SUSY or not, what is the evidence? Status and perspectives of collider searches – Part IIC

P. Pralavorio (pralavor@cppm.in2p3.fr)

CPPM/IN2P3–Univ. de la Méditerranée (Marseille, FRANCE) Lectures at Niels Bohr Institute

"This could be the discovery of the century. Depending, of course, on how far down it goes"

Part II (3 lectures + 2 exercises) Direct SUSY searches at LHC

W 30-Oct	Th 31-Oct	Fr 01-Nov
	Lecture IIA Exercise 1	Lecture IIC Exercise 2
Lecture IA Lecture IB	Exercise 1 Lecture IIB	Exercise 2 Lecture III

Lecture Part II

Lecture Part IIc

Theory Unknowns:

- 1- SUSY Breaking (SUGRA, GMSB, AMSB)
 - 2- RPC (Lecture IIa,b) vs RPV (here)
 - 3- Open or compressed spectra

Long-Lived Particles

□ Apart from LSP other particle could be long-lived :

- 1. Very weak coupling with \tilde{G} =LSP [GMSB] :
- 2. Lifetime proportional to λ^{-2} , $\lambda^{\prime -2}$, $\lambda^{\prime \prime -2}$ [R-Parity violation] \rightarrow Displaced vertex if λ , λ^{\prime} , $\lambda^{\prime \prime} \sim 0(10^{-5})$
- 3. Low mass difference, e.g $\Delta M(\tilde{\chi}_1^+ \tilde{\chi}_1^0) \sim 100 \text{ MeV}$ [AMSB] \rightarrow Low **p** emitted, kinked track
- 4. Stable Massive Particle (mix of 1 and 3)

- Non pointing γ or Z
 - - \rightarrow Stable R-hadron (\tilde{g} or \tilde{q}), sleptons

A huge effort to cover all possible signatures

Metastable Particles (1)

1207.0627, 1212.1838, 1304.6310

Non pointing photon could have several signatures

• For all studies assume strong production, GMSB and NLSP bino-like = $\chi_1^0 \rightarrow \gamma G$

Late Timing arrival in the EM calorimeter (t_{γ}) → Need excellent calorimeter timing reso.

No pointing to the primary vertex

- 1. Stand-alone pointing capabilities of the calorimeter $\rightarrow \tau(\chi_1^{+/-}) < 50$ ns
- 2.Impact parameter of the converted photons $\rightarrow \tau(\chi_1^{+/-}) < 1$ ns

Metastable Particles (1)

□ Non pointing photon : some details about ATLAS study

- 2 photons (1 tight isolated + 1loose) with $E_T(\gamma) > 50$ GeV and MET > 75 GeV
- Timing arrival in the EM calorimeter (t_y) and stand-alone pointing capabilities (z)

Metastable Particles (1)

1207.0627, 1212.1838, 1304.6310

Non pointing photon : Summary

Merging all analyses in one plot

Complementary approaches

Metastable Particles (2)

High mass displaced vertex with 4 tracks and a muon

- Assume RPV with $\lambda'_{2ij} \neq 0$
- Design a background-free analysis in M_{vertex} N_{track} plane
- Build up a dedicated tracking to increase signal efficiency

1210.7451

Metastable Particles (2)

High mass displaced vertex with 4 tracks and a muon

- Assume RPV with $\lambda'_{2ij} \neq 0$
- Design a background-free analysis in M_{vertex} N_{track} plane
- Build up a dedicated tracking to increase signal efficiency

1210.7451

Metastable Particles (3)

□ High mass displaced vertex with 2 jets

- Originally developped for $H \rightarrow \chi \chi \rightarrow 4j$ with displaced χ
- Use both tracker and calorimeter

Metastable Particles (4)

Direct production of a metastable $\chi_1^{\pm *}$

- Motivated by AMSB, but model independent results
 - ✓ χ_1^{\pm} → soft π^+ + χ_1^0 : Disapearing track in the TRT
- Remove background : N_{TRT} + highest p_T isolated track

* σ (C1N1,C1C1) ~ 15/ 1pb for m=100/200 GeV

Metastable Particles (4)

\Box Direct production of a metastable χ_1^{\pm}

A good candidate for minimum unnatural SUSY model

Detector-Stable Particles (1)

hep-ph/0611040

harge flip

□ 3 main possibilities for colored particles :

