SUSY or not, what is the evidence? Status and perspectives of collider searches – Part IIB

P. Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3–Univ. de la Méditerranée (Marseille, FRANCE) Lectures at Niels Bohr Institute

"This could be the discovery of the century. Depending, of course, on how far down it goes"

Part II (3 lectures + 2 exercises) Direct SUSY searches at LHC

W 30-Oct	Th 31-Oct	Fr 01-Nov
	Lecture IIA Exercise 1	Lecture IIC Exercise 2
Lecture IA Lecture IB	Exercise 1 Lecture IIB	Exercise 2 Lecture III

Lecture Part II

Lecture Part IIB

Part IIb : RPC Strong Production SUSY

3rd generation squark searches

Look at each case individually. Mixed case discussed in lecture III (pMSSM)

Sbottom (1)

Design an exclusive 2b-jet + MET analysis

Requirements **SRA** Etmiss [GeV] > 150 **Trigger**-driven Pt (i1) [GeV] > 130 **Pile-up**-driven Pt (i2) [GeV] > 50 Lepton and 3rd jet veto **QCD**-killer MET/Meff > 0.25 0.4 $\Delta \phi$ (jet-MET) > N(bjets)= 2 Tight (ε=0.6) $M_{CT}[GeV] >$ 150,200,250,300,350 **Discriminating var.** $m_{bb}[GeV] >$ 200 $[m_{CT}(ttbar) < 135 \text{ GeV}]$

- Z(vv)bb: Control Region with $Z \rightarrow II$ mass constraint + 2 b-jets
- top, Wb: Control Region with =1 lep + 2 bjets + MET> 100 GeV
- QCD: jet smearing method (cf. 0lepton)

 $N_{B}[m_{CT}>250 \text{ GeV}] = 15.8 \pm 2.8 (14 \text{ obs})$ →Error dominated by stat in Control Regions

Another signal region (SRB) exists for compressed spectrum:

• Remove m_{CT} and m_{bb} cuts which kills the signal, ask a 3rd jet (ISR) and H_T (wo 3 leading jets)<50 GeV

120 Events / 25 GeV ATLAS Data vs = 8 TeV 20 1 f SRA 100 80 (b)=500 GeV, m(χ̃⁰)=1 GeV 60 m(t̃,)=500 GeV , m(χ̃)=100 GeV $m(\tilde{\chi}_1^{\pm})=105 \text{ GeV}$ SRA[m_{cT}>250 GeV] 40 Signal 20 endpoint-Data / SM 150 200 250 300 350 100 400 450 500 m_{cT} [GeV]

 $\tilde{b}_L \tilde{b}_L \rightarrow bb \tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow 2b + MET$

5

Sbottom (2)

□ Gradually improve mass limits with luminosity

$\tilde{b}_L \tilde{b}_L \rightarrow b b \tilde{\chi}_1{}^0 \tilde{\chi}_1{}^0 \rightarrow 2b \text{+} \text{MET}$

1308.2631

Reaching upper mass limits of the natural SUSY spectrum for m(N1)<250 GeV

Sbottom (3)

CMS-PAS-SUS-13-013, ATLAS-CONF-2013-007

 $\tilde{b}_{L}\tilde{b}_{L} \rightarrow tt \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow 2b+4W+MET$

Design a 2 lepton same sign analysis

Assume at least 2 leptonic W gives a high probability to have 2 lepton same sign

- ✓ Multipurpose final state for RPC Strong SUSY (see later)
- Remove SM background which compensate for low leptonic branching ratio

After all cuts

 N_{B} [SR1b] = 3.7 ± 1.6 (8 obs)

Sbottom (4)

CMS-PAS-SUS-13-013, ATLAS-CONF-2013-007

 $\tilde{b}_{L}\tilde{b}_{L} \rightarrow tt \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \rightarrow 2b+4W+MET$

\Box Results depends on $\chi_1{}^0$ and $\chi_1{}^{+/-}$ masses

Several assumptions are chosen

Limits quite robust at m(δ)<500 GeV

Reaching upper masses of the natural SUSY spectrum

Sbottom (5)

□ Design a ≥3 b + jets + MET analysis

- Since H→bb is ~60%.
 - ✓ Multipurpose final state for RPC Strong SUSY (See later)
- Remove most of SM background especially ttbar

