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Why “Hyper-Global” ?

Many different approaches exist to model proto-planetary discs:

- Local models [J. B. Simon]

® G IObaI mOdeIS 1000, Turbulent velocity [m/s]

- Cloud-core collapse
models

[Flock et al 2013]

[Machida et al 2014]




Hyper-Global: Zoom-In over one billion in scale

Anchor dynamics in well established observational relations
at large scales (e.g. the Larson relations).

-> Start at the GMC scale (40 parsec)

Advantage: Avoid unknown initial and boundary conditions
at the cloud-collapse scale

-> Similar to what is done in cosmology

Drawback: Have to cover 9 orders of magnitude in size

-> From GMC to a vertical scale height




Disclaimers

We do not pretend to have the final recipe for how a one solar
mass star is formed...

..but it is clear there is great variation in the initial conditions

We are only covering the early protostellar phase with zoom-in...
...but are working on pushing it deep in to the Class Il phase

We do not so far include non-ideal MHD...
...but even without there is no magnetic braking catastrophe

...and like others we find that the turbulent cascade is the
enabling mechanism, irrespective of non-ideal MHD

We do not have radiative transfer and detailed chemistry
...but both are coming very soon



Zooming in on the formation of a solar mass star

First of a kind ab initio models of the formation of protostellar
systems, using the AMR code RAMSES

Outer scale 40 parsec, inner scale 0.015 AU

So far:
Zoom-ins on four solar mass stars
Explored impact of many different

refinement strategies

Currently: Working on getting a statistically significant sample of
solar mass stars to probe episodic accretion events, impact

of magnetic field geometries, and impact of environment. PRACE

On arXiv: 1309.2278 [astro-ph]



A Model of Star Formation

- We use Ramses to simultaneously resolve
parsec scales, and have high resolution

around stars

- The setup includes
MHD with HLLD that is stable at high Mach
Self-gravity
Tabulated cooling and heating
Sink star particles with accretion
Supernovae feedback from massive stars

Initially driven turbulence, then at low
resolution massive stars sampled through
“star-cluster particles”

Total evolution is longer than 15 Myr
Individual star formation model lasts >3 Myr

Zoom-in during up to 200 kyr



Three Simulation Zoom Levels
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. Refinement: 216 = cell size 120 AU |

- Time duration: =20 Myr
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Accretion disc scales
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- Time duration: = 100-1000 yr
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Time Scale Zoom

GMC Evolution Time Scale = 20 Myr

=10 AU
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Giant Molecular Cloud Evolution Step

Drive turbulence at typical warm ISM velocities, =15 km/s
With realistic optically thin cooling =2 supersonic cold phase

Seed the cold phase with stars from theoretical IMF
Using a few % of the mass for this artificial star formation
Keep track of their age =» explode as SNe when appropriate
Keep track of Short-Lived Radionucleids

Turn on selfgravity, turn off artificial driving
Sink particles =» realistic star formation
Keep track also of their age, exploding SNe do the driving
This phase has now been running for almost 4 Myr



Mass [Mo]

Supernovae Explosion History
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How is material distributed in a molecular cloud?

X-proection

Y-projection Z-projection

=10000 5000 0 5000 10000

<€ o ¥ (]
25000 AU =0.12 pc

= Clusters are formed where large scale mg
in the turbulence make the flow converge.

" The small scales are connected
to the large scales.

= Most stars are formed in binary systems(!)
= Assuming an isolated cloud-core is biased



Intermediate Zoom Levels

Giant Molecular Cloud scales

« Size: 40pc

- Refinement: 2% = cell size 120 AU
- Time duration: =20 Myr

Stellar accretion scales

« Dynamic scale: = 0.5 pc

- Refinement: 2%%2 = cell size 2 AU

« Time duration: = 100 kyr = accretion time scale ¥

Accretion disc scales

- Dynamic scale: =5 AU

- Refinement: 2%° => cell size 0.015 AU
« Time duration: = 100-1000 yr



Accretion Rates
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Accretion History Examples
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star no. 70
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See also arxiv:1407.1445 [astro-ph]




accretion rate [Msun/yr)

Accretion from molecular cloud-core

» /solated low Mass star — accretion is filamentary from
the cloud core to the disc. The star is essentially fed
from the local molecular filament / cloud core
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Accretion from molecular cloud-core

" /solated low Mass star — accretion is filamentary from
the cloud core to the disc. The star is essentially fed
from the local molecular filament / cloud core

= Accretion happens
from filaments on
to the disc, not at

“the edge”

= Vertical transport
is crucial
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Highest Zoom Level

Giant Molecular Cloud scales
« Size: 40pc
« Refinement: 21 = cell size 120 AU

- Time duration: =20 Myr

Stellar accretion scales
- Dynamic scale: = 0.5 pc

« Refinement: 2%? = cell size 2 AU
- Time duration: = 100 kyr = accretion time scale Jis

Accretion disc scales
- Dynamic scale: =5 AU

« Refinement: 22° => cell size 0.015 AU
- Time duration: = 100-1000 yr



From GMC scales to disc, jet, and outflows
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Zoom of projections
of mass density at
t=50kyr, illustrating
the hierarchical fila-
mentary structure,
both outside and
inside the collapsing
core at the center.

Inner scale: 4 AU
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Timing of Disc Formation

= Observations:

e |tis well established that most Class | and Il stars have

Keplerian discs

* |In the past the evidence for early stage discs was less clear

* From the newest ALMA observations we see growing

evidence that =50 AU discs can form already before 100 kyr
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Disc rotation and size
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Green: Alfvén speed
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Jets and Disc Wind Outflows

The simulations produce, Y (57
spontaneously, inner jets and
larger scale disc wind outflows

Outer parts:

Disc wind with speeds =10 km/s
driven by inclined magnetic fields

Inner parts:
Highly colli

witloutflow speeds =100 km/s)

Resolving ar environment
is not necessary for jet formation!

Time evolution of the
inner scales at t=50kyr




Summary

Ab-Initio Hyper-Global models correctly
® Couple the dynamics of the gas-reservoir and the new-born stars

® Anchor the large scale magnetic fields at “infinity”

Resolves the issue of angular momentum transport
® Rapid accretion does NOT require MRI, relies on large scale fields

® Magnetic braking is NOT catastrophic, chaotic behavior is the savior
® Vertical transport is at least as important as radial transport

Demonstrates that star formation depends crucially on <B>
" A pseudo-random ‘parameter’ among star forming envelopes!
® Surviving angular momentum may be a remnant dep. on B

lllustrates the central importance of bi-polar outflows

® Disc winds and jets carry away =50% of the mass
® Much MORE of the angular momentum and energy



