Electroweak Baryogenesis after LHC8

Gláuber Carvalho Dorsch with S. Huber and J. M. No

University of Sussex

arXiv:1305.6610 JHEP **1310**, 029 (2013)

What NExT? Southampton – November 27, 2013

G. C. Dorsch

EWBG after LHC8

What NExT? 1 / 19

Observed BAU:

$$\frac{n_B}{s} \sim 10^{-10}.$$

G. C. Dorsch

▶ Observed BAU:

$$\frac{n_B}{s} \sim 10^{-10}.$$

▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - C/CP violation;

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - C/CP violation;
 - thermodynamical non-equilibrium.

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - C/CP violation;
 - thermodynamical non-equilibrium;

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - \checkmark chiral anomaly and non-trivial SU(2) topology;
 - C/CP violation;
 - thermodynamical non-equilibrium;

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - \checkmark chiral anomaly and non-trivial SU(2) topology;
 - C/CP violation;
 - ✓ CKM matrix;
 - thermodynamical non-equilibrium;

$$\frac{n_B}{s} \sim 10^{-10}.$$

- ▶ Assume BAU as initial condition of Universe? Inflation & sphaleron processes would wash out the initial asymmetry.
- ▶ Baryogenesis \Rightarrow Sakharov conditions:
 - B number violation;
 - \checkmark chiral anomaly and non-trivial SU(2) topology;
 - C/CP violation;
 - ✓ CKM matrix;
 - thermodynamical non-equilibrium;
 - \checkmark expansion of Universe;
 - $\checkmark \rm EW$ phase transition.

▶ B-number violating processes suppressed at T = 0...

Probability $\sim e^{-16\pi^2/g^2} \sim 10^{-162}$

▶ B-number violating processes suppressed at T = 0...

Probability $\sim e^{-16\pi^2/g^2} \sim 10^{-162}$

▶ ...but there is a threshold $T^* \leq T_c \sim$ (EW scale) above which the rate of B violation ≫ Universe's expansion.

• B-number violating processes suppressed at T = 0...

Probability
$$\sim e^{-16\pi^2/g^2} \sim 10^{-162}$$

- ▶ ...but there is a threshold $T^* \leq T_c \sim$ (EW scale) above which the rate of B violation ≫ Universe's expansion.
- If $T > T^*$ after EW phase transition, the generated asymmetry is washed out.

• B-number violating processes suppressed at T = 0...

Probability
$$\sim e^{-16\pi^2/g^2} \sim 10^{-162}$$

- ▶ ...but there is a threshold $T^* \leq T_c \sim$ (EW scale) above which the rate of B violation ≫ Universe's expansion.
- If $T > T^*$ after EW phase transition, the generated asymmetry is washed out.
- Successful baryogenesis requires a strong first order phase transition:

$$\frac{v_c}{T_c}\gtrsim 1$$

• EWPT in SM is strongly first order only if $m_h \lesssim m_W$.

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.
- Possibilities include...

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.
- Possibilities include...
 - Extra scalar singlet

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.
- Possibilities include...
 - Extra scalar singlet + extra CP violation;

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.
- Possibilities include...
 - Extra scalar singlet + extra CP violation;
 - ► MSSM, NMSSM;

- EWPT in SM is strongly first order only if $m_h \lesssim m_W$.
- ▶ CKM matrix alone does not supply sufficient CP violation. Even with a first order phase transition, BAU prediction would be 10 orders of magnitude below observed value.
- ► EWBG requires BSM physics at EW scale with moderately large couplings to SM sector and new sources of CPP !
- ▶ Testable scenario in present and near-future colliders.
- Possibilities include...
 - Extra scalar singlet + extra CP violation;
 - ► MSSM, NMSSM;
 - ▶ 2HDM.