Remaining background

Irreducible :

- ttbar+H/Z(bb) : σ ~0.1 pb
- ttbar+b/bb : **σ**~0.1 pb
- → Estimated w Monte Carlo

Reducible :

- ttbar with τ-jet, c-jet mistagged as a b-jet
- → Estimated w matrix method

Signal Regions (0-1I)

0- ℓ region	N jets	p_T jets [GeV]	$E_{\Upsilon}^{\text{miss}}$ [GeV]	m _{eff} [GeV]
SR-0l-4j-A	≥ 4	> 30	> 200	$m_{\rm eff}^{\rm 4j} > 1000$
SR-01-4j-B	≥ 4	> 50	> 350	$m_{\rm eff}^{\rm 4j} > 1100$
SR-01-4j-C	≥ 4	> 50	> 250	$m_{\rm eff}^{\rm 4j} > 1300$
SR-01-7j-A	≥ 7	> 30	> 200	$m_{\rm eff}^{\rm incl} > 1000$
SR-01-7j-B	≥ 7	> 30	> 350	$m_{\rm eff}^{\rm incl} > 1000$
SR-01-7j-C	≥ 7	> 30	> 250	$m_{ m eff}^{ m incl} > 1500$

1- ℓ region	N jets	E _T ^{miss} [GeV]	$m_{\rm T}$ [GeV]	m _{eff} ^{incl} [GeV]	$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}^{\rm incl}} [{\rm GeV}^{rac{1}{2}}]$
SR-11-6j-A	≥ 6	> 175	> 140	> 700	> 5
SR-11-6j-B	≥ 6	> 225	> 140	> 800	> 5
SR-11-6j-C	≥ 6	> 275	> 160	> 900	> 5

After all cuts

 $\tilde{b}_{L}b_{L}^{\sim} \rightarrow bb \, \tilde{\chi}_{2}{}^{0}\tilde{\chi}_{2}{}^{0} \rightarrow 2b+2H(bb,WW)+MET$

N_B [SR-0I-7j-A] =22.5 ± 6.9 (22 obs)

Sbottom (6)

ATLAS-CONF-2013-061

\Box Results depends on $\chi_{1,2}^0$ masses

 $\tilde{b}_{L}b_{L}^{\sim} \rightarrow bb \, \tilde{\chi}_{2}{}^{0} \tilde{\chi}_{2}{}^{0} \rightarrow 2b+2H(bb,WW)+MET$

- Chose to fix LSP to a low mass (60 GeV)
- This results is also applicable to Z→bb (BR=15% instead of 57%)

Again quite strong limit !

Stop (1)

One of the most motivated searches

- Most pressing contribution to m_H divergence
- Tension btw naturalness and $m_H \sim 126 \text{ GeV}$
- ➔ Results on stop put huge constraints on theory!
- Experimental challenge: remove ttbar σ ~240pb

Before LHC start no constraints on stop !

Stop (2)

 $\tilde{t}_1, \tilde{\chi}_1^0$

□ Take most powerful analysis 1I + 4j + ≥1b-jet

Design very carefully SR (discriminant var.+ phase space regions)

Stop (3)

ATLAS-CONF-2013-037, 1308.1586

 $\tilde{t}_1, \tilde{\chi}_1^0$

m

□ Look at the results in Signal Regions

■ Dominated by tt→WWbb→lvlvbb events

 \checkmark where one lepton is τ_{had} or is not rec./identified

	Low DM 1(low)	Med DM 2(med)	High DM 3(high)
ATLAS	262+/-34 (235)*	13+/-3 (14)	5+/-2 (7)
CMS (Cut-based, Higher MET)	11.5+/-3.6 (9)		4.7+/-1.4 (2)

* mT>140 GeV, MET>150 GeV

Stop (4)

