Introduction to XAFS

Applications of X-ray and neutron scattering in biology, chemistry and physics

Jonas Andersen, ph.d. student, DTU Chemistry Bastian Brink, ph.d. student, DTU Mechanical Engineering

DTU Chemistry Department of Chemistry

Todays Schedule

- Introduction to XAFS
 - Theory and Application
- Exercise 1
- 12:00 13:00 Lunch Break
- Presentation from Haldor Topsøe
- Exercise 2

X-ray Absorption Theory The absorption coefficient - μ

Transmission of electromagnetic radiation through a material

Lambert Beers's Law:

$$\mathbf{I} = \mathbf{I}_0 \mathbf{e}^{-\mu \mathbf{t}} \qquad \underbrace{I_0}_{I_0} \qquad \underbrace{I}_{I_0}$$

Introduction to XAFS

Requirement: High intensity radiation source with variable energy/wavelength - <u>Synchrotron</u>

Generation of photoelectric wave

Excess energy $(E-E_0)$ goes to create a photo electric wave propagating from the absorbing atom. X-ray photon $E>E_0(Zn)$

Zn

 $E_0(Zn)$ is absorbed (excitation)

E₀(Zn

Isolated system

Backscattering of photoelectric wave

Interference pattern depends on:

- Number of backscatters
- Geometry of backscatters (distance/angles)
- Type of backscatters
- Energy (i.e. wavelength of photoelectric wave)

X-ray absorption spectrum

The fine structure is proportional to the 1D projection of the interference pattern and contains information about the coordination geometry. One spectrum – two techniques: XANES and EXAFS

Data reduction: Energy space

Raw data + pre and post edge lines event

Normalized to one absorption

Data reduction: k-space

Data reduction: *R*-space (Fourier transform)

Think radial distribution function but

remember that it is not!

(Depends on e.g. multiple scattering, atom types, scattering factors, phase shift)

10 DTU Chemistry, Technical University of Denmark

Real and imaginary parts

Interpretation

• Multiple Scattering Theory:

 $\chi(\mathbf{k}) = \Sigma_{i} \chi_{i}(\mathbf{k})$

with each path written as:

 $\chi_{i}(k) = \begin{pmatrix} (\underline{N_{i}S_{0}}^{2})\underline{F_{i}(k)} & \sin(2kR_{i} + \varphi_{i}(k)) \exp(-2\sigma_{i}^{2}k^{2}) \exp(-2R_{i}/\lambda(k)) \\ kR_{i}^{2} & R_{i} = R_{0} + \Delta \mathbf{R} \end{pmatrix}$

 $F_i(k)$ effective scattering amplitude $\phi_i(k)$ effective scattering phase shift $\lambda(k)$ mean free path

N; degeneracy of path **S**₀² passive electron reduction factor E energy shift $\Delta \mathbf{R}$ change in half-path length σ_i^2 mean squared displacement

Modelling

Individual contributions

Modelling 'data' in k space 'data' in k space (2) 22 23 ŝ 0 Τ. 10 12 ō 8 10 12 14 2 6 8 2 6 k (A⁻¹) k (Å⁻¹) 'detc' in R space 'data' in R souce ŝ kr) (1-7) k(R) (1-7) 3 3 3 R (Å) 5 3 R (A) 0 2 5 Including only the first Adding additional paths short scattering paths

14

What can we see with EXAFS?

- EXAFS probes the local environment (within a radius of 5-7Å) around a specific element with very high accuracy.
- Structural information is obtained from a model fitted to the EXAFS data

$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2}(k)}{kR_{j}^{2}} \cdot |f_{j}^{eff}(k)| \cdot \exp(-2k^{2}\sigma_{j}^{2}) \cdot \exp\left(\frac{-2R_{j}}{\Lambda(k)}\right) \cdot \sin\left(2kR_{j} - \phi_{ij}(k)\right)$$

$$\mathbb{E}_{0} , R_{j} = R_{j} + \Delta R_{j}$$

• Least squares minimization:

$$\chi^{2} = \sum_{k} [\chi_{Data}(k) - \chi_{Model}(k)]^{2}$$
$$\chi^{2} = \sum_{R} \left(\sum_{k} [Re_{Data}(R) - Re_{Model}(R)]^{2} + \sum_{k} [Im_{Data}(R) - Im_{Model}(R)]^{2} \right)$$

Which samples can be studied by XAFS?

