
Exercise 1: Hunting the chargino!

P. Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3-Univ. de la Méditerranée (Marseille, FRANCE)

Lectures at Niels Bohr Institute

"This could be the discovery of the century.

Depending, of course, on how far down it goes"

Part II (3 lectures + 2 exercises)
Direct SUSY searches at LHC

W 30-Oct	Th 31-Oct	Fr 01-Nov	
	Lecture IIA Exercise 1	Lecture IIC Exercise 2	
Lecture IA Lecture IB	Exercise 1 Lecture IIB	Exercise 2 Lecture III	

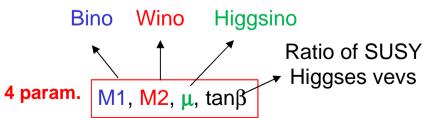
Exercise 1

- General Question: can we discover the chargino at LHC?
 - We know it's hard but we will try to be quantitative!
- **□** Organisation:
 - 15': Put in context: what we should know about EWKino sector for this exercise
 - 30': Background: how to reduce them, which one dominates? [WIDE DISCUSSION]
 - Form groups of 2 people
 - 1h : Signal Region definition : what discriminating variables ? [USE OF ROOT MACRO] ------ BREAK ------
 - 1h : Signal Region definition : SR design and sensitivity expected [USE OF ROOT MACRO]
 - 30': Compare with the published results ...
 - 15': Impact of this study and left-over?
- □ Root Macro: 557 MB (!) → Check that the macro works on your laptop before the exercise !!
 - http://www.cern.ch/pralavop/SUSYAnalyzer.tar.gz [Final version have files dated 15-Oct]
 - When downloaded: tar -xzvf SUSYAnalyzer.tar.gz; cd SUSYAnalyzer and follow README
 - Originally setup for ROOT 5.34.05. Works for 5.28/00 onwards.

Context (0)

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates	
Higgs bosons	0	+1	$H_u^0 \ H_d^0 \ H_u^+ \ H_d^-$	$h^0~H^0~A^0~H^\pm$	
			\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R	(same)	
squarks	0	-1	\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R	(same)	
			\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R	\widetilde{t}_1 \widetilde{t}_2 \widetilde{b}_1 \widetilde{b}_2	
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	(same)	
sleptons	0	-1	$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)	
			$\widetilde{ au}_L$ $\widetilde{ au}_R$ $\widetilde{ u}_{ au}$	$\widetilde{ au}_1$ $\widetilde{ au}_2$ $\widetilde{ u}_{ au}$	
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4	
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}	
gluino	1/2	-1	\widetilde{g}	(same)	
goldstino (gravitino)	1/2 (3/2)	-1	$ ilde{G}$	(same)	

 $R_P=-1$

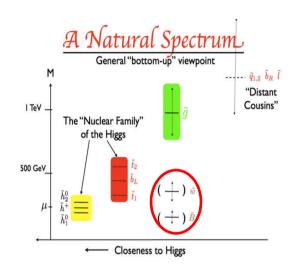

2- SUSY: Each **gauge** field has a partner with S-1/2 in the vector multiplet

$$\begin{array}{l} {\rm C_W = \cos \theta_W} \\ {\rm S_W = \sin \theta_W} \\ {\rm C_\beta = \cos \beta} \\ {\rm S_\beta = \sin \beta} \end{array} \qquad \begin{pmatrix} M_1 & 0 & -c_\beta \, s_W \, m_Z & s_\beta \, s_W \, m_Z \\ 0 & M_2 & c_\beta \, c_W \, m_Z & -s_\beta \, c_W \, m_Z \\ -c_\beta \, s_W \, m_Z & c_\beta \, c_W \, m_Z & 0 & -\mu \\ s_\beta \, s_W \, m_Z & -s_\beta \, c_W \, m_Z & 0 \end{pmatrix}$$

Bino, Wino, Higsino Neutralinos

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
neutralinos	1/2	-1	\widetilde{B}^0 \widetilde{W}^0 \widetilde{H}_u^0 \widetilde{H}_d^0	\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}_{u}^{+} \widetilde{H}_{d}^{-}	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm} Charginos
				Charginos
			$\binom{M_2}{\sqrt{2}c_{\beta}m_W}$	$\left(rac{\sqrt{2}s_{eta}m_W}{\mu} ight)$