ATLAS-CONF-2013-037, 1308.1586

Impact of BR(t→tN1) hypothesis (assume the other

\Box Set limits on the $\tilde{t}_1 \rightarrow t \; \tilde{\chi}_1^0$ scenario

- Cover nicely the allowed phase space
- ATLAS and CMS obtain very similar limits

decay mode is invisible) √s = 8 TeV, Ldt = 19.5 fb⁻¹ CMS CMS √s = 8 TeV, [Ldt = 19.5 fb⁻¹ $\widetilde{t_1 t_1}$ production, $\widetilde{t_1} \rightarrow t \widetilde{\chi}_1^0$ 10^{2} [GeV] m_{,2} [GeV] [GeV] **Observed limits** ---- Observed (±1σ 400 pp $\rightarrow \tilde{t} \tilde{t}^{*}, \tilde{t} \rightarrow t \tilde{\chi}^{0}$ $400 \vdash pp \rightarrow \tilde{t} \tilde{t}^*, \tilde{t} \rightarrow t \tilde{\chi}^0$ ATLAS Preliminary Expected limit (±1 σ_{exp}) - Expected (±1o) BF($\tilde{t} \rightarrow t \tilde{\chi}^0$) = 1.0 350 **BDT** analysis **BDT** analysis Expected limit (HCP12) 350 unpolarized top $BF(\tilde{t} \rightarrow t\tilde{\chi}^{0}) = 0.9$ 1-lepton + jets + E____ 10 350 unpolarized top چر E All limits at 95% CL $BF(\tilde{t} \rightarrow t \bar{\chi}^0) = 0.8$ ° 300 E 300 L dt = 20.7 fb⁻¹, vs=8 TeV $BF(\tilde{t} \rightarrow t \tilde{\chi}^0) = 0.7$ 300 F $BF(\tilde{t} \rightarrow t \tilde{\chi}^{0}) = 0.6$ 250 $BF(\tilde{t} \rightarrow t\tilde{\chi}^{0}) = 0.5$ 250 250 200 200 F 200 F 10⁻¹ 150 150 150F 100 100 F 100 10-2 50 50 10-3 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 700 800 100 200 300 400 500 600 m_ŗ [GeV] m_? [GeV] m₂ [GeV]

Cover a wide range of the region allowed by naturalness (SUGRA-like)

Stop (5)

□ General limit on $\tilde{t_1} \rightarrow t/Wb/c + \tilde{\chi_1}^0$

Stop (6)

1308.1586. ATLAS-CONF-2013-037

\Box Can reuse the analysis 1I + 4j + \geq 1b-jet

- Similar signal regions but with lower cuts and wo miji requirement
- Results interpretation depends on (\tilde{t}_1) , m(C1) and m(N1)
 - ✓ Need an hypothesis on m(N1) or m(C1).

m(C1) fixed

Access the models with enough energy for lepton, DM(C1-N1)>50 GeV

Stop (7)

$\Box \text{ Limit on } \tilde{t}_1 \rightarrow b \, \tilde{\chi}_1^{+/-} \rightarrow W^{(*)} \, \tilde{\chi}_1^{0}$

- Compressed C1-N1 case covered by 0I + 2b-jets + MET [Direct shottom analysis]
- Compressed \tilde{t}_1 -C1 case covered by a 2I (+jets) + MET analysis

Stop (8)

□ Lot of progress in one year

ATLAS-CONF-2013-025, CMS-PAS-SUS-13-002

□ A word on GMSB

- If N1 is NLSP and Higgsino-like it will decay via Z, H
- Final state: ttZZ/HH or bWZZ/bWHH

Limit a bit weaker: m(stop)> 500 GeV

Summary on 3rd generation squark

Change paradigm with LHC results

- Plan vanilla scenarios for 'natural' stop and sbottom almost all excluded
 - ✓ Open a second SUSY crisis after no Higgs found at LEP2
 - ✓ Generate lots of new ideas to evade these constraints
- Clearly the situation can be more complex and signal may still hide (See Lecture IIc, III)

Is the naturalness guide not applicable to Higgs ? Slightly fine-tuned SUSY at the corner ?

Gluino, 1/2nd generation squarks

Gluino, 1/2nd generation squarks (1)

N (Signal Regions)

Massive LSP = $\tilde{\chi}_1^0$ 48 (ATLAS)

- Squark/gluino cascade : 0 lepton + 1-10 jets + MET (or $MET/(H_T)$)
- Squark/gluino cascade + leptonic gaugino/slepton decay : 1 soft-hard lepton (e μ) + jets +MET

2leptons (e μ) same sign + jets +MET

Squark/gluino cascade + tops (bottoms) : 0-1 lepton + 3b + jets + MET

Olepton + 7-8-9 *jets* (*inc.* 1-2*b*) + *jets* + *MET*

\Box ~Massless LSP = \tilde{G} 12 (ATLAS)

Squark/gluino cascade in GMSB/GGM : 2 opp. Sign leptons + jets +MET (Z or non Z)

(1)2taus + jets +MET $\gamma + H \rightarrow bb + jets + MET$ $\gamma\gamma + jets + MET$

Gluino, 1/2nd generation squarks (2)

□ 'Standard' 0lepton + jets + MET searches : Most inclusive !

