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A time-window into solar system processes

Meteorites and their components provide the ONLY means to probe the
earliest formative stages of the Sun and its protoplanetary disk

Primitive meteorites Differentiated asteroids iron meteorites
Refractory crust
inclusion
Matrix I basaltic meteorites
Chondrule

Nucleosynthetic make-up of molecular cloud (MC)
Asteroid accretion efficiency

Timescale of MC collapse
Formation of the Sun and protoplanetary disk
Thermal evolution of protoplanetary disk

Timing of accretion and differentation

Mechanism(s) of planetary differentaition

Huge potential — but need to interpret the meteorite record in the context of

a collapsing MC evolving into a young star and its protoplanetary disk :
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Chondrite components — CAls & chondrules
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Let's not worry about the matrix for now... mixture of components



Dynamical evolution of the protoplanetary disk
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Supercomputer simulations: clouds to disks

e ab initio simulations of formation of circumstellar disks (a first!)
— Using Adaptive Mesh Refinement (modified version of RAMSES)

e Quter scale 40 pc, inner scale 0.01 AU
— Ratio1:23%=1:1 billion
— Zoom over 7 orders of magnitude

e A few stars
— All = solar-mass star

— Plan: Get a statistically significant sample of solar mass stars

* The initial and boundary conditions follow from the statistical
properties of the interstellar medium

Nordlund et al. (2013) astro-ph/1309.2278



Zooming in on the formation of PPD

e Giant Molecular Cloud scales
— Size: 40pc
— Refinement: 216 = cell size 125 AU

— Time duration: = 10 Myr

e Stellar accretion scales

— Dynamic scale: = 0.5 pc = 10.000 AU
— Refinement: 222 = cell size 2 AU

— Time duration: = 100 kyr = accretion time scale

* Accretion disk scales
— Dynamic scale: = 5 AU
— Refinement: 22° => cell size 0.015 AU (!)
— Time duration: = 1000 yrs




Disk replenishment time scales

(disk mass) / (accretion rate) = time scale
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:> Extremely brief residence time of material in the protoplanetary disk



Evidence for large scale outward transport

Presence of refractory high-temperature components in the accretion regions of
carbonaceous chondrites (formed beyond snow line) requires efficient outward transport
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26Al-free CAl-like object in comet 81P/Wild 2?

Analysis of samples returned from STARDUST mission suggest the presence of early-
formed 2°Al-free CAl material in the accretion region of Jupiter-family comets

comet 81P/Wild 2
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This study: using chondrules to track transport

Chondrule are the dominant chondrite constituent and must reflect one of the most
energetic process that operated in the early solar system: precursor material to planets.

| CR chondrite, PCA 91082 o
" matrix Are there age variations amongst chondrules
! i e :> from individual chondrite groups? Storage?

U-corrected Pb-Pb dating

Where did chondrules from individual chondrite
|:> groups formed? Locally? Various distances?

Isotope fingerprinting - using >4Cr as DNA

Chondrites formed in the INNER SS:
=» Enstatite and ordinary chondrites

Chondrites formed in the OUTER SS:
=» CV and CR carbonaceous chondrites



The U-Pb system: absolute assumption-free ages

 The U-Pb decay system is the only assumption-free
chronometer that provide absolute ages with a resolution of

~200,000 years
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Absolute chronology of CAls and chondrules

Chondrule formation started contemporaenously with CAls and lasted about 3 Myr
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Absolute chronology of chondrules — new data
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Age distribution of chondrules (N =11... soon 50!)
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Evidence for widespread isotope heterogeneity

The discovery more than 30 years ago of isotopic anomalies in meteorites and their
components indicates inefficient mixing of presolar components in the protoplanetary disk.
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Accretion regions of chondrite classes
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>4Cr results: CV, CR, EC + OC chondrules (N=61)
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Olsen et al. (2014) in prep.



No (almost) CAl material in inner solar system?
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Trinquier et al. (2009) Science 324, 374



No (almost) CAl material in inner solar system
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Protoplanetary disk reservoirs
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The conveyor belt paradigm
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Return timescales to inner solar system

From simulations of a solar mass protostar: distribution of number of voxels from 1,200
to 40,000 AU in 3-D space as a a function of return timescales to inner solar system
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:> Presence of voxels at any one time with long return timescales



Observations and questions

What do we think we know

:> Chondrites and their components sample the composition of the disk at
different times and in different regions — chondrules are good messengers

:> Fundamental isotopic (°*Cr...) difference between inner and outer SS

:> Plenty of early formed refractory material (?°Al-rich and 26Al-poor) in the
outer SS but not in the inner SS — large scale outward transport

:> Evidence for local recycling in the inner SS — local outward transport

:> Chondrule forming process operating in inner and outer SS

Remaining important questions



Observations and questions

What do we think we know

:> Chondrites and their components sample the composition of the disk at
different times and in different regions — chondrules are good messengers

:> Fundamental isotopic (°*Cr...) difference between inner and outer SS

:> Plenty of early formed refractory material (?°Al-rich and 26Al-poor) in the
outer SS but not in the inner SS — large scale outward transport

:> Evidence for local recycling in the inner SS — local outward transport

:> Chondrule forming process operating in inner and outer SS

Remaining important questions

:> How do we prevent outer SS stuff to drift in for 5 Myr? Jupiter?

:> Two transport regimes? Large scale (jet) and small scale (wind)?