- The sample requires a presence of an element with an accesible elemental absorption edge
- Concentration of the absorbing element must be high enough
- No need for crystalline samples. The physical state can be of any type (crystals, micro crystals, amorphous solids, liquids, solutions, tissue, cells,...) but must be homogeneous.
- Must be stable in the beam, and radiation damage must be avoided
- Applications within:
 - Biology (metalloproteins, tissue, cells)
 - Catalysis (active sites)
 - Environmental science (trace metals)
 - Pharmaceuticals

The absorption of an x-ray photon

Data collection mode

- Transmission:
 - Concentrated samples (> 10%)
 - Thickness corresponding to edge step of about 1
 - E.g. 7 µm for pure Fe. Dilute samples thickness in mm range
- Flourescence:
 - Dilute samples, down to ppm levels
 - Self-absorption may dampen XAFS oscillations
 - Flourescent radiation is re-absorbed in the sample and does not reach the detector

Experimental setup

Fluorescence (low concentration): $\mu(E) \propto \log \left(\frac{I}{I_0}\right)$

XAFS at Beamline 1811 Experiment station

K-edge: S K-edge to As K-edge **L-edge**: Zr L-edge to Au L-edge

K-edge: Fe K-edge to Mo K-edge **L-edge**: Lu L-edge to Am L-edge

1 hydrogen	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18 helium
H																		He
1.0079 Biblium	boryllium	e e										1	boron	carbon	nitrogen	axygen	fluorine	4.0026 neon
3	A Do												5	6	7	8	9	10
L.	Be												B	12011	N	0	10 000	Ne
sodium	magnesium 42												aluminium	silicon	phosphorus	sulfur	chlorine	argen
Na	Ma												ΔΙ	Si	D	S	ČI.	År
22.990	24.305	8											26.982	28.096	30.974	32.085	36.453	39.948
potassium 19	calcium 20		scandium 21	stanium 22	vanadium 23	chromium 24	manganese 25	26	cobait 27	nickel 28	copper 29	zinc 30	gallium 31	gormanium 32	arsonic 33	selenium 34	35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 riobium	51.996 molybdenum	54.938 technotium	55.845 ruthonium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indum	72.61 tin	74.922 antimony	78.96 fellurium	79.904 iodine	83.60 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
RD	Sr		Y		ND	NO	IC	Ru	Rn	Pa	Ag	Ca	In	Sn	5D	127.60	136.00	Xe
caesium	barium	67.70	lutetium 74	hafnium	tantaium 72	tungsten 74	rhonium 75	osmium 76	itidium 77	platinum 79	gold 70	mercury	thalium	lead 92	bismuth	polonium	astatine	radon
Ce	Ba	*	1 in	ЩF	Ta	Ŵ	Po	Oe	le.	Dt	A.,	Ha	TI	Ph	Bi	Po	At	Pn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	moitnorium 109	darmstadtium 110	unununium 111	ununtium 112	-	urunquadium 114	2			
Fr	Ra	**	Lr	Rf	Db	Sa	Bh	Hs	Mt	Ds	Uuu	Uub		Uua	2			
[223]	[226]		[262]	[261]	[262]	[268]	[284]	[269]	[268]	[271]	[272]	[277]	2	[289]				
		8	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	eutopium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium		
			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
	*lantha	noids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ID	Dy	HO	Er	Im	YD		
			actinium	thorium	protactinium	144.24 uranium	neptunium 0.2	plutonium	americium	curium	berkelium	californium	einsteinium	formum	mendelevium	173.04 nobelium		
	**actin	oide	A.C.	Th	Da	52	Nn	Du	Am	Cm	PL	CF	39	Em	Md	No		
	autin	ulua	12271	232.04	231.04	238.03	12371	1244]	12431	(247)	12471	[251]	12521	[257]	12681	1259		
		8																

Beam ~ 1 mm wide

Scientific results – XANES data

XRD and XAS studies on insulin

Ph. D. Christian Grundahl Frankær

" Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction"