- 1. Gluino is the LSP [SUSY GUT extension]
- 2. Very weak coupling of NLSP= $\tilde{\mathbf{g}}$ with $\tilde{\mathbf{G}}$ =LSP [SUSY GUT]
- 3. Squarks decoupled or $\Delta m(\tilde{g}/\tilde{q}-\chi_1^0) \sim O(100)$ MeV [e.g. Split SUSY*]
- ➔ If lifetime > hadronization time scale ~O(10⁻²⁴)s then gluino / squark (especially t₁ and b_L) R-hadrons or gluinoballs can form

• Can change sign

*Decay to LSP is suppressed because of very high mass virtual squarks

Detector-Stable Particles (2)

hep-ph/0611040

4

□ 3 main possibilities for non-colored particles :

- 1. Slepton is the LSP
- 2. Very weak coupling of NLSP= \tilde{I} with \tilde{G} =LSP
- 3. Low mass difference $\Delta M(\tilde{I} \tilde{\chi}_1^0) \sim 100 \text{ MeV}$
- \rightarrow Long-lived sleptons (mainly τ_1) manifest as a heavy muon, charged and penetrating
 - **Detector Stable**
 - Highly ionising particle
 - Slow moving (non-relativistic)

Later called LLP (also find SMP, CHAMP, ...)

Detector-Stable Particles (3)

1211.1597, ATLAS-2013-058

\Box Striking signature \rightarrow Reconstruct mass **1.**Start from one (or two) high pT isolated track \rightarrow p **2**.Measure $\beta\gamma$ (invert Bethe-Bloch) from **Si-track** clusters harge flip cm2 ATLAS 10⁵ µ⁺ on Cu Preliminar ō, 8 (MeV 104 5100 Bethe Radiative dE/dx Anderson-10³ stopped Zieale 10^{2} Radiative Radiative / 105585 Minimum effects nization reach 1% Nuclear 10 OSS85 Without \delta -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 g p (GeV) 0.001 0.01 0.1 1 10 100 1000 10⁴ 10⁵ 106 **3**. Measure β (calo or calo+Muon Spectrometer) Calo Muon Tracker 5 200 ×10³ 0 180 **AT** $\times 10^3$ 0.01 ATLAS Preliminary Muons / 0.01 ATLAS Preliminary ATLAS Preliminary 50 Ldt = 15.9 fb⁻¹ Calorimeter + MS /suony 140 L dt = 4.7 fb" L dt = 4.7 fb 10 • Data, 1s = 8 TeV Signal Data 2011 (\s = 7 TeV) Data 2011 (\s = 7 TeV) 120 8 -0.998 - Mean = 0.983 Mean = 1.000 σ = 0.035 σ₈ = 0.025 $\sigma = 0.090$ 100 MC, $Z \rightarrow \mu\mu$ 80 MC, $Z \rightarrow \mu\mu$ MC, $Z \rightarrow uu$ Mean = 0.986 σ = 0.092 Mean = 0.996 $\overline{\beta} = 0.997$ 60 $\sigma = 0.033$ σ. = 0.025 40 σ_в~3.5% (201 σ₈~2.5% (2012) 20 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1.2 1.2 1.4

Add the 2 or 3 information together and compute M =p/ $\beta\gamma$

Detector-Stable Particles (4)

1211.1597, ATLAS-2013-058

Event selection

					N
Requirements	R-hadrons (ID-only)	Stable R-hadrons (ID+calo-only)	Stable R-hadrons (Full Detector)	Stable Sleptons (Full detector, 2 cand.)	
Particle Type	Metastable or Charged →Neutral	Charged→Neutral	Charged	Charged	
Trigger	MET turn-on		Slow β		
Track quality	d0, z0, n (ID-hits)				
Track kinematics	pT>50, p>100 GeV			pT>50 GeV	
β Consistency between detectors	No Yes				
$\beta < [m(g, q, I) dependent]$	No	0.8-0.9		0.95	Ontimicod
βγ> [m(g, q, l) dependent]	MIP	1.5-2.0		No	Optimised
M _β range (TeV)	No	0.2-1.1 ; 3.0		0.1-0.3	
M _{βγ} range (TeV)		0.2-1.1 ; 3.0		No	
Signal Efficiency (%)	6 [m(g)=900 GeV]	7 [m(g)=900 GeV]	11 [m(g)=900 GeV]	20	
Systematics (%)	6 (S), 13 (B)	12 (S), 15 (B)	12 (S), 15 (B)	6 (S), 8-21 (B)	

(̃g+qq, g+qqq, ̃b/̃t + q, qq) + ISR

Heavy Muon

- **Background type**: high pT muons (tracks) with mis-measured β (dE/dx)
- **Background estimate**: generate mass spectrum from S/B<<1 \rightarrow p-templates + β ($\beta\gamma$)-PDF templates
- Signal: Different interaction models, gluino ball fractions (10%, 50 %, 100%).

