Hyper-Global Zoom-in Simulations of Protostellar Disc Formation Sapere Audit

Niels Bohr Institute, August 2014

Troels Haugbølle

troels.haugboelle@snm.ku.dk

Centre for Star and Planet Formation University of Copenhagen

In collaboration with

Åke Nordlund, NBI & STARPLAN
Michael Küffmeier, NBI & STARPLAN
Paolo Padoan, ICC, Universidad de Barcelona
Troels Frostholm Mogensen, STARPLAN
Aris Vasileiades, STARPLAN & NBI

Why "Hyper-Global"?

Many different approaches exist to model proto-planetary discs:

Local models

[J. B. Simon]

Global models

Cloud-core collapse models

[Flock et al 2013]

[Machida et al 2014]

Hyper-Global: Zoom-In over one billion in scale

- Anchor dynamics in well established observational relations at large scales (e.g. the Larson relations).
 - -> Start at the GMC scale (40 parsec)
- Advantage: Avoid unknown initial and boundary conditions at the cloud-collapse scale
 - -> Similar to what is done in cosmology
- Drawback: Have to cover 9 orders of magnitude in size
 - -> From GMC to a vertical scale height

Disclaimers

- We do not pretend to have the *final recipe* for how a one solar mass star is formed...
 - ...but it is clear there is great variation in the initial conditions
- We are only covering the early protostellar phase with zoom-in...
 - ...but are working on pushing it deep in to the Class II phase
- We do not so far include non-ideal MHD...
 - ...but even without there is no magnetic braking catastrophe
 - ...and like others we find that the turbulent cascade is the enabling mechanism, irrespective of non-ideal MHD
- We do not have radiative transfer and detailed chemistry
 - ...but both are coming very soon

Zooming in on the formation of a solar mass star

- First of a kind ab initio models of the formation of protostellar systems, using the AMR code RAMSES
- Outer scale 40 parsec, inner scale 0.015 AU
- So far:
 - Zoom-ins on four solar mass stars
 - Explored impact of many different refinement strategies

 Currently: Working on getting a statistically significant sample of solar mass stars to probe episodic accretion events, impact of magnetic field geometries, and impact of environment.

On arXiv: 1309.2278 [astro-ph]

A Model of Star Formation

- We use Ramses to simultaneously resolve parsec scales, and have high resolution around stars
- The setup includes
 - MHD with HLLD that is stable at high Mach
 - Self-gravity
 - Tabulated cooling and heating
 - Sink star particles with accretion
 - Supernovae feedback from massive stars
 - Initially driven turbulence, then at low resolution massive stars sampled through "star-cluster particles"
 - Total evolution is longer than 15 Myr
 - Individual star formation model lasts >3 Myr
 - Zoom-in during up to 200 kyr

Three Simulation Zoom Levels

Giant Molecular Cloud scales

Size: 40pc

• Refinement: $2^{16} \Rightarrow \text{cell size } 120 \text{ AU}$

Time duration: ≈ 20 Myr

Stellar accretion scales

Dynamic scale:

Refineme

Time duration.

up to the full 40 pc, are simultaneously present

also in this step!

Accretion disc scales

Dynamic scale: ≈ 5 AU

• Refinement: 2²⁹ => cell size 0.015 AU

• Time duration: ≈ 100-1000 yr

Chosen to be able to afford a few

GMC dynamical times

Chosen to be able to afford a few accretion time scales

e scale

to marginally resolve the disc vertical structure

Time Scale Zoom ≈ 10⁷ AU GMC Evolution Time Scale ≈ 20 Myr Stellar Accretion Time Scale ≈100 kgr ≈ 10⁴ AU ≈ 10 AU

Giant Molecular Cloud Evolution Step

- Drive turbulence at typical warm ISM velocities, ≈15 km/s
 - With realistic optically thin cooling → supersonic cold phase

- Seed the cold phase with stars from theoretical IMF
 - Using a few % of the mass for this artificial star formation
 - Keep track of their age → explode as SNe when appropriate
 - Keep track of Short-Lived Radionucleids

- Turn on selfgravity, turn off artificial driving
 - Sink particles → realistic star formation
 - Keep track also of their age, exploding SNe do the driving
 - This phase has now been running for almost 4 Myr

Supernovae Explosion History

How is material distributed in a molecular cloud?