Masses of Gauge Eigenstates

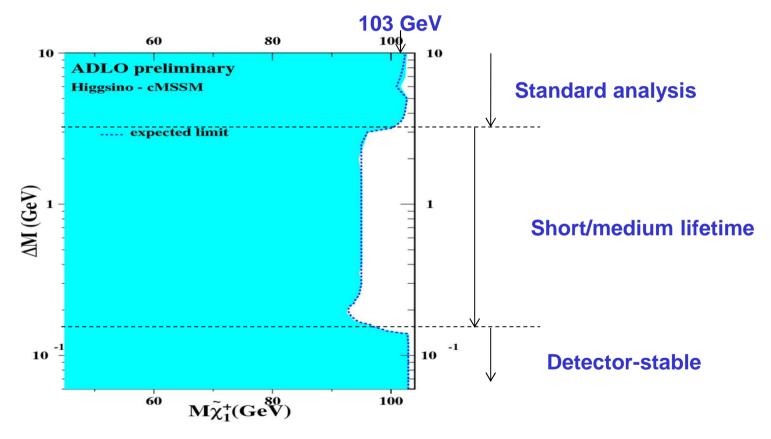

Context (1)

☐ All what you need to know about the chargino

- Linear combination of charged Wino and Higgsino.
 - ✓ J=1/2
 - √ Naturalness (10%) → m ~ 200-400 GeV
- Theory Unknowns:
 - 1- **SUSY Breaking** (SUGRA, GMSB, AMSB) 2- **RPC** vs **RPV**
 - 3- Open or compressed spectra

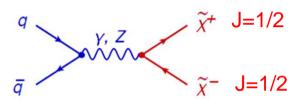
Assumptions for the exercise:

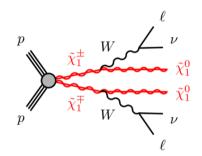
- 1. SUGRA-like (N1=LSP): N1 Bino / C1 Wino, i.e. not natural but highest cross-section
- 2. Rparity conserved: pair produced, decay to LSP
- 3. Open spectra: $\Delta M(C1-N1) > M(W)$ →BR(C1→WN1)=100%
- → Only 2 new particles beyond SM: C1 and N1
 - ✓ All other particles decoupled (conservative)!
- → Considerable hole in the natural searches (N. Craig, 1309.3568)


~SUGRA Bino-Wino case Open Spectra

Context (2)

☐ All what you need to know about the chargino

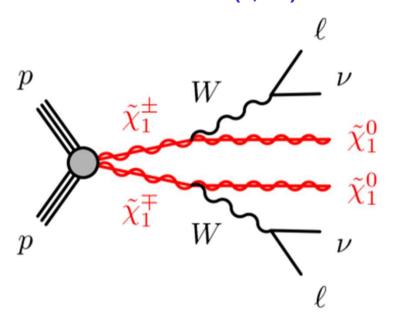

• Main limit come from LEP2 (RPC or RPV):



Still far from the natural mass of the chargino ...

Context (3)

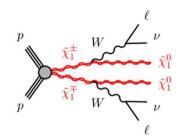
☐ Cross-section and final state


Final state: 2I + MET

BR stands for W \rightarrow Iv (I=e/ μ) BR=0.21²~0.05

Background

Final state: 2I (e,mu)+ MET

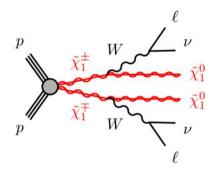

Other final states (1l+2j, 0l+4j) more complicated a priori ...

Background

■ Main Questions

Final state: 2I + MET

1. What are the potential Backgrounds?

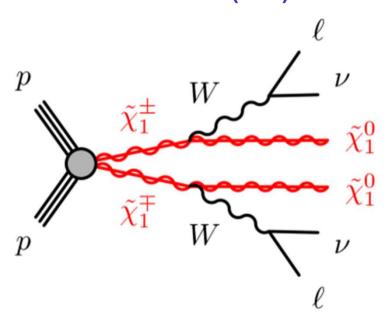

- 2. How to remove most of them?
- 3. What is the hardly reducible Background?
- 4. What will be the dominant systematics (Exp or theory)?
- 5. How to control this dominant background?

Background (6)

l=e/μ

□ Recap

- Deduce sensitivity (Zn) assuming a relative error on background (x)
 - ✓ Zn ~ $S/(\sqrt{B+(x*B)^2})$ → 5 can discover !, =2 can exclude @95%
 - ✓ Do it for x=0.00001 10 20 %

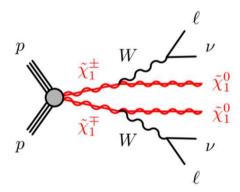


W→Iv, I = e/ μ	N(Sig)	N(WW)	N(H→WW)	
Initial	5000	52000	3600	
After pre-selection	750	7800	1100	√ B~95
Z(x~0)		~8		
Z(x=0.1)		~0.8	No sensitivity with the highest possible cross-	
Z(x=0.2)		~0.4		section (mC1=100 GeV)

Need to increase sensitivity !!!