Detector-Stable Particles (5)

Mass distributions

- Cut and count in mass ranges.
- Background free analyses

1211.1597. ATLAS-2013-058

Detector-Stable Particles (6)

1211.1597, ATLAS-2013-058

□ Model independent limits

Just rely on the MSSM production cross-section

Generally stronger limits than prompt SUSY searches

Detector-Stable Particles (7)

Comparison with CMS results

- Not rely on calorimetry information: Tracker, Tracker+Muon and Muon-only
 - Weakly affect the limits but exclude some scenarios for R-hadrons
- Have analysed the full statistics → stronger limits

1305.0491

Detector-Stable Particles (8)

Comparison with prompt searches

→ Intermediate region (metastable slepton, i.e. displaced vertex w 1lepton) not covered

Detector-Stable Particles (9)

ATLAS-CONF-2013-057

R-hadrons can also stop in the calo and decay later

- In Split SUSY (unnatural model), the stopped gluino only particle reachable at LHC
- High energetic jets in absence of collisions
- Background = calorimeter noise, cosmics and beam halo not SM !

 $M_{\widetilde{q}}$ < 800 GeV (M_{x0}=100 GeV) excluded for 1 ms < t < 300 hours

Conclusion on Long-Lived Particles

- Very well motived and could explain the absence of signal in standard SUSY searches
- Huge number of possibilites (not yet all covered)
- Striking signatures of BSM not present in the SM
 - \rightarrow generally detector-oriented, background-free
 - \rightarrow Limits on SUSY particles generally stronger

- Add 48 new Yukawa couplings and 96 complex parameters
- Proton decay only forbids simultaneous violation of lepton and baryon number
 - ✓ ... but not one **or** the other
- Allow the LSP to decay
- Can change other sparticle decay
- → Considerable change in the final states

RPV (1)

R-parity violating search at LHC

 $W = W_{\text{MSSM}} + \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k}_{ijk} + \kappa_i L_i H_u + \underbrace{\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k}_{ijk}$

Lepton Number Violation (LFV)

Baryon Number Violation (BNV)

		Signature From H.	Dreiner Model
Multilepton production (including taus)		4 charged leptons: $e^+e^+\mu^-\mu^-$	χ_1^0 –LSP, $LL\bar{E}$, $\tilde{ au}$ –LSP, $LL\bar{E}$
	2)	2 leptons, 2 taus: $e^+e^+ au^- au^-$	χ_1^0 -LSP, $LL\bar{E}$, $\tilde{\tau}$ -LSP, $LQ\bar{D}$
Resonances (2iets	3)	6 jets or 2 w/ substructure	χ_1^0 –LSP, $ar{U}ar{D}ar{D}$
$2x2$ jets, $2x3$ jets, $e\mu$,	4)	like-sign dileptons + jets	χ_1^0 –LSP, $LQ\bar{D}$
eτ, mτ)	5)	dilepton resonance	$LL\bar{E}\otimes LQ\bar{D}$
	6)	mono lepton	$LLar{E}\otimes LQar{D}$
Note: Absence of Z and Importance of taus	7)	dijet resonance	pure $LQar{D}$
	8)	like sign ditau's $ au^- au^-$ + 6jets	$ ilde{ au}-$ LSP, $LQar{D}$

→ Generally: lower background (no LFV nor BNV in SM) and MET than RPC

RPV (2)

Lepton flavor violation in the production / decay

• λ'_{311} , $\lambda_{i32} \neq 0$ and pp $\rightarrow \widetilde{\nu}_{\tau} \rightarrow e\mu$, $e\tau$, $\mu\tau$ resonance $W = W_{MSSM} + \lambda'_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \kappa_iL_iH_u + \lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$

 $\Delta \phi$ (e, $\mu) {\sim} \pi\,$, MET=132 GeV, no Jet !