- <u>Olepton</u>: highest branching ratios generally in $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ and $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$
- Design 10 (inclusive) signal regions to cover most of the phase space

		Channel								
	Requirement	A (2-jets)	H	B (3-jets)		-jets)	D (5-jets) E		E (6-jets)	
		L M	M	Т	M	Т	-	L	М	Т
Trigger ₋ {	$E_{\rm T}^{\rm miss}[{\rm GeV}] >$				160)				
Č	$p_{\mathrm{T}}(j_1) [\mathrm{GeV}] >$		130							
	$p_{\mathrm{T}}(j_2) [\mathrm{GeV}] >$	60								
	$p_{\mathrm{T}}(j_3) [\mathrm{GeV}] >$	_		60		0	60	60		
	$p_{\mathrm{T}}(j_4) [\mathrm{GeV}] >$	-		_	60		60	60		
	$p_{\mathrm{T}}(j_5) [\mathrm{GeV}] >$	_		-		-	60 60			
	$p_{\mathrm{T}}(j_6) [\mathrm{GeV}] > -$			-		-	- 60		60	
	$\Delta \phi(\text{jet}_i, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	$0.4 \ (i = \{1, 2, (3 \text{ if } p_{\mathrm{T}}(j_3) > 40 \text{ GeV})\})$			$0.4 \ (i = \{1, 2, 3\}), \ 0.2 \ (p_{\rm T} > 40 \ {\rm GeV \ jets})$)		
rejection	$E_{\rm T}^{\rm miss}/m_{\rm eff}(Nj) >$	0.2 – ^a	0.3	0.4	0.25	0.25	0.2	0.15	0.2	0.25
M _{Eff}	$m_{\rm eff}({\rm incl.}) [{\rm GeV}] > 0$	1000 1600	1800	2200	(1200)	2200	1600	1000	1200	1500

Tight (t) and Medium/Loose (I, m) signal regions

ATLAS-CONF-2013-047

Gluino, 1/2nd generation squarks (3)

Energy frontier search with the 3 tighest signal regions

• <u>Olepton</u>: highest branching ratios generally in $\tilde{q} \rightarrow q \tilde{\chi}_1^0$ and $\tilde{g} \rightarrow q q \tilde{\chi}_1^0$

ATLAS-CONF-2013-047

Gluino, 1/2nd generation squarks (4)

\Box Interpretations for high M_{SUSY}, large Δ M/M_{SUSY}

- Use tight signal regions == Energy frontier limit
- For each point take the signal region that gives the best expected limit

Gluino, 1/2nd generation squarks (5)

ATLAS-CONF-2013-047

\Box Low $\Delta M/M_{SUSY}$ ('compressed spectra')

 $M_{Eff}=MET+H_{T}\sim1.8(M_{SUSY}^{2}-M_{LSP}^{2})/M_{SUSY}$

- Use loose/medium signal regions for compressed regions (m_{SUSY} ≈ m_{LSP})
 - ✓ In this region, jets from gluinos/squarks very light, i.e relax M_{Eff} cuts.
- Sensitive to Initial State Radiation (ISR) jets boosted by heavy particle production

Significantly less stronger limits M(LSP)<300/500 GeV

Gluino, 1/2nd generation squarks (6)

Other discriminating variables can be used

Comparable limits

Gluino, 1/2nd generation squarks (7)

ATLAS-CONF-2013-062, ATLAS-CONF-2013-007

\Box Low Δ M/M_{SUSY} ('compressed spectra') – Part II

- Develop dedicated analysis using ISR jet : "Monojet" (see later)
- Will also analyse delayed trigger with lower threshold
- Relax kinematic constraints on jets / M_{Eff} by asking <u>1soft lepton</u> or <u>2 same-sign leptons</u>

