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Protoplanetary Disks...

~100 au

M ~ 10" Mgun yr

~ ~10K
§~1O10 cm3

h/r << 1

1 ay ~10 au

M ~ 10_3 - 10_1 Msun



...are poorly ionized, casting doubt upon whether
the MRI is capable of driving the observationally
Inferred mass-accretion rates.

COsSMicC rays

FUV + X-rays

-1 au ~10 au

at ~1 au: tin,coll ~ 3 HUS tgyr,i ~ 40 ms tdyn ~ 1 yr tni,coll ~ 1 Myr
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see Kunz & Mouschovias 2009a for elastic/inelastic grain contributions
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Kunz & Balbus 2004 NB: very dependent upon grain size and spatial distributions
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COSMIC rays
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after Gammie 1996

-1 au ~10 au

much of the PPD-MRI literature
s focused on assessing the
extent (existence?) of these zones



want them dead...

THE ORIGIN OF JOVIAN PLANETS IN PROTOSTELLAR DISKS: THE ROLE OF DEAD ZONES

SOKO MATSUMURA AND RALPH E. PUDRITZ

want them alive...
SELF-SUSTAINED IONIZATION AND VANISHING DEAD ZONES IN PROTOPLANETARY DISKS

SHU-ICHIRO INUTSUKA' AND TAKAYOSHI SANO®

want them resurrected... Breathing Life Into Dead-Zones

Orkan M. Umurhan-22, Richard P. Nelson? and Oliver Gressel®

want them on life support...
DEAD ZONE ACCRETION FLOWS IN PROTOSTELLAR DISKS

N. J. TURNER' AND T. SANO®

want them to be zombies...

DEAD, UNDEAD, AND ZOMBIE ZONES IN PROTOSTELLAR DISKS AS A FUNCTION OF STELLAR MASS

SUBHANJOY MOHANTY!, BARBARA ERCOLANOZ>, AND NEAL J. TURNER?



From Wikipedia, the free encyclopedia

Thanatology is the scientific study of death. It investigates the mechanisms and forensic
aspects of death, such as bodily changes that accompany death and the post-mortem period
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linear: Wardle 1999; Balbus & Terquem 2001; Wardle & Salmeron 2012
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MMSN midplane at 10 au, B = 10 mG, um grains

ambipolar diffusion
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Caution from linear analysis
Wardle & Salmeron 2013

“Hall diffusion increases or decreases the MRI-active column
density by an order of magnitude or more...”
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“...while the use of the linear analysis to predict the boundary of

the manifestly nonlinear active region appears to be justified for

the ohmic [and ambipolar] case[s], it is not known whether this
applies in the Hall-dominated regime that we tout here.”



We forego a detailed study of disk chemistry and instead
concentrate on turbulent dynamics themselves

shearing box
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before we proceed...
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canonical vorticity

IS conserved

Kelvin’s circulation theorem
generalized for Hall-MHD



Kelvin’s circulation theorem generalized for Hall-MHD:

canonical circulation i1s a constant

1
I"canonical = f §2 canonical d¢ (: — / ®canonical * dS)
C mJs
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the transport of magnetic flux is intimately tied to the
efficiency and nature of the angular-momentum transport



(3.) B =Bo+Ba

= Byé, + be"'Bycos Kz (&, sinf — &, cosf)

V = Vo + Vch

= 2Axe, + be"'vysin Kz (&, cos ¢ + &, sin ¢)
Veh* VUh = Beh - VB = Ve - VB = Bepy - Vooh = Joh VB =By - VI =0

channel modes are exact also in Hall-MHD

(can look at parasites, which are suppressed by Hall

. fun calculation, but doesn’t appear to matter)



numerical results
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NB:The low values of transport at large A p;*
are not due to linear stabilization



vary initial beta and resistivity:
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ideal MHD: high-transport state




[ 4B, Hall-MHD: low-transport state




0.12
I
-0.075

-0.05

-0.025

-0.02




bz
0,18039

=0.16
0.12
0.08

0.04

0)

-0.03807




Mij — 5BZ5BJ

1
4
Rz’j = p 5Ui5’l}j

Ej —_— 6UidBj — (SUj5BZ'

x10 4

0.5

N\

0 e T S e ——— . — — q—__—\’

0.12

0.08
0.06
0.04
0.02




mean-field model
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resistivity quenches tension stabilizes
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mean-field model| simulation results
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mean-field model

simulation results

0.15

0.05

—-0.05

—0.2

—-0.4

—-0.6

500 1000 1500 2000
t

conservation of canonical vorticrty



dust trapping in zonal flows



zonal magnetic field
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does AD affect self-organization?
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NB: this behavior is not seen in By >> Bz boxes

must know field geometry!



