Colin M^cNally

Alexander Hubbard, Mordecai-Mark Mac Low, Chao-Chin Yang,

Denton Ebel

🕤 American Museum 🖱 Natural History

Accretion Releases lots of Energy

An estimate of energy requirement for thermal processing from chondritic material (King & Pringle 2010):

$$E_{req} = 1.2 \times 10^{11} \left(\frac{T}{2000 \text{ K}} \right) \text{ erg g}^{-1}$$
 (1)

$$E_{kin} = 1.5 \times 10^{12} \left(\frac{M}{M_{\odot}}\right) \left(\frac{3 \text{ AU}}{R}\right) \text{ erg g}^{-1}$$
 (2)

- Demands about 8% efficiency at 3 AU.
- Significant, but much looser constraint at smaller radii.

Magnetic Fields

Expect disk dynamo to produce plasma beta $\sim 1-50$ Remnant magnetic field measurements indicate Gauss-level magnetic fields were present when some chondrules cooled.

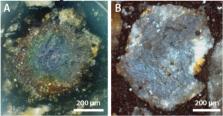


Fig. 1. Crossed-polarized reflected light photomicrographs of two dusty olivine-bearing chondrules measured in this study.

Fu et al. 2014: Semarkona, 0.54 ± 0.21 Gauss imprint from 723 K to 1033 K

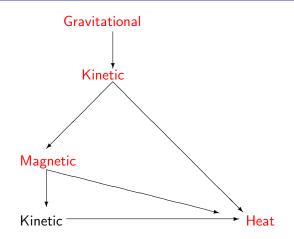
Localized Heating and Chondrule Cooling

Chondrule radiative cooling timescale:

 $t_{\rm rad} \sim 10~{\rm s}$

Chondrule actual cooling timescale:

$$t_{\rm cool} \sim 10^5 - 10^6 {\rm s}$$


Orbital timescales:

$$t_{\rm orbit} \sim 10^7 \ {\rm s}$$

To produce a cooling timescale in between radiative timescale, and orbital timescales, one solution is to use localized heating in the disk.

└─ Magnetic Energy

Follow the Energy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Magnetic Energy

A partial list of proposals for localized heating with magnetic dissipation:

Sonnet 1978 heating from relativistic e^- emitted from magnetic reconnection

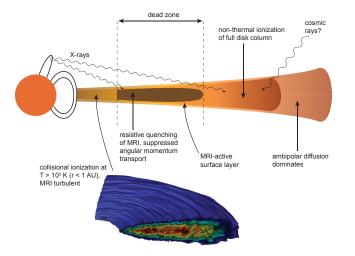
Levy & Araki 1988 magnetic reconnection in disk corona

Fleck 1990 magnetic reconnection in the disk midplane

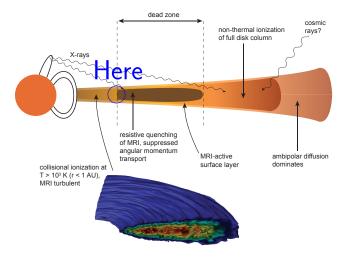
King & Pringle 2010 rapid magnetic reconnection driving shocks in the disk midplane

Hirose & Turner 2011 50% heated current sheets in active layer

Muranushi, Okuzumi & Inutsuka 2012 MRI-lightning ionization avalanche (however, see next talk)


Hubbard et al. 2012 McNally et al. 2013, "Short-circuit" instability

└─ Magnetic Energy


- Can Ohmic dissipation dominate over shock-heating in disk-like shear flow?
- 2 What do current sheets in MRI-turbulent disk-like shear flow really look like close up?

Magnetic Field Coupling Regimes

Armitage 2011

Magnetic Field Coupling Regimes

Armitage 2011

└─ Magnetic Energy

An Experiment

An Experiment with Current Sheets

Step back.

Ask a simple question in the simplest physical regime:

- Optically Thick (Radiative diffusion)
- Unstratified local model (Constant thermal relaxation time)
- Net Vertical Field $\lambda_{MRI} \sim H$

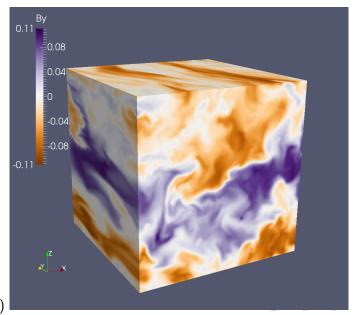
Constant Ohmic resistivity (Initial Elsasser number $\Lambda_0 = 0.5$) And then:

- Use lots of resolution (remesh from 64^3 to 512^3)
- Use different numerical methods (Pencil & Athena)

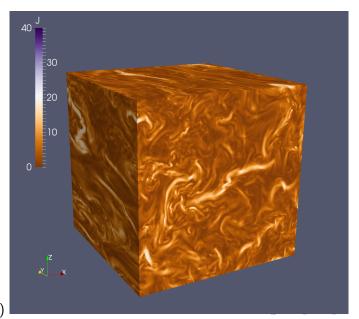
What does the magnetic dissipation produce?

