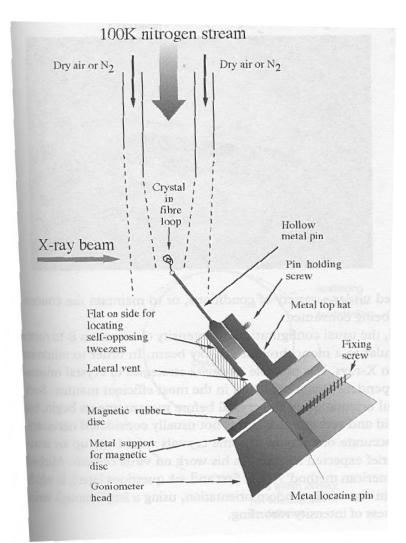
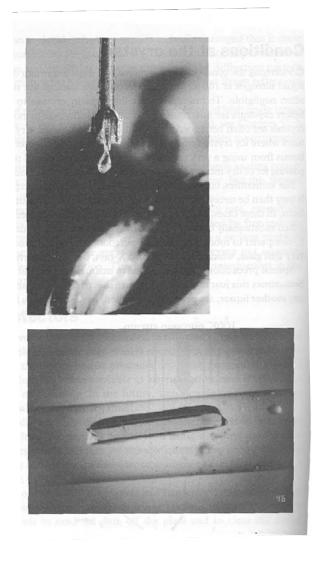

connection between the structure factor and the electron density


¡ phase problem !



considerations before data collection

- synchrotron or 'home'
 - normally you end up in a synchrotron
- mounting
 - cryo cooled or room temperature
- data quality
 - how good data do you need before collecting data
- exposure time
 - how much radiation can your crystal take

Typical mount

mounting the crystal

cryo cooling – low temperature

> reduced radiation damage

✓ No capillary necessary

✓ can be stored for months

You need to find suitable cryo protection

× risc for ice rings

capillary – room temperature

> closer to physiological conditions

✓ easier to control pH

The crystals "burn up"difficult to mount

typical data collection

- the detector is placed, so that the diffraction reaches the edge
- the exposure time is fixed to a certain time, Δt, between 2 and 30 seconds (depending on the radiation strength and the crystal quality)
- During the time Δt the crystal is turned the angle, $\Delta \phi$, between $\frac{1}{2}$ and 2 degrees.
- repeat until the wanted part of reciprocal space has been covered – usually 180°

data processing

- you have
 - a collection of diffraction images
- you want
 - a list of h k l Intensity(hkl)
- From the position of the spots the possible unit cells are calculated
 - the most likely is the one with highest symmetry and the smallest distortion

example on unit cell determination

INDEXING FROM DENZO

Lattice	Metric distortio			cell (s cell		ized) : symmet	ry rest	rains)
primitive	cubic	18.98%	90.44 95.58	98.03 95.58	98.05 95.58	119.89 90.00	89.95	89.96 90.00
I centred	cubic	30.49%	133.33	133.34 122.75	98.21 122.75	68.44 90.00	68.46 90.00	79.05
F centred	cubic	40.61%	192.30 155.59	133.61 155.59	133.40 155.59	85.28 90.00	71.43 90.00	108.58 90.00
primitive	rhombohedral	25.77%	90.44 95.58 133.44	98.05 95.58 133.44	98.03 95.58 133.40	119.89 100.10 90.00	90.04 100.10 90.00	90.05 100.10 120.00
primitive	hexagonal	0.07%	98.05	98.03	90.44	90.04	90.05	119.89
primitive	tetragonal	17.48%	98.03 98.04	98.05 98.04	90.44	90.05 90.00	89.96	60.11 90.00
I centred	tetragonal	16.74%	133.45	133.40	98.03 98.03	68.40	68.55	79.16
primitive	orthorhombic	17.48%	90.44	98.03	98.05	119.89	89.95	89.96
C centred	orthorhombic	0.03%	98.21	169.72	90.44	90.01	89.91	90.02
I centred	orthorhombic	16.74%		133.40	133.45	100.84	111.45	68.40
F centred	orthorhombic	11.88%	98.03	170.02	205.68	90.02	118.43	90.10
primitive	monoclinic 🤇	0.04%	98.03	170.02 90.44	98.05		90.00	90.00
C centred	monoclinic	0.01%		90.44 169.72 169.72	98.05 90.44 90.44	90.00 89.99 90.00	119.89 90.09 90.09	90.00 90.02 90.00

data processing

• after determination of the unit cell all reflections may be indexed (given *hkl*)

- there is a unique connection between the direct and the reciprocal lattice

- Then the reflections are integrated (add all counts in a reflection – subtract the background)
- the list *h k l Intensity(hkl)* is made

determination of the crystal symmetry – merging reflections

calculate an internal R-factor

$$R_{sym} = \frac{\sum_{N} \left[\sum_{n} \left(I_{i}(\mathbf{h}) - \bar{I}(\mathbf{h}) \right) / n \right]}{\sum_{N} \bar{I}(\mathbf{h})}$$

the smaller R_{sym} - the better it is always somewhat larger when more reflections are averaged

> NB: several R-factors appear in crystallography. This one is a measure of data quality and has nothing to do with the one from REFMAC5

data collection for *tobacco* peroxidase

Beamline	I911-5, MAX II, Sweden
Detector	MARResearch ccd
Wavelength (Å)	0.9074
Temperature (K)	100
Space group	C222 ₁
Unit-cell parameters (Å)	a = 99.81, b = 123.47, c=59.06
Resolution range (Å)	20 – 2.0 (2.2 – 2.0)
No. of reflections	83299 (23829)
No. of unique reflections	21620 (6125)
Mosaicity (°)	0.35
Redundancy	3.85 (3.89)
Completeness (%)	86.2 (99.5)
l/σ(l)	9.84 (3.90)
R _{int} (%)	12.6((36.1)