Gluino, 1/2nd generation squarks (8)

□ Assume now LSP is the gravitino (GMSB)

- Next-to-Lighest LSP (NLSP) determines the event final states
- Enhance multi-leptonic / photonic signature (0/1/2 leptons +jets +MET analyses also strong)

JHEP 02 (2012) 115

NLSP type	Relevant final states $(+MET)$
bino	$\gamma\gamma, \gamma+\text{jets}$
wino	$\gamma \ell, \gamma \gamma, \gamma + \text{jets}, \ell + \text{jets}, \text{jets}$
Z-rich higgsino	$Z(\ell^+\ell^-)$ +jets, $Z(\ell^+\ell^-)Z(\ell'^+\ell'^-)$, SS dileptons, jets
h-rich higgsino	<i>b</i> -jets, SS dileptons, jets
chargino	SS dileptons, OS dileptons, $\ell+{\rm jets},{\rm jets}$
slepton	multileptons, SS dileptons, OS dileptons, $\ell+{\rm jets},{\rm jets}$
squark/gluino	jets
stop	SS dileptons, OS dileptons, b-jets, ℓ +jets, ℓ + b-jets, $t\bar{t}$, jets
sbottom	<i>b</i> -jets, jets

Next slides Discussed Before See Natural searches later

----- Watch out the m(gluino)=1 TeV line

Have covered pretty much all signatures for gluino originated cascade !

Gluino, 1/2nd generation squarks (9)

1209.0753, ATLAS-CONF-2012-144, ATLAS-CONF-2012-152, 1211.1167

\Box NLSP = $\tilde{\chi}_1^0$

- Add MET to all signature in brackets
- All results still with 5 fb⁻¹ of data

χ₁⁰-Higgsino like (Z+jets, H→bb+jets)

GGM: higgsino-like $\tilde{\gamma}^0$, tan(β) = 1.5, M = M_{o} = 1 TeV, m(\tilde{q}) = 1.5 TeV

NLSP Mass (GeV)

Expect to constraint gluino above 1 TeV with 20 fb⁻¹ (Work in Progress)

Gluino, 1/2nd generation squarks (10)

ATLAS-2013-026, 1208.4688

□ NLSP = slepton

Can enhance the number of taus if stau NLSP* and other leptons if selectron/smuon NLSP

Gluino \rightarrow 3rd generation squarks (1)

Gluino mediated stop and sbottom (natural/inclusive)

P. Pralavorio

3

■ ttbar leptonic = 2 opp. Charged lepton → Ask for 3 leptons or 2 same sign lepton [see before]

• ttbar hadronic = 6 jets + no MET \rightarrow Ask for <u>Olepton + 7-10 jets + MET/ $\sqrt{H_T}$ </u>

• ttbar = $2b \rightarrow Ask$ for 3b [see before]

\Box top killer analyses for $\tilde{g}\tilde{g} \rightarrow tttt\chi_{1}^{0}\chi_{1}^{0} \rightarrow 4b+4W+MET$

Gluino \rightarrow 3rd generation squarks (2)

 $p \xrightarrow{\tilde{g}} t \xrightarrow{t} t \xrightarrow{b} W \xrightarrow{W} W \xrightarrow{W} W \xrightarrow{\tilde{g}} V \xrightarrow{\tilde{$

ATLAS-CONF-2013-061, 1308,1841, ATLAS-CONF-201

33

Gluino→3rd generation squarks (3)

ATLAS-CONF-2013-061, 1308.1841, ATLAS-CONF-2013-007

□ top killer analyses for $\tilde{g}\tilde{g}$ →tttt $\tilde{\chi_1}^0\tilde{\chi_1}^0$ → 4b+4W+MET

- ttbar = 2b → Ask for 3 b [Strongest]
- ttbar leptonic = 2 opp. Charged lepton → Ask for 3 leptons or 2 same sign lepton [Compressed]
- ttbar hadronic = 6 jets + no MET → Ask for 0lepton + 7-10 jets [Not competitive here]

Very strong limit on this natural signature m(g)<1400 GeV

Gluino→3rd generation squarks (4)

□ top killer analyses for $\tilde{g}\tilde{g}$ →tttt $\tilde{\chi_1}^0\tilde{\chi_1}^0$ → 4b+4W+MET