- Most stars are formed in binary systems(!)
- Assuming an isolated cloud-core is biased

Intermediate Zoom Levels

Giant Molecular Cloud scales

- Size: 40pc
- Refinement: $2^{16} \Rightarrow \text{cell size } 120 \text{ AU}$
- Time duration: ≈ 20 Myr

Stellar accretion scales

- Dynamic scale: ≈ 0.5 pc
- Refinement: $2^{22} \Rightarrow \text{cell size 2 AU}$
- Time duration: ≈ 100 kyr ≈ accretion time scale

Accretion disc scales

- Dynamic scale: ≈ 5 AU
- Refinement: 2²⁹ => cell size 0.015 AU
- Time duration: ≈ 100-1000 yr

Accretion Rates

Instantaneous accretion rate to the central sink particle:

- Peaks after about 5 kyr, fluctuates due to magnetic field topology changes and accretion events
- Decreases exponentially with time thereafter

Accretion History Examples

See also arxiv:1407.1445 [astro-ph]

Accretion from molecular cloud-core

 Isolated low Mass star – accretion is filamentary from the cloud core to the disc. The star is essentially fed from the local molecular filament / cloud core

Accretion from molecular cloud-core

- Isolated low Mass star accretion is filamentary from the cloud core to the disc. The star is essentially fed from the local molecular filament / cloud core
- Accretion happens from filaments on to the disc, not at "the edge"
- Vertical transport is crucial

Highest Zoom Level

Giant Molecular Cloud scales

- Size: 40pc
- Refinement: $2^{16} \Rightarrow \text{cell size } 120 \text{ AU}$
- Time duration: ≈ 20 Myr

Stellar accretion scales

- Dynamic scale: ≈ 0.5 pc
- Refinement: $2^{22} \Rightarrow \text{cell size 2 AU}$
- Time duration: ≈ 100 kyr ≈ accretion time scale

Accretion disc scales

- Dynamic scale: ≈ 5 AU
- Refinement: 2²⁹ => cell size 0.015 AU
- Time duration: ≈ 100-1000 yr

From GMC scales to disc, jet, and outflows

Timing of Disc Formation

Observations:

- It is well established that most Class I and II stars have Keplerian discs
- In the past the evidence for early stage discs was less clear
- From the newest ALMA observations we see growing evidence that ≈50 AU discs can form already before 100 kyr

Disc rotation and size

Jets and Disc Wind Outflows

The simulations produce, spontaneously, inner *jets* and larger scale *disc* wind outflows

Outer parts:

Disc wind with speeds ≈10 km/s driven by inclined magnetic fields

Inner parts:

Highly collimated jet
with outflow speeds ≈100 km/s
Resolving the near-star environment
is *not* necessary for jet formation!

Time evolution of the inner scales at t≈50kyr

Summary

- Ab-Initio Hyper-Global models correctly
 - Couple the dynamics of the gas-reservoir and the new-born stars
 - Anchor the large scale magnetic fields at "infinity"

- Rapid accretion does NOT require MRI, relies on large scale fields
- Magnetic braking is NOT catastrophic, chaotic behavior is the savior
- Vertical transport is at least as important as radial transport
- Demonstrates that star formation depends crucially on
 - A *pseudo-random 'parameter'* among star forming envelopes!
 - Surviving angular momentum may be a remnant dep. on B
- Illustrates the central importance of bi-polar outflows
 - Disc winds and jets carry away ≈50% of the mass
 - Much MORE of the angular momentum and energy