EWBG in the MSSM

MSSM Higgs sector \Rightarrow two $SU(2)_L$ scalar doublets Φ_1 , Φ_2 :

$$\Phi_i = \left(\begin{array}{c} \varphi_i^+ \\ h_i + i\eta_i \end{array}\right).$$

$$\begin{split} V_{\rm tree}^{\rm MSSM} &= -\,\mu_1^2 \Phi_1^{\dagger} \Phi_1 - \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \frac{\mu^2}{2} \left(\Phi_1^{\dagger} \Phi_2 + H.c. \right) + \\ &+ \frac{g^2 + g'^2}{8} \left(\Phi_1^{\dagger} \Phi_1 - \Phi_2^{\dagger} \Phi_2 \right)^2 + \frac{g^2}{2} \left| \Phi_1^{\dagger} \Phi_2 \right|^2. \end{split}$$

EW minimum:
$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v \cos \beta \end{pmatrix}, \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v \sin \beta \end{pmatrix}.$$

Mass eigenstates: $\underbrace{G^0, G^{\pm}}_{\text{Goldstone bosons}} + \underbrace{h^0, H^0, A^0, H^{\pm}}_{\text{physical Higgs states}}.$

EWBG after LHC8

▶ New scalars increase strength of phase transition ⇒ light stop scenario (LSS): 80 GeV $\leq m_{\tilde{t}_R} \leq 120$ GeV. Many new sources of CP violation.

▶ New scalars increase strength of phase transition ⇒ light stop scenario (LSS): 80 GeV $\leq m_{\tilde{t}_R} \leq 120$ GeV. Many new sources of CP violation.

►
$$m_h = m_Z |\cos(2\beta)| + \text{R.C.} \leq 130 \text{ GeV.}$$

 $m_h \approx 125 \text{ GeV} + \text{LSS} \Rightarrow \text{heavy stop} \gg 1 \text{ TeV}$
(naturalness?)

▶ New scalars increase strength of phase transition ⇒ light stop scenario (LSS): 80 GeV $\leq m_{\tilde{t}_R} \leq 120$ GeV. Many new sources of CP violation.

- ► $m_h = m_Z |\cos(2\beta)| + \text{R.C.} \leq 130 \text{ GeV.}$ $m_h \approx 125 \text{ GeV} + \text{LSS} \Rightarrow \text{heavy stop} \gg 1 \text{ TeV}$ (naturalness?)
- ► This scenario allows for rather definite predictions on SM Higgs production and branching ratios, with severe tension with experimental data! [Curtin, Jaiswal, Meade, arXiv:1203.2932]

▶ New scalars increase strength of phase transition ⇒ light stop scenario (LSS): 80 GeV $\leq m_{\tilde{t}_R} \leq 120$ GeV. Many new sources of CP violation.

- ► $m_h = m_Z |\cos(2\beta)| + \text{R.C.} \leq 130 \text{ GeV.}$ $m_h \approx 125 \text{ GeV} + \text{LSS} \Rightarrow \text{heavy stop} \gg 1 \text{ TeV}$ (naturalness?)
- ► This scenario allows for rather definite predictions on SM Higgs production and branching ratios, with severe tension with experimental data! [Curtin, Jaiswal, Meade, arXiv:1203.2932]
- ▶ Could be alleviated if light neutralino has mass ≤ 60 GeV. [Carena, Nardini, Quiros, Wagner, arXiv:1207.6330]

- ► Two-Higgs-doublet models are the minimal SM extension able to account for BAU.
- ▶ Generalization of the MSSM Higgs sector.
- ► Extra heavy bosons (h⁰, H⁰, A⁰, H[±]) may strengthen the EW phase transition.
- ► Additional sources of CP (explicit and/or spontaneous).

- ► Two-Higgs-doublet models are the minimal SM extension able to account for BAU.
- ▶ Generalization of the MSSM Higgs sector.
- ► Extra heavy bosons (h⁰, H⁰, A⁰, H[±]) may strengthen the EW phase transition.
- ▶ Additional sources of \mathcal{CP} (explicit and/or spontaneous).
- Correct BAU can be obtained for simplified cases and for particular combinations of parameters. [Fromme, Huber, Seniuch, hep-ph/0605242]

- ► Two-Higgs-doublet models are the minimal SM extension able to account for BAU.
- ▶ Generalization of the MSSM Higgs sector.
- ► Extra heavy bosons (h⁰, H⁰, A⁰, H[±]) may strengthen the EW phase transition.
- ► Additional sources of *CP* (explicit and/or spontaneous).
- Correct BAU can be obtained for simplified cases and for particular combinations of parameters. [Fromme, Huber, Seniuch, hep-ph/0605242]
- But what happens in the general case?

