

Pauline Vandoolaeghe	Fredrik Höök	
Debby Chang	Giovanna Fragneto	
Aleksandra Dabkowska	 Sushil Satija 	
Maria Wadsäter	Yngve Cerenius	
Justas Barauskas	Arwel Hughes	
Magali Deleu	Richard A. Campbell	
Marie-Louise Ainalem	Adrian R. Rennie	
Agnes Michanek	Robert K. Thomas	
Emma Sparr	John Webster	
Richard A. Campbell	Sara Rogers	
Kåre Larsson	Max Skoda	_
Fredrik Tiberg	Gunnel Karlsson	(Å
Stephan Zauscher	Per Linse	Lun

Lund

The Goal of Neutron Reflectivity Measurements Is to Infer a Density Profile Perpendicular to a Flat Interface

- In general the results are not unique, but independent knowledge of the system often makes them very reliable
- · Frequently, layer models are used to fit the data
- Advantages of neutrons include:
 - Contrast variation (using H and D, for example)
 - Low absorption probe buried interfaces, solid/
 - liquid interfaces etc
 - Non-destructive
 - Sensitive to magnetism
 - Thickness length scale 10 5000 Å

LUND

Poly(N-isopropylacrylamide) (pNIPAAM)

- Hydrophilic (water soluble) at low temperature
- Hydrophobic (water insoluble) at high temperature
- Sharp transition at ≈30 °C
- pNIPAAM brushes have potential use in:
 - Protein affinity separation
 - Sensing applications
 - Mirco- and nanofluid devices

Param	eter	S		1 fitted	ра	arameter					
Common to both		layer Si		Volume		Thickness		Roughness			
				Fraction, ϕ_i		<i>l_i</i> (A)		δ_i (A)			
				1		semi-infinite		0			
models	models		SiO ₂		1		9		0		
		initiator		0.85 ± 0.0	5	30		0			
5 fitted parameters											
Laver	layer		Vo Fra	Volume Fraction, ϕ_i		$egin{array}{c} \dot{hickness} & R_i \ \dot{(A)} & \delta_i \end{array}$		loughness ¦ (Å)			
model	poly poly	polymer (328 K) polymer (293 K)		0.75 ± 0.05 0.55 ± 0.05		600 ± 50 50 200 ± 50 2) ± 5 50			
2 fitted parameters											
Lattice	Lattice surface interaction					$kT\chi_{\text{surface,water}} = kT\chi_{\text{surface,polymer(polar)}} = 3 \text{ kJ mol}^{-1}$					
model				$kT\chi_{\text{surface,polymer(nonpolar)}} = 0 \text{ kJ mol}^{-1}$			1				
number of segments				$r_{\text{polymer}} = 1000$							
	grafting density $\sigma = 0.08 \pm 0.005$								N CO	(4.5)	
	length of lattice site $d = 14.7 \pm 0.3$ A										
									u		

· Layer profile

- Fitting parameters

- » Scattering length density
- » Thickness
- » Roughness
- Nonzero roughness in the reflectivity model is important
- · Lattice mean-field theory
 - Fitting parameters (global)
 - » Length scale
 - » Grafting density (here experimentally unknown)
 - Extensions
 - » Polyelectrolytes (e.g., polyacrylamide), Block copolymers, LUND Adsorbed polymers

Interactions of PAMAM dendrimers with SDS at the solid-liquid interface								
	Theoretical	Hydrodynamic	Surface	Density	Molecular			
	Molecular	Radius	Cation		Volume			
Generation	Weight		Groups					
	g mol⁻¹	Å		g cm⁻³	Å ³			
4	14215	24.5	64	1.224	19290			
8	233383	66.3	1024	1.231	314900			

17

