V-B=0 Condition
in numerical codes




VB Condition

» Numerically, the solenoidal condition is fulfilled only at the
truncation level and non-solenoidal components may be generated
during the evolution;

» Magnetic monopoles causes unphysical accelerations of the
plasma in the direction parallel to the field lines1;

> V-B =0 cannot be satisfied for any type of discretization;

> Robustness of a method can be assessed on practical basis by
extensive numerical testing.

1 BrackBill & Barnes (1980)




Cell Centered vs Staggered

> Cell Centered Methods: magnetic field treated as volume average
over the zone:

« Projection method (BrackBill & Barnes, 1980)

- Powell’s 8-wave formulation (Powell 1994, Powell et al. 1999)
- Field CD (Toth 2000)

- Divergence cleaning (Dedner 2002)

> Staggered (face-centered):

magnetic field has a staggered representation where field components
live on the face they are normal to (Evans & Hawley 1988).




Projection Method

> Correct the magnetic field after the time step is completed;
> Starting from B" we obtain B” which is not divergence-free.

» Then, using Hodge-projection: B*"=VxA+Vgp
> Taking the divergence of both sides gives

V¢ =V.B*

which can be solved for the scalar function ¢.
> The magnetic field is then corrected as  B"*' = B* — V¢
> Cons: requires the solution of a Poisson equation.




Powell’'s Method (8 wave)

> Start from the primitive form of the MHD equation without
discarding the V-B term = quasi-conservative form
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> Just use vector identities:
(VxB) x B=(B-V)B-(VB)-B=V-:(BB)—-(V-B)B - (VB)B




Powell’'s Method (8 wave)

> The non-conservative form is discretized by introducing an 8" wave
in the Riemann solver associated with jumps in the normal
component of magnetic field.

> With the non-conservative formulation V-B errors generated by the
numerical solution do not accumulate at a fixed grid point but,
rather, propagate together with the flow.

> For many problems the 8-wave formulation works.

> However, in problems containing strong shocks, the non-
conservative source terms can produce incorrect jump conditions
and consequently the scheme can produce incorrect results




Hyperbolic Divergence Cleaning

> The divergence constraint is coupled to Faraday’s law by introducing a
new scalar field function ¢ (generalized Lagrangian multiplier).
> The second and third Maxwell’s equations are thus replaced by
{V+B 0, {D(tﬂ)—l—V*B 0,
OB = OB
It V x (v x B), E-I—Vtﬁ V x (v x B),
where @ is a linear differential operator.

> An efficient method may be obtained by choosing D(y) = ;20 + ¢,*r
yielding a mixed hyperbolic/parabolic correction.

> Direct manipulation leads to the telegraph equation:
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—> errors are propagated to the domain at finite speed ¢, and damped at
the same time.
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Hyperbolic Cleaning: GLM-MHD Equations

> The resulting system is called the generalized Lagrange multiplier
(GLM-MHD) and includes 9 evolution equation:
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> Divergence errors propagate with speed ¢, even at stagnation
points where v = 0.




Constrained Transport

> Staggered magnetic field treated : o
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> A discrete version of Stoke’s theorem is used to update them:
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Constrained Transport in 2D

> In 2D, the emf is placed at cell corners.
> The discrete Stoke’s theorem becomes
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> It is easy to show that the numerical divergence of b defined by
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does not change due to perfect cancellation of term to machine
accuracy.




Comparison: rotated shock tube
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Comparison: field loop advection
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Comparison: blast wave
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VB Condition

Cell-Centered Staggered

Pros = keeps “native” code discretization | = keep V-B = 0 to machine accuracy

= better for I.C. and B.C. = elegant and consistent discretization
= easier to extend to AMR grids = lead to perfectly consistent, well
= Can be used in dimensionally split posed Riemann problems

schemes

Cons | = require monopole control algorithm | = tricky extension to AMR

= 8 wave / Projection: = more work on B.C. and I.C.
»Jump of B at face > Riemann = Require solution of multi D Riemann
problem problems (UCT, L. Del Zanna &
> Break conservation (?7?) Londrillo)




Comparing schemes: Axisymmetric jet
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Summary

» CT most consistent formulation for finite volume Godunov
schemes;

> Projection method can be accurate but expensive;

> 8 wave prone to large errors in proximity of oblique shocks;

» GLM competitive alternative to CT;




