

Life After Ve Appearance: What's NEXT for T2R?

Matthew Malek Imperial College London

NExT Meeting on BSM Physics University of Southampton 27 November 2013

Neutrino Mixing

Neutrinos have mass!

Flavour eigenstates: v_e , v_μ , v_τ (interaction)

Mass eigenstates: V1, V2, V3 (propagation)

Experimental Probes

 For Dirac neutrinos, standard parameterization of the PMNS matrix Uii (for Dirac neutrinos) has:

3 mixing angles, 2 mass square differences, 1 CP phase

Oscillation @Accelerators

Long baseline accelerator: Sensitive to θ_{13} , θ_{23} , δ , mass hierarchy

$$P_{\mu \to \mu} \approx 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) \left(P_{\mu \to e} \approx \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)\right)$$

27 Nov 2013

Tokai to Kamioka (T2K)

• Experimental goals:

- Search for Ve appearance (and non-zero θ_{13})

- Precision v_{μ} disappearance
- Other (v cross sections, sterile v searches, etc.)

T2K Collaboration

~ 500 members, 59 Institutes, 11 countries

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg

Canada

York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany Aachen U. ItalyPolandINFN, U. BariIFJ PAN, OINFN, U. NapoliNCBJ, WaINFN, U. PadovaU. Silesia,

INFN, U. Roma U. W

Japan ICRR Kamioka ICRR RCCN Kavli IPMU

KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U.

Okayama U. Tokyo Metropolitan U U. Tokyo

IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T.

Wroklaw U.

Russia

INR

IFAE, Barcelona IFIC, Valencia

Spain

Switzerland

ETH Zurich U. Bern U. Geneva

United Kingdom

Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. STFC/Daresbury STFC/RAL U. Liverpool U. Sheffield U. Warwick

USA

Boston U. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

27 Nov 2013

Neutrino Beam

- T2K is the first experiment to use an **off-axis** neutrino beam:
 - Enhances signal at oscillation maximum
 - Reduces backgrounds from other energies

Data Taking

- **NEW!** Full Run 1 4 data sets published last week!
 - 6.57 x 10^{20} P.O.T. for SK analysis (6.39 x 10^{20} P.O.T. shown this Summer)
 - Previous Ve appearance result (2012) used 3.01 x 10^{20} P.O.T. \rightarrow Statistics increased by factor >2!
- Thus far, ~8% of the total data has been collected (assuming design goal)
- Instantaneous luminosity of 220 kW (1.2 x 10^{14} protons per pulse) \rightarrow World record!

Near Detector Suite

INGRID (On-axis)

16 modules of iron and scintillator

 → 14 in "cross" configuration

 Monitors beam profile and rate

Super-Kamiokande (far)

- 50,000 tonne water Chereknov
- 22.5 kton fiducial mass
- Inner Detector (ID) has 11,129 inward facing 50cm PMTs for ~40% photocathode coverage
- Outer Detector (OD) has 1885
 20cm PMTs; OD used as passive shielding + active veto
- Stable operation for many years
- Good reconstruction in energy range of T2K beam
- Well-understood particle identification (see next slide)

27 Nov 2013

SK Particle Identification

- Reliable PID particularly crucial to ve appearance analysis
- PID well-established at KEK beam test (1kton tank) in 1990s

27 Nov 2013

T2K: What's New?

T2K

- Last week was a good week for T2K!
 - Nov 19: New Ve results paper (full 6.57 x 10²⁰ P.O.T.) sent to arXiv (1311.4750) & submitted to PRL
 - Nov 19: New Vμ results paper (3.01 x 10²⁰ P.O.T.) published: *Phys. Rev. Lett.* **111:211803** (2013)

- Without oscillation 205 ± 17 events expects; 58 events observed
- Best fit: $\sin^2(\theta_{23}) = 0.514 \pm 0.082$ (consistent with maximal mixing)
- New ν_{μ} disappearance results coming soon
- All future results will be reported as $\sin^2(\theta_{23})$ NOT $\sin^2(2\theta_{23})$ to remove octant ambiguity

New Ve Appearance Results Oscillation signal: MC $v_{\mu} \rightarrow v$ (undetected) Beam ve background: Beam background V has harder energy e spectrum 1.56 ± 0.20 evts (2012) MC (undetected) • Neutral current π^0 background: π^0 Can be removed V by identifying second photon ring 1.26 ± 0.35 evts (2012) N+others (undetected)