Summary & Outlook

* Non-ideal MHD important in PPDs.
Hall dominates around r ~ 5 - 10 au.

« Linear analysis —> Hall could eliminate (or at
least shrink) dead zone. Old simulations
predict negligible change in MRI with Hall.

« When By ~< Bz, Hall-dominated regions
saturate in low-transport state, exhibiting
long-lived zonal magnetic fields and flows.

These regions are MRI “dead” even though
they are magnetically “active”, calling into
guestion previous estimates for dead zone.

« Zonal structures may act as particle-
trapping sites; magnetically mediated
planetesimal formation a possibility.

« Stratified simulations with OD, AD, Hall have
been published; stay for Geoffroy’s talk!
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V=V +0v, B=Busn+6B, P=PFP,+4P
B, = be" Bycos Kz (é,sinf — é, cosf)
Veh = be” vgsin Kz (&, cos ¢ + &, sin ¢)
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Kz /27

Figure Al. (top) The dv., dv., and 6II components of the eigenfunction
of a kink mode with 8 = ¢ = n/4,k/K = 0.5,0; = —x/4, and
k. = 0. The solid (dashed) lines denote the real (imaginary) parts. The
total eigenfunction is normalised so that max|dv;| = 1. The growth rate
o /b2 = 0.008616. (bortom) Coloured iso-contours of the real part of v,
at y = 0 in the (z, z) plane. The background is a four-stream Hall-MRI
channel with jets centred at Kz = nw/2 withn = 1, 3, 5 and 7. The
perturbation is normalised so that max|dvz| = vep.

Kz/27

Figure A2. (top) The dv., 6v., and 811 components of the eigenfunction
of a kink-pinch mode with @ = ¢ = n/4,k/K = 0.5, 0, = —x /4,
and k; = 0.5. The solid (dashed) lines denote the real (imaginary) parts.
The total eigenfunction is normalised so that max|év;| = 1. The growth
rate o /b2 = 0.004093 + 0.0058i. (bottom) Coloured iso-contours of the
real part of v aty = 0 in the (z, z) plane. The background channel and
normalisation are as in Figure Al. The entire pattern is moving to the left
because o possesses a positive imaginary part.
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Figure A3. (top) The dv.,d Bz, and é B, components of the eigenfunction
of a pinch-tearing mode with 6, = 7/3,k/K = 0.4,k, = 0,and b = 5.
The channel orientation § ~ 0.2557 is obtained by solving the dispersion
relation for the fastest-growing mode with 3, Ay, and A, taken from our
fiducial simulation ZB1H]1. The solid (dashed) line denotes the real (imag-
inary) part. The total eigenfunction is normalised so that max|dv,| = 1.
The growth rate /b2 = 0.02868 — 0.03449i. (botrom) Coloured iso-
contours of the real parts of v, and B, at y = 0 in the (z, z) plane. The
background channel and normalisation are as in Figure Al. The entire pat-
tern is moving to the right because o possesses a negative imaginary part.