McNally, Hubbard, Mac Low, Yang, 2014

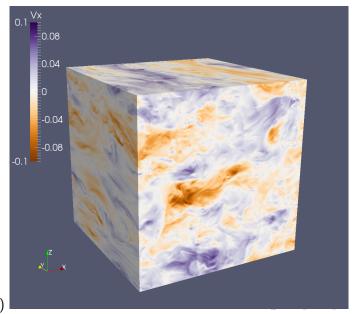
└─ Magnetic Energy

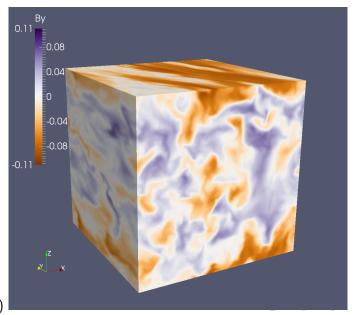

An Experiment

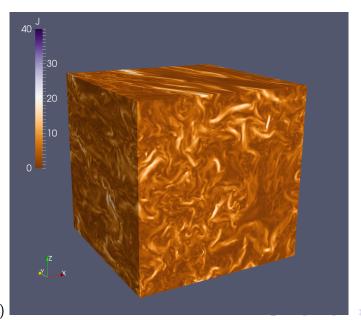
Parameters


Box 1:1:1 - (0.3 AU, 0.3 AU, 0.3 AU) = (4.85H, 4.85H, 4.85H) Box 4:4:1 - (0.3 AU, 0.3 AU, 0.3 AU) = (4.85H, 4.85H, 1.21H)

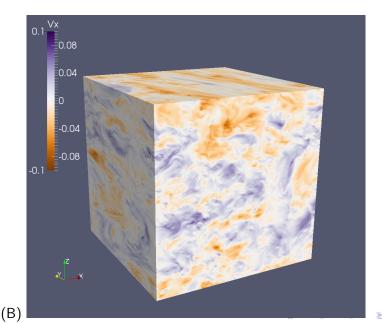
		,
	Parameter	Value
ρ_0	Initial density	$10^{-9} \text{ g cm}^{-3}$
T_0	Background temperature	950 K
L_x	Box size in x	0.3 AU
		4.85H
Ω_0	Orbital frequency	$2\pi yr^{-1}$
r_0	Shearing box position	1 AU
γ	Gas adiabatic Index	1.5
\overline{m}	Gas mean particle mass	2.33 amu
η	Ohmic resistivity $c^2/4\pi\sigma$	$8.9 \times 10^{14} \text{ cm}^2 \text{ s}^{-1}$
		$5.2 \times 10^{-3} \Omega H^2$
β_0	Initial plasma beta	750
v_{A0}	Initial Alfvén speed	$9.5 \times 10^3 \text{ cm s}^{-1}$
		$5.2 \times 10^{-2} \Omega H$
Λ_0	Initial Elsasser number	0.5
κ	Rosseland mean opacity	$20 \text{ cm}^2 \text{ g}^{-1}$
$ au_0$	Thermal relaxation time	1 yr
λ_{MRI}	MRI fastest growing mode	$5.7 \times 10^{-2} \text{ AU}$
witti	5 5	0.92H


- └─ Magnetic Energy
 - An Experiment

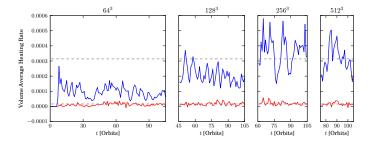

- └─ Magnetic Energy
 - └─An Experiment


- └─ Magnetic Energy
 - └─An Experiment

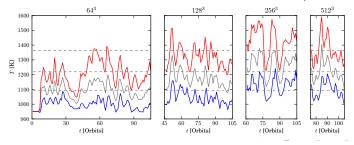
- └─ Magnetic Energy
 - └─An Experiment



- └─ Magnetic Energy
 - └─An Experiment

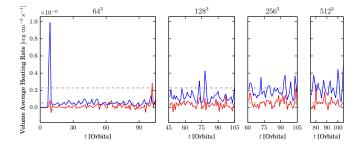

(B)