Complementarity between XRD and XAS

Initial model

Increased resolution

- Single crystal X-ray diffraction
 - Three dimensional structure of the entire protein
 - High level of details, but often not at atomic resolution
 - Requires single crystals of high quality

- X-ray absorption spectroscopy
 - Local structure of the metal cluster (within a radius of 5–7 Å)
 - Ultra high resolution (distances can be determined within accuracies of 0.01 Å)
 - No crystals are required
 - Requires a good starting model

Insulin

- Monomer (5740 Da) consists of two peptide chains (A = 21 residues and B = 30 residues) connected by three disulfide bonds
- Monomers assemble to dimers
- Dimers assemble to hexamers in presence of divalent metal ions

Insulin hexamer conformations: M²⁺ sites

Single crystal X-ray diffraction

Crystallization

Crystal structures

Crystal growth

T₆-insulin

R₆-insulin

- Data collection
 - MAX-lab, beam-line
 911-2

	T_6	T_3R_3	R ₆
Space group	R3	<i>R</i> 3	R3
а	80.98 Å	79.20 Å	156.24 Å
С	33.49 Å	37.22 Å	78.88 Å
Molecules/as u	2	2	16
Resolution <	1.40 Å	1.30 Å	1.80 Å
<i>R</i> _{merge}	4.2 %	4.6 %	7.1 %
l/σ(l)	19.28	14.68	11.65
R	0.1938	0.1439	0.2088
R _{free}	0.2285	0.1794	0.2717

Medium resolution → provide good initial EXAFS models

Qualitative XANES

XANES is a signature of the coordination geometry

May 15th 2012

21/08/2013

26

PhD defence DTU

EXAFS model building

- Coordinates from single crystal XRD structures used as initial model
- Atoms within a 5.6 Å radius from Zn included in the model
- Models were fitted in *EXCURVE*¹
- Distances and temperature factors refin

¹Binsted *et al.* (1991) *EXCURV92*. SERC, Daresbury Laboratory, Cheshire, UK

DTU

EXAFS: T₆-insulin

Extracted EXAFS

- Restrained refinement
- Octahedral coordination in both Zn sites
- *R* = 0.1523

$N_{\rm p} = 19$	XRD	EX	AFS
-	R (Å)	R (Å)	2σ² (Å ²)
N ^{ε2} (HisB10)	2.10	2.074(3)	0.012(1)
Cε1	3.03	3.07(4)	0.020(3)
$C^{\delta 2}$	3.13	3.05(3)	0.020(3)
N ^{δ1}	4.17	4.22(2)	0.017(3)
Cγ	4.26	4.22(3)	0.017(3)
C ^β	5.69	5.55(5)	0.017(3)
O ^{w1}	2.29	2.135(11)	0.030(1)
O ^{w2} (axial)	3.09	2.88(3)	0.021(10)

DTU

EXAFS: R₆-insulin

- Restrained refinement
- Tetrahedral coordination in both Zn sites
- *R* = 0.1082

N _ 19 					
/ i p = 10	XRD E		XAFS		
	R (Å)	R (Å)	2 <i>σ</i> ² (Å ²)		
N ^{ε2} (HisB10	2.08	2.001(4)	0.007(1)		
C ^{ε1}	3.09	2.98(2)	0.010(3)		
$C^{\delta 2}$	3.04	3.04(2)	0.010(3)		
$N^{\delta 1}$	4.18	4.15(1)	0.012(3)		
Cγ	4.19	4.14(2)	0.012(3)		
C ^β	5.60	5.53(3)	0.012(3)		
O (LeuB6)	4.87	4.90(5)	0.020(9)		
CI (axial)	2.21	2.218(3)	0.006(1)		

0 1 2 3

R (Å)

5 6

7 8

7 8 9 10 11 12 13

k (Å $^{-1}$)

-8

4 5

6

EXAFS: T₃R₃-insulin

- Com St 22256d refinement
- The diasters
- Doarlebatiane dralling the the other tain to be reliable

