Homeworks

☐ Exercise 1: can we discover the chargino at LHC?

- Download the new version of the macro from http://www.cern.ch/pralavop/SUSYAnalyzer.tar.gz
 ✓ Dated from 07-Nov 2013
- When downloaded: tar -xzvf SUSYAnalyzer.tar.gz; cd SUSYAnalyzer and follow README
- Originally setup for ROOT 5.34.05. Works for 5.28/00 onwards.
- Next slide shows a reminder of what we found during the exercise (for emu channel).
- Two homeworks are detailed in the following 2 slides

☐ Exercise 2: can we exclude m(gluino)<1 TeV?

One homework is detailed in the last slide

☐ Send answers by End of November.

In case of questions, don't hesitate to contact me (pascal.pralavorio@cern.ch)

Exercise 1: Reminder

☐ Results found in the emu channel

Results from ATLAS-CONF-2012-049 and from the exercise (yellow)

= <u>s</u>			
	SR-WWa SR-WWb	SR-WWc	★ 2/7n approx ¬
lepton flavour	$e^{\pm}\mu^{\mp}$		2/Zn approx OK!
$p_{\mathrm{T}}^{\ell 1}$	> 35 GeV		(
$p_{\mathrm{T}}^{\ell 1} \ p_{\mathrm{T}}^{\ell 2}$	> 20 GeV		Market ATLAS Preliminary
$m_{\ell\ell}$	< 80 GeV < 130 GeV	<u> </u>	ATLAS Preliminary → Observed limit (±1 σ ^{susy} _{theory})
$p_{\mathrm{T},\ell\ell}$	> 70 GeV < 170 GeV	< 190 GeV	
$\Delta\phi_{\ell\ell}$	< 1.8 rad		1 # F
$E_{\mathrm{T}}^{\mathrm{miss,rel}}$	> 70 GeV		
m_{T2}	— > 90 GeV	> 100 GeV	J -
	SR-WWa SR-WWb	SR-WWc	No sensitivity
Observed	123 _{12%} 16	17% 9 20%	
Background total	117.9 ± 14.6 13.6 ± 2.3	7.4 ± 1.5	★
Тор	15.2 ± 6.6 2.7 ± 1.1	1.0 ± 0.7	1
WW	$98.6 \pm 14.15110.2 \pm 2.111$	$9.45.9 \pm 1.3$ 7.7	7
ZV (V = W or Z)	3.4 ± 0.8 $0.26^{+0.31}_{-0.26}$	0.29 ± 0.14	100 120 140 160 180 200 220 240 (Zn>2)
Higgs	0.76 ± 0.14 0 0.21 ± 0.06	00.10 ± 0.04	$m(\widetilde{\alpha}^{\pm})$ [CoV]
fake	$0.02^{+0.33}_{-0.02}$ $0.26^{+0.30}_{-0.26}$	$0.12^{+0.17}_{-0.12}$	Call discover
Signal expectation	Eff=0.3% 0.7%		(Zn>5)
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (100, 0) \text{ GeV}$	31 78 N/A Eff=0.2% 0.2	5% N/A	Comments: truth level optimistic wrt published results
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (140, 0) \text{ GeV}$	N/A 5.1 13	3.1 N/A Eff=0.4%	1- No smearing in high tails (will affect S and B differently)
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (200, 0) \text{ GeV}$	N/A N/A	3.3 6.6	i) S(reco)=S(true)/2 and ii)B(reco)=B(true)/1.5 [1] for SRWWa [b,c]
$(m_{\tilde{\chi}_1^{\pm}}, m_{\tilde{\chi}_1^0}) = (110, 113) \text{ GeV}$	18 4.3	N/A	2- Other background not completely negligible (Counts for 20-30%)
Zn (σ/σSUSY at 95%CL~ 2/Zn)	1.5 (1.3) 3(0.7) 1.0 (2.1) 2	.9(0.7) 0.8 (2.4) 1.7(1	_{.2)} 3- Scale factors not 1 in Control Region (1.2 for WW)

Exercise 1: Homework (1)

1. Redo sensitivity studies for ee (channel=0) and mumu (channel=2). What do we gain?

- Assume WW still dominant since Z+X background can be killed by a Zveto
- Design signal regions for SUSY signal and compute Zn(ee) and Zn(mumu)
- Compute the new sensitivity for each SUSY signals as Zn(tot)=√Zn(ee)²+Zn(mumu)²+Zn(emu)²

→ Prepare a 3 page summary report (latex format):

- i) to motivate the cut chosen for ee and mumu signal region (show 1 typical distribution, Nb of WW&SUSY after all cuts),
- ii) to present the combination result in the form 2/Zn vs M(C1) for ee, emu, mumu and tot

Exercise 1: Homework (2)

2. Can you discover the Higgs boson (H→WW)?

- Focus on the emu channel
- Assume same preselection as for SUSY and WW=dominant background
- Design a signal region to find the H→WW. Compute the corresponding Zn. Can we discover the Higgs boson in this channel at √s=8TeV and L=20 fb-1?
- → Prepare a 3 page summary to explain your result (latex format)

Exercise 2: Homework (3)

3. Extract relevant information from a ATLAS/CMS paper

 Choose one ATLAS/CMS paper searching for gluinos (Could be the one you look at during the exercise session)

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

- Extract from the paper the following information
 - 1- Which Experiment? Which Hypothesis on R-parity? Which LSP (N1 or Gravitino)?
 - 2- Which gluino decay? (if several concentrate on one)
 - 3- Main information from the analysis: main discriminating variable, main background
 - 4- In this case, extract the plot showing the limit on the gluino. Quote the number for m(LSP)=0 and 500 GeV (if limit exists!)
 - 5- Find the corresponding analysis from the other experiment and compare in few lines the two results
- → Prepare a 3-page report (latex format) with all these information.