▶ General fermionic couplings:

$$\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_L \left(\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2 \right) n_R + \dots$$

▶ General fermionic couplings:

$$\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_L \left(\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2\right) n_R + \dots$$

► Diagonalizing mass matrix $M_n = \Gamma_1 \langle \varphi_1^0 \rangle + \Gamma_2 \langle \varphi_2^0 \rangle$ does not diagonalize $\Gamma_{1,2}$ simultaneously, so

$$\mathcal{L}^{FCNC} = -\overline{d}_L \widetilde{\Gamma}_1 \varphi_1^0 d_R + \dots$$

induces tree-level FCNC.

▶ General fermionic couplings:

$$\mathcal{L}_{\text{Yukawa}} = -\overline{Q}_L \left(\Gamma_1 \Phi_1 + \Gamma_2 \Phi_2\right) n_R + \dots$$

► Diagonalizing mass matrix $M_n = \Gamma_1 \langle \varphi_1^0 \rangle + \Gamma_2 \langle \varphi_2^0 \rangle$ does not diagonalize $\Gamma_{1,2}$ simultaneously, so

$$\mathcal{L}^{FCNC} = -\overline{d}_L \widetilde{\Gamma}_1 \varphi_1^0 d_R + \dots$$

induces tree-level FCNC.

• Avoid this with \mathbb{Z}_2 symmetry: $\Phi_1 \to -\Phi_1, \ \Phi_2 \to \Phi_2$.

	u_R	d_R	e_R
Type I	+	+	+
Type II	+	-	-
Type X	+	+	-
Type Y	+	—	+

Only top-quark is significant for phase transition.

Then models differ only in phenomenological constraints on their parameter space. These come mainly from *B*-physics, so

Type I \sim Type X, Type II \sim Type Y.

EWBG after LHC8

▶ For simplicity, consider CP conserving case only.

$$\begin{split} V_{\rm tree}(\Phi_1, \Phi_2) &= -\mu_1^2 \Phi_1^{\dagger} \Phi_1 - \mu_2^2 \Phi_2^{\dagger} \Phi_2 - \frac{\mu^2}{2} \left(\Phi_1^{\dagger} \Phi_2 + H.c. \right) + \\ &+ \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 + \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \\ &+ \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + H.c. \right]. \end{split}$$

• EW minimum:
$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ v \cos \beta \end{pmatrix}, \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v \sin \beta \end{pmatrix}$$

Physical parameters:

•
$$v \approx 174$$
 GeV and $M \equiv \frac{\mu}{\sqrt{\sin(2\beta)}}$.

- Masses: $m_{h^0}, m_{H^0}, m_{A^0}, m_{H^{\pm}}.$
- β is the mixing angle between (G^+, H^+) and (G^0, A^0) .
- Likewise, α is the mixing angle between (h^0, H^0) . It is here defined such that $\alpha = \beta \iff h^0 = h_{SM}$.

$$V = V_{\text{tree}} + V_{CW} + V_{CT} + V_T.$$

Type II/Y: $m_{H^{\pm}} \ge 360$ GeV [Hermann et al., arXiv:1208.2788].

G. C. Dorsch

EWBG after LHC8

What NExT? 11 / 19

Results: $\tan\beta$

Preference for $\tan \beta \lesssim 3$ is excellent for baryogenesis, since $n_B \sim (\tan \beta)^{-2}$.

Results: Masses

 $m_{H^{\pm}}$ hardly influences the phase transition.

Results: Masses

 $m_{H^{\pm}}$ hardly influences the phase transition. Large pseudo-scalar masses, $m_{A^0} \gtrsim 400$ GeV, are favoured.