1212.1272

1 AN

RPV (3)

□ Limits on RPV couplings

• λ'_{311} , $\lambda_{i32} \neq 0$ and pp $\rightarrow \widetilde{\nu}_{\tau} \rightarrow e\mu$, $e\tau$, $\mu\tau$ resonance $W = W_{MSSM} + \lambda_{ijk}L_iL_j\bar{E}_k + \lambda'_{ijk}L_iQ_j\bar{D}_k + \kappa_iL_iH_u + \lambda''_{ijk}\bar{U}_i\bar{D}_j\bar{D}_k$

1212.1272

T

RPV (4)

ATLAS-CONF-2013-036, CMS-PAS-SUS-13-010

Lepton Flavor Violation (no Z)

- χ_1^0 LSP, $\lambda_{121} \neq 0$ implies $\chi_1^0 \rightarrow e \mu v$
- pp → χ˜₁ + χ˜₁ → W χ˜₁ ⁰ W χ˜₁ ⁰ → 4-5-6l (+ jets)+MET
 pp → g̃g̃ → qq' χ˜₁ ⁰qq' χ˜₁ ⁰ → =4l +jets +MET

Very strong limits for direct chargino production (reminder: no limit in RPC)

RPV (5)

ATLAS-CONF-2013-036, CMS-PAS-SUS-13-010

1306.6643

□ Stop RPV (LFV)

 $W = W_{\rm MSSM} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_u + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

- χ_1^0 LSP, consider two possible combinations-
- pp $\rightarrow \widetilde{t}\widetilde{t} \rightarrow t\chi_1^0 t\chi_1^0 \rightarrow >4I$ (+ jets)+MET
- Assume χ_1^0 bino-like

Very strong limits for direct stop, w or wo taus (independent of LSP mass)

1306.6643

□ Stop RPV (LFV)

 $W = W_{\rm MSSM} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} \nu_i Q_j \bar{D}_k + \kappa_i L_i H_u + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$

- χ₁⁰ LSP, consider several decay modes-
- Final states: 2µ + 2t + 2b
- Assume χ_1^0 bino-like

• re	gion label	kinematic region	stop decay mode(s)
	А	$m_t < m_{\widetilde{t}} < 2m_t, m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t u b ar{b}$
	В	$2m_t < m_{\widetilde{t}} < m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t \mu t \overline{b} + t \nu b \overline{b}$
	С	$m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_W + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow \ell u b \widetilde{\chi}_1^0 + j j b \widetilde{\chi}_1^0$
	D	$m_W + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} o Wb \widetilde{\chi}_1^0$
	Е	$m_t + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}}$	$\widetilde{t} ightarrow t \widetilde{\chi}_1^0$

Weaker limits dependent of LSP mass

RPV (8)

ATLAS-CONF-2013-091, CMS-PAS-EXO-12-049

□ 2x3 (2x5) jets resonance

- $W = W_{\rm MSSM} + \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_u + \lambda''_{ijk} \bar{V}_i \bar{D}_j \bar{D}_k$
- Motivated by $g \rightarrow qqq$ and $g \rightarrow qq\chi_1^0 \rightarrow qqqqq$
- Multi-jets background data driven and differentiates 0, 1, 2 btag …
- 2 different strategies pursued by CMS and ATLAS

Reconstruct 6jet invariant mass CMS Simulation Preliminary CMS Simulation Preliminary Events / 20 GeV 10 Triplet Invariant Mass [GeV] > 4000 F 10 O 3500 **RPV Gluino 400 GeV** 10 3000 Gluinos Matched 10 to Monte Carlo Truth E 2500 103 Gaussian Signal 2000 10^{2} Wrongly Combined Triplets 1500 10 400 **RPV** Gluino 1000-400 GeV 200 500 Ratio To Data 1000 600 800 1200 200 400 1400 1000 200 400 600 1200 800 **Triplet Invariant Mass [GeV]** Triplet Scalar p_ [GeV]

Resolve 6-10 jet evts with a lower p_T cut

RPV (9)

□ Results for 2x3 jets resonance

Show for light flavor (top) and heavy flavor (bottom)

→ Exclude Gluino masses < 1 TeV. ATLAS above CMS

Conclusion on RPV

 $W = W_{\text{MSSM}} + \underbrace{\lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k}_{\text{Lepton Number Violation (LFV)}} + \kappa_i L_i H_u + \underbrace{\lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k}_{\text{Baryon Number Violation (BNV)}}$

- Several combination of lambda tested
 - ✓ Still a large spectrum not covered (generally assume χ_1^0 LSP and decay)
- Like for Long-lived particles, generally stronger limits than for Standard SUSY (RPC)

Beyond MSSM

Loose simplicity, can generally evade part of the LHC limits - but not for long

Beyond MSSM (1)