The HSI 1s most easily examined in the limit of negligible
resistivity, in which case the channel magnetic and velocity fields
are mutually perpendicular (6§ = ¢; see eq. 17). We can therefore
erect an orthonormal coordinate system oriented with the channel
mode: &, = Bcn/Bch, €y = Uch/Uch, and €, = €Xé,. In
this geometry, wavevectors parallel to the channel magnetic field
(k = keép) have the greatest potential for growth. The z- and v-
components of the linearised induction equation (A2) become®

Ck2Bo

0B, —bcos Kz
4mene

0B, = ikBg bcos Kz dv., (A4)

2 2 2
0B, + bcos Kz [Ck Bo (1 e K—

TeNe
= ikBy bcos Kz dv,,. (AS)

It is clear from equation (AS) that the shear of the channel mode
(represented by the final term in the brackets) uses d B, to gener-
ate  B,. The Hall terms, on the other hand, generate d B, at the

expense of § B,. This effect is present even in the absence of shear It is a straightforward exercise to show from equations (A1)

and arises because the v-component of the perturbed electron V€' (A4), and (AS) that, whether k > K, d /dz (the limit captured by

locity difters from the ion-neutral velocity by the KO8 analysis) or d/dz > k, K (a WKBJ treatment), a neces-
0J, ick 1 d2 sary condition for instability is
— o — ——— | 0B,.
en. 4mwene k2 dz?2 Ko
1< —. (A6)
The induced magnetic field is sheared further, and there is the po- WH,0
tential for runaway. Physically, this inequality states that the time required from an ion

to execute one orbital gyration around a magnetic-field line must
be longer (by a factor of n./n) than the time it takes for a mag-
netic perturbation to grow by shear. If this condition is not met,
the ions are well-coupled to the electrons (and thereby to the mag-
netic field), and we are left with simple linear-in-time growth due
to shearing of the magnetic-field perturbation by the channel flow.




APPENDIX B: NUMERICAL STABILITY
IN HALL-MHD

Falle (2003) suggested that explicit schemes for numerically solv-
ing the equations of Hall-MHD are unconditionally unstable due
to the existence of small-wavelength whistler waves. Although this
conclusion is correct for the numerical schemes Falle (2003) consid-
ered, here we demonstrate that higher order time-explicit schemes,
such as the one used in sNooPY, are stable without the need for physi-
cal (e.g. Ohmic or ambipolar) or artificial (e.g. hyper-resistive) wave
damping.

We start by considering the induction equation (equation 2) with
the first (ideal) and third (Ohmic) terms on the right-hand side
dropped. Decomposing the magnetic field into a fixed guide field
B and a small-amplitude fluctuation 8 B(r) exp(ik - x), we find that
linear whistler waves are described by

@ _ ck-By
dr 4men,

(kxéB). (B1)

In spectral codes such as snoopy the right-hand side of this equation
is computed exactly using Fourier decomposition, and we adopt this
scheme in what follows.

Without loss of generality we take the wavevector k = ké.
and magnetic-field perturbation 8B = §B,é, + B,é,, ensuring
k -3B = 0. Equation (B1) can then be written as

ds B 2By, [0 —1
©F —RSB, where R= S~ 20z . (B2)
dt 4men. 1 0

We integrate equation (B2) forward in time from 7™ to /" * ! using
an RK3 scheme similar to that used in sNoopy. For a system of
differential equations y’ = f(y), this procedure reads

g, =f (")

n h
q, =f (.Y()"‘EQI)
g; = f (y™ — hq, +2hg,)

4 L
yrrl = y® 4 g(q, +44g, +q5,),

where h = 1"+ — ¢ Applying this algorithm to equation (B2),
we find

SB™D =QsB™ (B3)

for

1—1g2 g4 L3 ck’B, .
Q= = ° and &=h —2%
e—1ed 1-1le 4men.

Note that the matrix Q is a third-order expansion of the formal
solution 8 B"*" = exp(hR) 8 B™. Extensions to higher order are
straightforward.

Stability is guaranteed if the eigenvalues of Q,

g? g
}»i=1—§:Fi(€—€),

satisfy the inequality |A.| < 1. The numerical scheme is therefore
stable provided ¢ < ﬁ; sNoopry uses & = 1.5. It can easily be
shown by this approach that similar schemes of first or second
order in time, such as the ones considered by Falle (2003), are
unconditionally unstable. The fourth-order Runge-Kutta scheme is
stable for & < 2+/2.

In conclusion, the third-order explicit time integrator employed
in sNoory guarantees that linear whistler waves are stable, without
the need for additional diffusion terms.

This paper has been typeset from a TEX/IZTEX file prepared by the author.