■ Razor variable as discriminant in Olepton + ≥2 b-jet analysis

Requirements					
Box	lepton	b-tag	kinematic	jet	
2b-Jet	none	\geq 2 b-tag	$(M_R > 400 \text{ GeV and } R^2 > 0.25) \text{ and}$ $(M_R > 550 \text{ GeV or } R^2 > 0.3)$	2 or 3 jets	

Similar limits obtained whatever the discriminating variables

CMS-PAS-SUS-13-004

Very strong limit on this natural signature m(g)<1300 GeV

Summary on gluino, $\tilde{q}_{1,2}$

SUGRA-like

Inclusive-like

GMSB-like : m(ĝ)> 1TeV

T

Relevant final states (+MET)

 $\gamma\gamma$, γ +jets

wino $\gamma\ell, \gamma\gamma, \gamma+jets, \ell+jets, jets$ ch higgsino $Z(\ell^+\ell^-)+jets, Z(\ell^+\ell^-)Z(\ell^+\ell^-), SS dileptons, jets$ ch higgsinob-jets, SS dileptons, jetschargmoSS dileptons, OS dileptons, $\ell+jets, jets$ sleptonmultileptons, SS dileptons, OS dileptons, $\ell+jets, jets$ skeptonSS dileptons, OS dileptons, $\ell+jets, jets$ stopSS dileptons, OS dileptons, b-jets, $\ell+jets, \ell+b$ -jets, $t\bar{t}, jets$ sbottomb-jets, jets

Discussed Before See Natural searches later

Limits on gluino are quite strong.

Limit on 1rst/2nd squark generation weaker (or many assumptions)

Conclusions

Plan vanilla MSSM is in danger ! **Other Escape routes** M_{SUSY} $\Delta \mathbf{M}$ ncl. searches M(gI)>1 TeV ∆m [(missing) or not if RPV 3. Low Δm , tiny RPV, weak coupling to G Long Lived or meta-stable sparticles **Higgs Mass** constraint 4. 'Sizeable' RPV SM (valid up to Me Multileptons, No Z, jet resonances, LFV 5. MSSM Extensions? Scalar Gluon

Still viable if :

- -- a new electroweak singlet is added(relax Higgs constraints) --- not fully explored yet
- -- N=2, hard at low luminosity ($c_1^+c_1^- \rightarrow WW$), ...

□ An extensive experimental research program

Large spectrum of possible stop decays. Effort so far concentrated on simplified models with 100% BRs to chosen final state. Studies of handedness dependence performed.

Dedicated effort pioneered in Summer 2012

Signature-based analyses:

- 0 lepton + 2 b-jets + MET
- 0 lepton + 6 (2*b*) jets + MET
- 1 lepton + 4 (1b) jets + MET
- 2 leptons (+ jets) + MET
- GMSB / \tilde{t}_2 search with add. Z

Stop (5)

ATLAS-CONF-2013-068

Analysis with Charm and ISR

- A small corner of the phase space $(m_c + m_{N1} < m_t < m_b + m_w + m_{N1})$
- Trigger on ISR + Two complementary approaches

300

350

m₇ [GeV]

300

350

m₇ [GeV]

□ Possible to cover unaccessible regions: stop2 \rightarrow stop1+Z

Stop (10)

□ Current summary at 8 TeV (Still in progress)

Multivariate (MVA) for SUSY ?

• Usefulness considerations ...

- MVA less useful in case of strongly varying signal predictions and inclusive search
- MVA classification useful in presence of several not too strongly correlated variables
- Useful in case of bad signal to background ratio in signal region
- Less useful in case of one or two very strong variables with little correlation
- Maybe: analyses that strongly benefit from more statistics are good use cases for MVA classification, while analyses depending mostly on highest CM energy are less so
- MVA training requires supervision by a signal model: useful if good generic or specific signal model exists

• Looking at the current SUSY analyses ...

- Probably not much needed for: inclusive 0/1-lepton, multijet, monojet, photon/tau + jets + MET searches → driven by highest effective mass tails with good S/B ratio
- However, compressed scenarios in these analyses might be an MVA use case
- Potentially useful for direct stop / gaugino / slepton searches
- Probably not so useful for RPV scenarios (?)

Andreas Hoecker - SUSY and MVA ?