Magnetic drift in molecular cloud cores, and in protoplanetary and circumplanetary disks

Mark Wardle

Department of Physics & Astronomy

MACQUARIE UNIVERSITY

ASTRONOMY, ASTROPHYSICS AND ASTROPHOTONICS RESEARCH CENTRE

Magnetic diffusion and drift Magnetorotational instability Gravitational collapse Jet launching

Kliban 1976

Molecular clouds and protoplanetary disks are weakly ionized

Molecular cloud

MMSN @ 1 AU

Umebayashi & Nakano 1990

Wardle & Salmeron 2012

Given P, V, B how does the fluid evolve?

J= 4m V×B $\nabla x B \Rightarrow J$ $\Rightarrow \mathbf{E}'$ (Fluid) = 5 E $E = E' - E \times B$ ⇒ E (observer) 3B = - C VXE $\Rightarrow \frac{3}{98}$ $= \nabla \times (\nabla \times B) - \frac{c^2}{\mu \pi} \nabla \times (e^{-\frac{c^2}{2}})$ 7xB

$$egin{aligned} |eta_j| \gg 1: & Z_j e m{E}' pprox -Z_j e \, rac{m{v}_j}{c} imes m{B} & ext{ particles tied to} \ |eta_j| \ll 1: & Z_j e m{E}' pprox \gamma_j m_j
ho \, m{v}_j & ext{ particles tied to} \end{aligned}$$

o neutral fluid

$$\begin{split} \boldsymbol{J} &= \sum_{j} n_{j} e Z_{j} \boldsymbol{v}_{j} \\ &= \frac{ec}{B} \sum_{j} n_{j} Z_{j} \beta_{j} \, \boldsymbol{E}_{\parallel}^{\prime} + \frac{ec}{B} \sum_{j} \frac{n_{j} Z_{j} \beta_{j}^{2}}{1 + \beta_{j}^{2}} \, \boldsymbol{E}^{\prime} \times \boldsymbol{\hat{B}} + \frac{ec}{B} \sum_{j} \frac{n_{j} Z_{j} \beta_{j}}{1 + \beta_{j}^{2}} \, \boldsymbol{E}_{\perp}^{\prime} \end{split}$$

Cowling 1957

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \nabla \times \left[\eta \ \nabla \times \boldsymbol{B} + \eta_{\mathrm{H}} (\nabla \times \boldsymbol{B}) \times \hat{\boldsymbol{B}} + \eta_{A} (\nabla \times \boldsymbol{B})_{\perp} \right]$$

If the only charged species are ions and electrons,

 $egin{aligned} \eta_{\mathrm{H}} &= & \left|eta_{e}
ight|\eta \ \eta_{\mathrm{A}} &= & eta_{i} |eta_{e}|\,\eta \ \end{bmatrix}$

• Three distinct diffusion regimes:

 $\begin{array}{l} \beta_i \ll \left|\beta_e\right| \ll 1 & - \, \text{Ohmic (resistive)} \\ \beta_i \ll 1 \ll \left|\beta_e\right| & - \, \text{Hall} \\ 1 \ll \beta_i \ll \left|\beta_e\right| & - \, \text{Ambipolar} \end{array}$

Wardle 2007

Magnetic drift

regime	magnetised component	unmagnetised component	B drift through neutrals
Ideal MHD	neutrals, ions, electrons		0
Ambipolar	ions, electrons	neutrals	$\mathbf{v_i} - \mathbf{v_n} = \frac{\mathbf{J} \times \mathbf{B}}{c \gamma \rho_i \rho}$
Hall	electrons	neutrals, ions	$\mathbf{v_e} - \mathbf{v_i} = -\frac{\mathbf{J}}{en_e}$
Ohmic		neutrals, ions, electrons	$c\frac{\mathbf{E}' \times \mathbf{B}}{B^2} = \frac{4\pi\eta}{c} \frac{\mathbf{J} \times \mathbf{B}}{B^2}$

Chapman & Wardle 2006

Wardle & Pandey in prep

$$\eta_A = \frac{1 + \beta_g^2 + (1 + \beta_i \beta_g) P}{(1 + P/P_0)^2 + (\beta_g + \beta_i P)^2} \frac{B^2}{4\pi \gamma \rho_i \rho_i}$$

$$\eta_H = \frac{1 + \beta_g^2 - \beta_i^2 P}{(1 + P/P_0)^2 + (\beta_g + \beta_i P)^2} \frac{cB}{4\pi e n_e}$$

$$\eta = \frac{1}{1 + P/P_0} \frac{c^2}{4\pi\sigma_e}$$

 $P = Z_d n_d / n_e$

 $P_0 = \text{ion/electron Hall parameter}$

Wardle & Pandey in prep

Clouds and cores

log n_H (cm⁻³)

