers (UR) and nonconvex region (LL)

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 60 / 76

 2D advection on square, with embedded Burgers (UR) and nonconvex region (LL)

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 61 / 76

 boundary value exchange: relaxes conservation, allows multi-physics coupled evolutions

 $\Rightarrow\,$ so far AMR is adaptive, region where model changes is known/fixed geometrically

 \Rightarrow model for ideal/resistive/Hall-MHD schematic

• what for varying $\eta(\mathbf{x})$? \rightarrow mimic by setting $\mathbf{v}(\mathbf{x})$ in flux

$$rac{\partial
ho}{\partial t} +
abla \cdot \mathbf{F}(
ho, \mathbf{x}, t) = \mathbf{0}$$

 \Rightarrow nonlinear generalizations for $\mathbf{F}(\rho, \mathbf{x}, t) = F(\rho(\mathbf{x}, t)) \mathbf{v}(\mathbf{x}, t)$

• solve $\partial_t \rho + \partial_x (\rho v(x)) = 0$ with spatially varying

$$\nu(x) = \begin{cases} 1 & \text{if } x < 0.4 \text{ or } x > 0.6, \\ 1 + h + \frac{h}{0.1}(x - 0.5) & \text{if } x \in [0.4, 0.5], \\ 1 + h - \frac{h}{0.1}(x - 0.5) & \text{if } x \in [0.5, 0.6]. \end{cases}$$

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 63 / 76

2

<ロ> <問> <問> < 回> < 回> 、

• 1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 64 / 76

1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 65/76

• 1D advection with linear-hat function for speed in grey region

• 1D advection with linear-hat function for speed in grey region

• 1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 68 / 76
• 1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 69 / 76

• 1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 70 / 76

• 1D advection with linear-hat function for speed in grey region

August 2013, NBIA school 71 / 76

• 1D advection with linear-hat function for speed in grey region

Rony Keppens (KU Leuven)

August 2013, NBIA school 72 / 76

4 A >

• density adjusts to create constant mass flux ρv

 $\Rightarrow\,$ (de)compressions, no discontinuities as velocity profile is continuous

A D A D A D A

• 2D advection with rotating disk

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 74 / 76

2D advection with rotating disk: discontinuity at disk interface

 \Rightarrow first order convergence in L_1 , error grows in L_∞

Rony Keppens (KU Leuven)

Coupling Challenges

August 2013, NBIA school 75 / 76

Coupling strategies idealized to scalar nonlinear conservation
⇒ potential issues identified for future plasma-physical coupled setups

 $\Rightarrow\,$ BC versus conservation; profiles with/without discontinuities in multiplying parameters

 reconnection also studied widely in full kinetic (PIC) setup, bottom-up approach feasible

 \Rightarrow multi-level, multi-domain strategy [see Innocenti et al., JCP 238, 115 (2013)]

< 日 > < 同 > < 回 > < 回 > < 回 > <