Signal Region

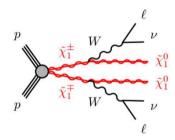
Final state: 2I (emu)+ MET



Signal Region (1)

☐ Design Signal Region to enhance sensitivity

- Now we know what is the dominant background to kill (WW, HWW)
 - 1- What variables do you have at hand?
 - 2- What discriminant variable to choose (if any)?


Final state: 2I + MET

Signal Region (3)

☐ Design Signal Region to enhance sensitivity

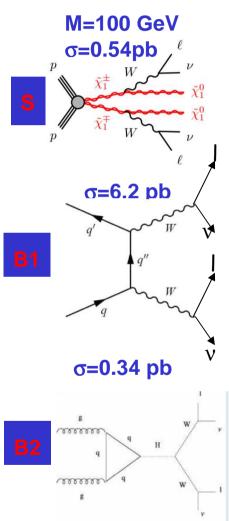
- Now we know what is the dominant background to kill (WW, HWW)
 - 1- What variables to you have at hand?
 - 2- What discriminant variable to choose?

- Macro: Truth level (can not give you ATLAS data, not public!), include the main background, automatically compute Zn, ...
- Run with default configuration

----- QUESTIONS -----

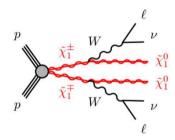
- Change the cuts as you wish to increase signal sensitivity:
 - →3 signal points: C1,N1=(100,0); (140,0); (200,0)
 - → Find the best signal region for each point !!!
 - → Will then compare to ATLAS results (optimize with reconstructed events not truth)

Signal Region (4)


 $l=e/\mu/\tau$

☐ Key numbers without any cuts

■ isOS&&n_signal_L20jets==0&&n_signal_F30jets==0&&n_signal_B20jets==0&&isemu Cut Efficiency $\varepsilon(S) \sim 11 \%$, $\varepsilon(B1) \sim 10\%$, $\varepsilon(B2) \sim 12.5\%$


$L = 20300 pb^{-1}$

$W \rightarrow Iv$, $I = e/\mu/\tau$	N(Sig)	N(WW)	N(H→WW)
Initial	10860	125860	6900
After pre-selection	1180	12500	860
Z(dB~0)	~10		
Z(dB=0.1)	~0.8		
Z(dB=0.2)	~0.3		

Impact of the study

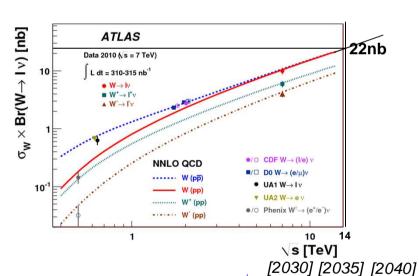
☐ Can we increase sensitivity to this signal with 20 fb-1?

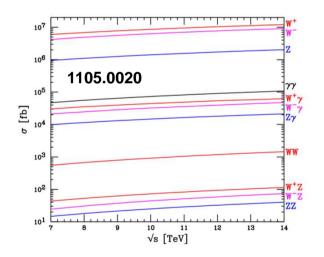
☐ WW Cross-section has one sigma excess. Hint of SUSY?

Exercise 1: Homework (1)

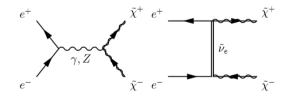
1. Redo sensitivity studies for ee and mumu. What do we gain?

- Assume WW still dominant since Z+X background can be killed by a Zveto
- Compute Zn(ee) and Zn(mumu)
- Add all Zn in quadrature to obtain the new sensitivity
 - → Does it help to exclude the signal ??


2. Can you discover the Higgs boson (H→WW)?


- Focus on the emu channel
- Assume same preselection and that WW is still the dominant background
- How to modify the cuts to enhance Higgs signal? Consider new discriminant variable?

Exercise 1: Homework (2)


3. The chargino in the next decades

- Up to what mass can we go with higher luminosity?
 - ✓ Rerun the macro with an increased luminosity L = 300 [2022] / 3000 fb⁻¹ [2030]
 - ✓ Rescale also cross-section by a factor ~ 2 for S and B: 8 → 14 TeV
 - ✓ And assume B(reco)=B(true)/1.5[1] for SRWWa[b,c]

- Competition between ILC (√s=250, 500, 1000 GeV) and LHC14 ?
 - ✓ Assume that reachable mass at ILC is M(C1)= $\sqrt{s/2}$
 - ✓ Who wins in 2030 ? 2035 ? and 2040 ?