27 Nov 2013

Improved π^0 **Rejection**

<u>TZ</u>K

- New likelihood fitter (fiTQun) used to distinguish electrons from π^0
- Assumes two electron-like rings produced at a common vertex
- Uses 12 parameters in fit:
 - Vertex (X, Y, Z, T)
 - Directions (θ₁, φ₁, θ₂, φ₂)
 - Momenta (p₁, p₂)
 - Conversion lengths (c₁, c₂)
- This 2D cut removes 70% of the π⁰ background remaining after previous selection (POLfit) applied (for same signal efficiency)
- Total background is reduced by 27%
- 6.74 BG events → 4.92 BG events expected (in full Run 1 – 4 dataset)

T2K-SK Ve Event Selection

Ve Selection Criteria

- # clustered veto hits < 16
- Distance to wall > 200 cm
- # of rings = 1
- PID of ring is e-like
- Visible energy > 100 MeV
- no Michel electrons
- fiTQun π^0 cut
- 0 < Ev < 1250 MeV

27 Nov 2013

Ve Appearance Analysis

- · · · · ·
- Expected background:
 - 4.92 ± 0.55 events
- With the following assumptions:
 - $\sin^2(2\theta_{13}) = 0.1$
 - $\sin^2(2\theta_{23}) = 1$
 - δ_{CP} = 0
 - normal mass hierarchy

the expected signal is:

– 21.6 ± 1.8 events

- 5.5 σ sensitivity to exclude $\theta_{13} = 0$

- Oscillation parameters were extracted with two parallel analyses:
 - Using the 1D Ev distribution (top)
 - Using the 2D p-θ distribution (bottom)

27 Nov 2013

Ve Appearance Results

- **28** ve events observed (recall 21.6 ± 1.8 expected for $sin^2(2\theta_{13}) = 0.1$)
- Comparison to null hypothesis gives 7.3 σ significance for $\theta_{13} \neq 0$

What's Next?

- Original design for T2K is 7.8 x 10²¹ P.O.T. of v running >10x more data
- Future sensitivity studies have been performed for full data set:

Truth parameters for this Monte Carlo study include:

- Normal hierarchy and maximal mixing
- → Sin²(2 θ 13) = 0.1 and Δ m²32 = 2.4 x 10⁻³ eV²

What's Next?

- Original design for T2K is 7.8 x 10²¹ P.O.T. of v running >10x more data
- Future sensitivity studies have been performed for full data set:

Truth parameters for this Monte Carlo study include:

- Normal hierarchy and maximal mixing
- → Sin²(2 θ 13) = 0.1 and Δ m²32 = 2.4 x 10⁻³ eV²

Can We Do Better?

- Can include ultimate reactor sensitivity to θ₁₃ as a constraint:
 - Uses anti-ve disappearance for direct measurement of θ13

- Original T2K design anticipated long search for tiny (maybe zero) θ_{13}
- Nature was kind / we got lucky $\rightarrow \theta_{13}$ is large!
- Can modify design to increase sensitivity to other paramters (e.g., δCP)
- One idea: Run both ν and anti- ν beams!

Can We Do EVEN Better?

T2K sensitivity running 50% with v beam and 50% with anti-v beam

27 Nov 2013

M. Malek, Imperial College

Can We Do EVEN Better?

50% / 50% v / anti-v running also increases octant sensitivity

27 Nov 2013

Ultimate CPV Sensitivity

• Sensitivity plotted as a function of true δCP

- Many values can be ruled at at 90% C.L.
- Need bigger experiment to achieve 3σ evidence or beyond, unless we get very lucky!

What's NEXT NEXT?

Hyper-Kamiokande: A 1,000,000 tonne water Cherenkov detector

- Plan to build in Japan: Construction from 2017/18; physics running from 2022
- Rich physics programme, incl. atmospheric v, solar v, proton decay, etc.
- Long baseline accelerator neutrinos from J-PARC ("T2HK")
- Currently writing proposal for UK involvement \rightarrow **NOW** is an excellent time to join!

Summary & Conclusions

• First observation of electron neutrino appearance!