- └─ Magnetic Energy
 - ∟An Experiment

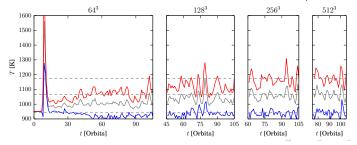


Temperature Fluctuations and Current Sheets in Protoplanetary Disks

- └─ Magnetic Energy
 - An Experiment

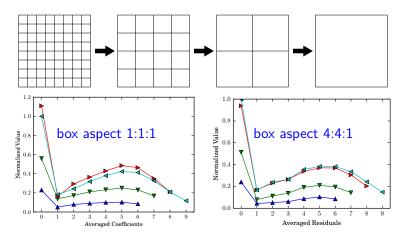


Magnetic Heating dominates Compressive Heating (box 1:1:1)



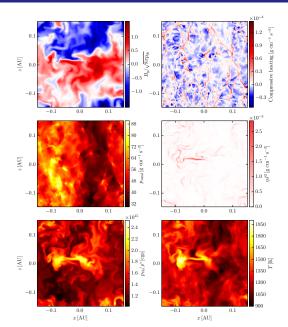
Magnetic Energy

An Experiment

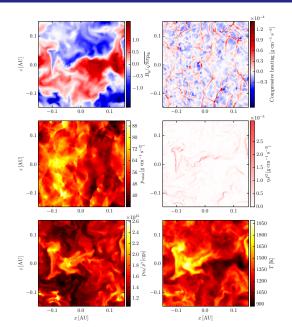

Magnetic Heating dominates Compressive Heating (box 4:4:1)

└─ Magnetic Energy

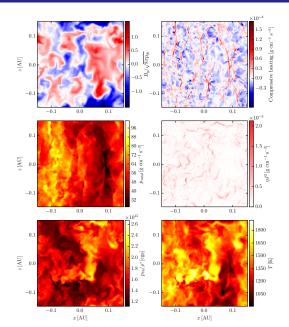
An Experiment


Multiresolution analysis of J^2 reveals convergence

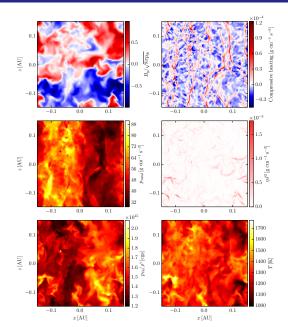
 $64^3 \ 128^3 \ 256^3 \ 512^3$


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

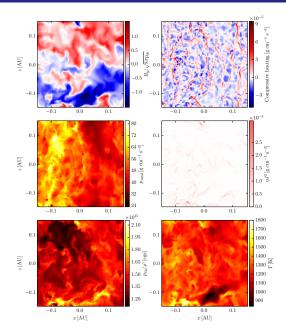
- └─ Magnetic Energy
 - —An Experiment


- Hottest regions are current sheets
- Compressive heating largely reversed by expansion
- Largest current sheet occurs where dominantly azimuthal field reverses
- Current sheets do not stand out in total pressure (thermal + magnetic)

- └─ Magnetic Energy
 - —An Experiment


- Hottest regions are current sheets
- Compressive heating largely reversed by expansion
- Largest current sheet occurs where dominantly azimuthal field reverses
- Current sheets do not stand out in total pressure (thermal + magnetic)

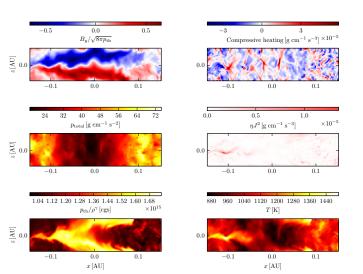
- └─ Magnetic Energy
 - —An Experiment


- Hottest regions are current sheets
- Compressive heating largely reversed by expansion
- Largest current sheet occurs where dominantly azimuthal field reverses
- Current sheets do not stand out in total pressure (thermal + magnetic)

- └─ Magnetic Energy
 - —An Experiment

- Hottest regions are current sheets
- Compressive heating largely reversed by expansion
- Largest current sheet occurs where dominantly azimuthal field reverses
- Current sheets do not stand out in total pressure (thermal + magnetic)

- └─ Magnetic Energy
 - —An Experiment

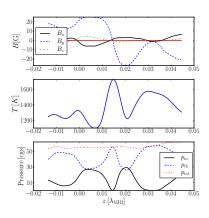


- Hottest regions are current sheets
- Compressive heating largely reversed by expansion
- Largest current sheet occurs where dominantly azimuthal field reverses
- Current sheets do not stand out in total pressure (thermal + magnetic)

└─ Magnetic Energy

An Experiment

4:4:1 Geometry



ł

└─ Magnetic Energy

An Experiment

Toy model

$$\begin{aligned} \frac{\partial B_x}{\partial t} &= \eta \frac{\partial^2 B_x}{\partial z^2} \\ \frac{\partial B_y}{\partial t} &= -\frac{3\Omega_0}{2} B_x + \eta \frac{\partial^2 B_y}{\partial z^2} \\ B_x(t) &= B_0 \exp(-t/\tau) \sin(kz) \\ B_y(t) &= -B_0 \left(\frac{3\Omega_0 t}{2}\right) \exp(-t/\tau) \sin(kz) \end{aligned}$$