7 8

	XRD	EXAFS			
	R (Å)	R (Å)	2σ² (Å ²)		
N ^{ε2}	2.07	2.025(11)	0.014(1)		
C ^{ε1}	3.05	2.84	0.018(1)		
$C^{\delta 2}$	3.05	3.16	0.018(1)		
N^{δ^1}	4.16	4.03	0.028(4)		
Cγ	4.20	4.21	0.028(4)		
C ^β	5.61	5.66	0.030(3)		
O ^{w1}	2.47	2.289(15)	0.035(5)		
N ^{ε2}	2.02	1.987(11)	0.014(1)		
C ^{ε1}	2.99	2.99	0.018(1)		
$C^{\delta 2}$	3.03	2.96	0.018(1)		
$N^{\delta 1}$	4.10	4.09	0.028(4)		
Cγ	4.16	4.11	0.028(4)		
C ^β	5.58	5.52	0.030(3)		
N (SCN)	1.83	1.802(9)	0.014(1)		
C (SCN)	2.98	2.96	0.018(1)		
S (SCN)	4.72	4.69 _{21/08}	_{/2} 0 ₁ 017(3)		

T₆-insulin R₆-insulin FDM (optimized model) FDM (optimized model) FDM (input model) FDM (input model) Muffin tin (input model) Muffin tin (input model) - Experiment - - Experiment Fluorescence yield (a.u.) Fluorescence yield (a.u.) 0 20 60 20 40 40 0 60 E (eV) E (eV)

Quantitative fitting of XANES

- Performed for T₆ and R₆-insulin
- Calculation of XANES spectra on 4.5 Å clusters (from EXAFS models) using the FDM-methods, *FDMNES*¹
- Structural parameters (distances and angles) were optimized by a multidimensional interpolation, $Fit1t^2$
- Optimized distances were in agreement with EXAFS results
- Optimized angles differed with up to 10° from the EXAFS results

¹Joly (2001), Phys. Rev. B 63, 125120. ²Smolentsev & Soldatov (2007), Comp. Mat. Sci. 39, 569-574.

Comparison of XRD and XAS results with other reported Zn-site geometries

- The accuracy of XRD results depends on resolution of XRD structure
- EXAFS results are closer to the Zn-distances reported in small molecules, i.e. more accurate
- Large discrepancies between XRD and XAS results observed for the Zn–O^w distance in the 'loose' octahedral T₃sites.

In-situ spectroscopic studies of Chromium Catalysts in Ionic Liquids

ATR-FTIR coupled with EXAFS

Intro

 Glucose isomerization to fructose and following conversion to 5-(hydroxymethyl)furfural (HMF) is catalyzed by a Chromium species in the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([BMIm]Cl).

 $Glucose \rightleftharpoons Fructose \rightarrow HMF + 3H_2O$

- Controversy regarding coordination sphere and oxidation number.
- EXAFS and XANES can provide information regarding coordination sphere and oxidation state.
- In-situ ATR-FTIR can provide information regarding the reaction kinetics.

XANES

 Linear combination fit of Cr(II) and Cr(III) with glucose in [BMIm]Cl

Sample	Cr(II)/[BMIm] Cl/Glucose	Cr(III)/[BMIm]CI/Glucose
Cr(II) amount	0.879(0.039)	0.000 (0.000)
Cr(III) amount	0.121(0.039)	1.000 (0.000)

Background corrected EXAFS data

$EXAFS - [CrCI_6]^{3-}$ in [BMIm]CI

EXAFS fit

Schematic drawing

$EXAFS - [CrCl_4Glu]^-$ in [BMIm]Cl

Schematic drawing

EXAFS fit

$EXAFS - [CrCl_4Glu]^{2-}$ in [BMIm]Cl

JT-distorted Cr(II) and Cr(III) (as determined by XANES)

IR results

Arrhenius plot for the Cr catalyzed reaction.

The Cr(II) reaction is approximate 8 times slower than the Cr(III) reaction. However with exactly same activation energy.

Coupled with XANES results the oxidation state has been determined to be

Nitrogen stabilized expanded austenite

- Austenitic stainless steel
 - fcc structure of Fe,Cr,Ni
 - Identical metallic local environments

Nitrogen stabilized expanded austenite

Exercise 2 !

Exercises:

- 1: Fluorescence spectrum of aqueous solution of Cr²⁺
- 2: Transmission spectrum: Expanded austenite (Cr and Fe data)
- Raw data -> Normalization, background-removal -> Modelling

Programs: Athena (Data reduction)

Programs: Artemis (Modelling)