□ Massive color scalars : 2x2 jets final state

- sgluon (\rightarrow gg) pair produced: 2 resonances M₁, M₂ reconstructed with ≥4 jets pT>80 GeV
- Reduce combinatorics by minimizing $|\Delta R_1 1| + |\Delta R_2 1|$

➔ Exclude scalar gluons for masses below 300 GeV

Beyond MSSM (2)

□ Stealth SUSY

- There is an extra light, approximately supersymmetric multiplet
 - ✓ All sparticles connect to this R=-1 stealth particle (\tilde{S})
 - ✓ Which then decay back to S its close-by superpartner

4.96 fb⁻¹, ys = 7 TeV

S_ Sideband

Data, ≥4-jets

Expected Background

Syst. Uncertainty M_z=900GeV

- ✓ Reduce MET carried by gravitino but not MEff≈S_T
- CMS consider S decay via photon

CMS

Events / (50 GeV)

50

40

30

20

10

600

hep-th/0405159, hep-ph/0406088

\Box A natural cosmo. constant (CC, Λ) implies new physics at 10⁻¹² GeV

But present particle physics computations are valid at much higher energy

May be this threshold does not influence particle physics?

hep-ph/9801253

\Box A natural cosmo. constant (CC, Λ) implies new physics at 10⁻¹² GeV

But present particle physics computations are valid at much higher energy

Construct SUSY models forgetting hierarchy problem

• Retains good SUSY features: unification of forces at GUT scale and dark matter candidate

- **Remove unpleasant aspects**: m_H constraint, excessive CP, protection against proton decay
- Un-natural mass spectrum → could still have a vestige at LHC (no guarantee)

□ Construct models forgetting hierarchy problem

Un-natural mass spectrum → could still have a vestige at LHC (no guarantee)

→ Displaced decays from gluino (*Rhadrons*), Wino (*disappearing tracks*), Higgsino (*sub-cm charged tracks*)

A final possibility !

□ In fact we may have already discover SUSY !!!

- The Higgs doublet is the superpartner of the neutrino
- Not (yet) excluded !
- Phenomelogical consequences: Gauginos Dirac-type, Lepton-Gaugino mixing, no LR mixing in the squark sector, no Ordinary R-parity ($q \rightarrow q+I$), no LSP

Conclusions (1)

□ Summary on direct searches at LHC: an impressive list !

- Digest of 150 public analyses
- Getting close to the 1 TeV bound and fine tuning ~ 0.1-1 %

SUSY at colliders (IIC)

Conclusions (2)

"Theories are like fishing : only he who casts can catch" Novalis (1772-1801)

General weak points

- 1- Compressed scenario → ISR/Monojet-like analysis, delayed trigger
- 2- Intricate SUSY decay chains \rightarrow pMSSM systematic scan
- 3- A new electroweak singlet is added (relax Higgs constraints) →not fully explored yet
- 4- Hard at low luminosity ($\chi_1^+\chi_1^- \rightarrow WW$), ...

Part IIc: R-Parity Violated, Long-Lived Particles, beyond MSSM

- 1. Low Δm , tiny RPV, weak coupling to \tilde{G} Long Lived or meta-stable sparticles
- 2. 'Sizeable' RPV Multileptons, No Z, jet resonances, LFV
- 3. MSSM Extensions? Scalar Gluor Still Many possibilities not covered
- 4. Un-natural SUSY ?

→ SUSY Seriously cornered (Consequences for SUSY models discussed tomorrow)

LSP decay

Neutralino-LSP decay

• $\tilde{\chi}_1^0$ could decay via non-zero λ, λ' couplings: $LL\bar{E}(\lambda): \quad \tilde{\chi}_1^0 \to ll' + \nu$ $LQ\bar{D}(\lambda'): \quad \tilde{\chi}_1^0 \to \begin{pmatrix} e, \mu, \tau \\ \nu \end{pmatrix} + 2 \text{ jets}$

- The lifetime is proportional to $(\lambda)^{-2}$, $(\lambda')^{-2}$
 - Decay prompt for λ , $\lambda' \gtrsim 10^{-5}$.
 - ▶ If the RPV coupling is smaller than that (e.g. $\leq 10^{-7}$), <u>a decay vertex</u> with a significant distance from its production point can be seen.
- →Perform a search using a displaced vertex (DV) reconstruction technique.
 - The result presented today is based on 2010 data, non-zero λ ' with muon final states.
 - More to come using 2011 full dataset covering variety of signatures:
 - Final states including e/tau