- T2K has measured ν_e appearance in a ν_μ beam
- $\theta_{13} = 0$ is excluded at the 7.3 σ level (assuming $\delta_{CP} = 0$ and $\theta_{23} = 45^\circ$)
- Measurements of v_{μ} becoming competetive \rightarrow New results coming soon!
- A total exposure of 6.57 x 10²⁰ P.O.T. has been collected & analysed, more than doubling the data sample used for the Run 1 – 3 (2012) analysis
- Nature has been kind; with our "primary goal" already achieved, we are looking at changing the nature of T2K running to increase sensitivity to mass hierarchy and CP violation
- Future sensitivity studies indicate that running both v and anti-v will enhance T2K's physics potential
- In the longer term, we need more statistics \rightarrow Hyper-Kamiokande!

BACK UP SLIDES

27 Nov 2013

M. Malek, Imperial College

26

Experimental Overview

ND280 detector measures spectra for various neutrino interactions

Beam Stability: Rate & Direction

integrated day(1 data point / 1 day)

27 Nov 2013

Near Detector Constraint

GOAL: Constrain neutrino flux & cross section parameters used for oscillation prediction (via MC) at T2K far detector

Error on Far Detector v_e Prediction (After Near Detector Constraint)

	Runs 1-3 (2012)	Runs 1-3 (2013)	Runs 1-4 (2013)
sin ² 20 ₁₃ =0.1	4.7%	3.5%	3.0%
sin ² 20 ₁₃ =0.0	6.1%	5.2%	4.9%

Error on Cross Section Parameters (After Near Detector Constraint)

Parameter	Runs 1-3	(201	2)	Runs 1-4	1 (201	3)
M_A^{QE} (GeV/c ²)	1.27 ±	0.19		1.22 ±	0.07	
M_A^{RES} (GeV/c ²)	1.22 ±	0.13		0.96 ±	0.06	
CCQE Norm.	0.95 ±	0.09		0.96 ±	0.08	
CC1π Norm.	1.37 ±	0.20		1.22 ±	0.16	

- Significant reduction for event rate errors at the far detector
- Uncertainties on the cross section & flux parameters have been reduced

Reconstructing v Energy

- Only final state lepton is reconstructed
- Neutrino energy can be determined with certain assumptions:
 - Neutrino direction is known (beam direction)
 - Recoil nucleon mass is known (use neutron mass)
 - Target nucleon is at rest (not quite true; introduces smearing)

Neutrino Interactions

 In the region of interest for T2K, large contribution from charge current quasi-elastic scattering:

T2K signal at SK

- Also significant CC contribution with pion in final state
- NCπ⁰ is a major background mode from electron appearance:

e.µ.7

e,μ,τ

A Typical Ve Candidate

27 Nov 2013

Ve Vertex Distributions

Vertex distributions for ve candidates at the far detector:

Modelling Neutrino Flux

Flux Simulation:

- Proton beam monitor measurements as inputs
- In Target Hadron Production:
 - NA61 experimental (at CERN) data to model $\pi^{\scriptscriptstyle\pm}$ production
 - Kaon production, other hadron interactions model with FLUKA
- · Out of target interactions, horn focusing, particle decays
 - GEANT3 simulation
 - · Interaction cross sections are tuned to existing external data

Neutrino Flux Predictions

- Muon neutrino flux around oscillation maximum predominantly from pion decays
- Intrinsic electron neutrino flux in beam from muon and kaon decays ~1% of total flux below 1 GeV
 - · Dominant source around oscillation maximum is from muon decays

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$
Flux depends on pion
$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

- The near detectors can also be used to make cross section measurements
- The T2K charged current inclusive cross section measurement was published earlier this year:
 - Phys. Rev D 87:092003 (2013)
 - Uses same near detector event selection as 2012 osc. analysis
- The CCQE sample from the 2012 osc. analysis has been used to measure σ_{CCQE}(E_ν)
- Additional cross section results expected soon...

June 13th 2011 – Six electron neutrino events are observed, with 1.5 ± 0.3 background events expected

P-value (assuming no oscillations) is 0.007, or 2.5σ .

θ₁₃ Results: Accelerators

Significant overlap of T2K and MINOS 90% C.L. allowed regions

27 Nov 2013

2011 and 2012 Results

• The result with only 2012 data is also consistent with the 2011 result

θ₁₃ Results: Reactors

<u>March 2012</u>: Daya Bay first to see θ_{13} via disappearance channel

Similar results followed one month later from RENO