If τ_E (Thermal diffusion timescale) = $\tau/2$ then

$$\delta T_{\max} = \frac{9(\gamma - 1)}{4 \exp(1)\beta_p} T_0$$

In simulation, gives $\delta T_{\rm max}/T_0\approx 0.4{\rm mer} \, {\rm mer} \, {\rm$

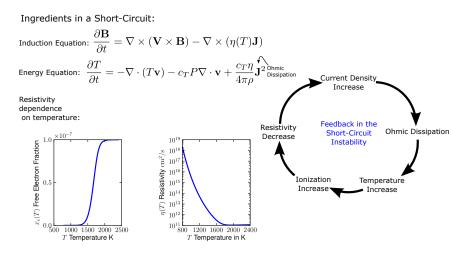
-Magnetic Energy

An Experiment

Subconclusions

Caveats

- Unstratified, zero net flux, optically thick approach is limited
- Radially local approach cannot track the movement of the edge of dead zone regime (Faure, Fromang, Latter 2014)
- \blacksquare No variation of η and κ should respond to thermal ionization and grain destruction


Other Conclusions

- Required ~ 50 zones per scale height with Pencil (6th order in space) to resolve current sheets even with maximal resistivity
- Remelting of compact CAIs could occur in a regime like the one modeled (Stolper & Paque 1986, Scott & Krot 2005)
- Temperature fluctuations would broaden ice lines
 - if $T \propto R^{-1/2}$ then radial variation = 2× temperature variation (but, see Flock?)

└─ Magnetic Energy

Short Circuit Instability of Current Sheets

Short Circuit Instability - Hubbard et al. 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

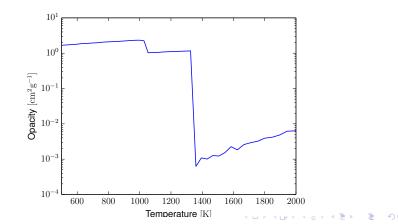
- └─ Magnetic Energy
 - Short Circuit Instability of Current Sheets

How Fast?

$$\partial_t \mathbf{B} = \nabla \times (\mathbf{v} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B} - \nabla (\nabla \eta \cdot \mathbf{B}) + (\mathbf{B} \cdot \nabla) \nabla \eta - (-\nabla \eta \cdot \nabla) \mathbf{B}$$

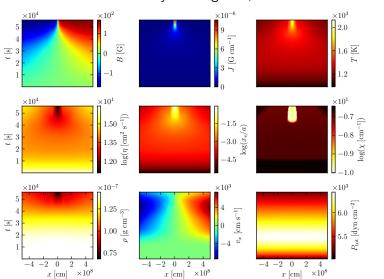
• $-\nabla\eta$ behaves like an anti-diffusion

 Thermal ionization of alkali metals (K, Na) has exponential T dependence


 \blacksquare in 1D runs, see $-\nabla\eta\sim 10^4~{\rm cm/s}$

(What about if η increases in the current sheet?)

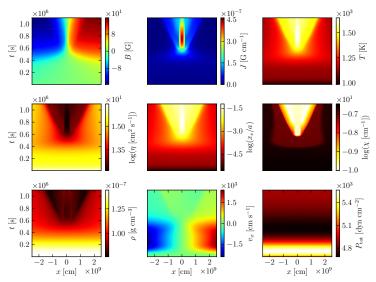
- └─ Magnetic Energy
 - Short Circuit Instability of Current Sheets


What limits the instability?

Presence of temperature gradient dependent on opacity, which is in turn strongly temperature dependent. (D'Alessio 2001)

└─ Magnetic Energy

Short Circuit Instability of Current Sheets



Not Limited by Cooling McNally et al. 2013

└─ Magnetic Energy

Short Circuit Instability of Current Sheets

Limited by Cooling (silicate grain destruction) McNally et al. 2013

- └─ Magnetic Energy
 - Short Circuit Instability of Current Sheets

Conclusions

- Current sheets can drive significant (order-unity) temperature fluctuations in protoplanetary disks (optically thick region).
- The local variations of conductivities and opacities can both enhance and limit the heating in current sheets.
- Fluctuations can be large enough that they ought to have consequences for thermal processing of solids.
- Functional dependence and form of η and κ can be critical.

Wishlist:

- Zero net flux current sheet study
- Stratified current sheet study
- Track particles though the current sheets
- Follow current sheets later in time