Results: Masses

 $m_{H^{\pm}}$ hardly influences the phase transition. Large pseudo-scalar masses, $m_{A^0} \gtrsim 400$ GeV, are favoured. Strong PTs also prefer hierarchy $m_{A^0} > m_{H^0} \gtrsim m_{H^{\pm}}$. Results: Couplings

$$\lambda_4 = \frac{1}{2v^2} \left(M^2 + m_{A^0}^2 - 2m_{H^{\pm}}^2 \right), \ \lambda_5 = \frac{1}{2v^2} \left(M^2 - m_{A^0}^2 \right).$$

G. C. Dorsch

EWBG after LHC8

What NExT? 14 / 19

Results: $\beta - \alpha$

A strong PT favours a SM-like h^0 .

Results: $\beta - \alpha$

A strong PT favours a SM-like h^0 . Put another way, the observation of a SM-like h^0 constrains the parameter space of 2HDMs in favour of strong PTs.

EWBG after LHC8

▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:
 - $\tan \beta \approx 1;$

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:
 - $\tan \beta \approx 1;$
 - $m_{A^0} \gtrsim 400$ GeV;

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:
 - $\tan \beta \approx 1;$
 - $m_{A^0} \gtrsim 400$ GeV;
 - mass hierarchy $m_{A^0} > m_{H^0} \gtrsim m_{H^{\pm}}$.

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:
 - $\tan \beta \approx 1;$
 - $m_{A^0} \gtrsim 400$ GeV;
 - mass hierarchy $m_{A^0} > m_{H^0} \gtrsim m_{H^{\pm}}$.
- What does this tell us about probing the 2HDM in LHC? Are there hidden scalars in current LHC data? [Arhrib, Ferreira, Santos, arXiv:1311.1520]
 How would a discovery impact the phase transition?

- ▶ 2HDMs are robust candidates to explain BAU in light of LHC8 results.
- $h^0 \approx h_{SM}$ favours a strong PT scenario.
- Strong PT also prefers:
 - $\tan \beta \approx 1;$
 - $m_{A^0} \gtrsim 400$ GeV;
 - mass hierarchy $m_{A^0} > m_{H^0} \gtrsim m_{H^{\pm}}$.
- What does this tell us about probing the 2HDM in LHC? Are there hidden scalars in current LHC data? [Arhrib, Ferreira, Santos, arXiv:1311.1520]
 How would a discovery impact the phase transition?

Thank you!

Appendix – $h^0 \rightarrow \gamma \gamma$

Coupling of h^0 to b and τ :

Type I: $\frac{\sin \alpha}{\sin \beta}$, Type II: $\frac{\cos \alpha}{\cos \beta}$.

G. C. Dorsch

EWBG after LHC8

What NExT? 17 / 19

Appendix – μ parameter

Type II/Y: $m_{H^{\pm}} \ge 360$ GeV.

EWBG after LHC8

What NExT? 18 / 19

Appendix

Surviving points after each step of tests:

	Total	EW precision	$\lambda_i < 4\pi$	Metastability	Strong PT
Absolute	6.3×10^{6}	1.2×10^{6}	1.4×10^{5}	2.6×10^4	4.3×10^{3}
Relative	100%	19.1%	2.3%	0.41%	0.069%

Physical fields:

$$\begin{aligned} G^+ &= \cos\beta \ \varphi_1^+ + \sin\beta \ \varphi_2^+ \\ H^+ &= -\sin\beta \ \varphi_1^+ + \cos\beta \ \varphi_2^+ \\ G^0 &= \cos\beta \ \eta_1 + \sin\beta \ \eta_2 \\ A^0 &= -\sin\beta \ \eta_1 + \cos\beta \ \eta_2 \\ h^0 &= \cos\alpha \ h_1 + \sin\alpha \ h_2 \\ H^0 &= -\sin\alpha \ h_1 + \cos\alpha \ h_2 \end{aligned}$$

(charged Goldstone), (charged scalar), (neutral Goldstone), (pseudo-scalar), (lightest scalar), (heaviest scalar).

where

$$\Phi_i = \left(\begin{array}{c} \varphi_i^+ \\ h_i + i\eta_i \end{array}\right).$$

G. C. Dorsch

EWBG after LHC8