MMSN, 1AU

Circumplanetary disks

Keith & Wardle 2014

Circumplanetary disks

Keith & Wardle in preparation

Field line drift

Ambipolar:

Ohmic:

 $c\gamma\rho_i\rho$ $4\pi\eta \mathbf{J} \times \mathbf{B}$ $B^{\bar{2}}$ C J Hall: en_e

- Hall drift is in and out of plane of screen tends to induce or reduce twisting in B - sense depends on global direction of B

Field line drift: collapsing cores / protoplanetary disks

 $\mathbf{J} \times \mathbf{B}$ Ambipolar: $c\gamma\rho_i\rho$

С

Ohmic:

 $4\pi\eta \mathbf{J}\times\mathbf{B}$ B^2

J Hall: e n_e

Momentum equation

$$\frac{\partial v}{\partial t} + \Omega \frac{\partial v}{\partial t} + (v \cdot \nabla) v - 2\Omega v_{\phi} \hat{r} + \frac{1}{2}\Omega v_{r} \hat{\phi}$$

$$= r^{2}\Omega \hat{r} - \nabla \Phi - \frac{1}{\rho} \nabla \rho + \frac{J \times B}{\rho^{c}}$$

$$\frac{r c \rho t}{\rho^{c}} - 2\Omega v_{\phi} = \frac{(J \times B)}{\rho^{c}} r > 0$$

$$\frac{\rho c \rho t}{\rho^{c}} = \frac{1}{2}\Omega v_{r} = \frac{(J \times B)}{\rho^{c}} \phi < 0$$

$$M = \int_{J \times B} B$$

Effect on the MRI

 $\frac{\phi \operatorname{cpt}}{2} : \frac{1}{2} \Omega V_r = \frac{(T \times B)_{\ell}}{\rho_c} = -\frac{J_r B_2}{\rho_c} = -\operatorname{ene}(V_{ir} - V_{er}) \frac{B_2}{\rho_c}$ $V_{er} = \left(1 + \frac{s \eta_u \Omega}{2V_r^2}\right) V_r < O \quad \text{for MRT}$ $\operatorname{sign}(B_2) \longrightarrow \operatorname{need} s \frac{\eta_u \Omega}{V_A^2} > -2$ $\eta_u = \frac{cB}{4\pi e n_e}$

Wardle 1999 ; Balbus & Terquem 2001

Column density of active layer

Wardle & Salmeron 2012

Effect on disk winds

Wardle & Konigl 1993

$$\frac{r \operatorname{cet}: -2\Omega V_{\phi} = (\frac{U \times B}{\rho^{c}})^{r} = \frac{J_{\phi}B_{z}}{\rho^{e}} = \operatorname{ene}\left(V_{i\phi} - V_{e\phi}\right) \frac{B_{z}}{\rho^{c}}$$

$$V_{e\phi} = \left(1 + 2\frac{s\eta_{H}\Omega}{V_{A^{2}}}\right)^{V_{\phi}} < 0 \quad \text{for normal behaviour}$$

$$1.e \quad \frac{s\eta_{H}\Omega}{V_{A^{2}}} > -\frac{1}{2}$$

Transport of magnetic flux vs angular momentum

Hall drift: magnetic torque => radial drift of field through gas

Self-similar collapse with non-ideal MHD

t = 10 000 yr

Braiding & Wardle 2012

Summary

- Ideal MHD breaks down on scale of cloud cores and protoplanetary disks
 - core collapse: angular momentum, magnetic flux
 - protoplanetary disks: distribution and nature of MHD turbulence
 - disk-driven jets: launching, coupling between jet and disk
- Field line drift is a critical part of MRI / wind launching / flux transport problems
 - "low" density (clouds, cores): ambipolar diffusion (Mestel & Spitzer 1956)
 - high density (disks): ohmic resistivity (e.g. Hayashi 1981)
 - Hall effect (collapsing cores and disks) (Wardle 1999, Wardle & Ng 1999)
 - AD: $v_B \sim JxB \sim B^2$
 - Hall: $v_B \sim \pm J \sim B$; depends on sign of B; no dissipation
 - Ohm: $v_B \sim JxB / B^2 \sim B^0$; important only for high density, weak fields
- Figure of merit for Hall is NOT given by ratio of diffusivities

– dissipationless => compare v_B (Hall) with v e.g. $\eta_H\,\Omega$ / v_A^2