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ldeal MHD Expected in Inner Radii of Protoplanetary Disks

[ 1 Thermal ionization can revive ideal MHD in inner radii.
[ 1 What is the MRI turbulence with ionization transitions there?
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Outbursts in Accretion Disks

] Episodical outbursts (sudden increase in M) are observed in some systems.
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Thermal Equilibrium Curve

[J Thermal balance in a vertical column (angular velocity §2):
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(] Tesr = Tesr(2) or M = M(E): M or T is uniquely determined by ¥

(thermal equilibrium curve).

[] This is a non-trivial relation due to Tiiq = Tid(Ter), which is determined by
thermodynamics in the vertical column.



Disk Instability Model (DIM) of Outbursts

[1 “S-shaped” thermal equilibrium curve is associated with hydrogen ionization
transition around 7" = 10*K (Hoshi 79).

fully ionized H

log Tesf

log M

partially ionized H

neutral H

[ 1 Episodical outbursts is well modeled as a limit-cycle on an “S-shaped’
thermal equilibrium curve (e.g. Mineshige & Osaki 83).

[1 Outburst phase corresponds to a hot and fully-ionized gas state while
quiescent phase corresponds to a cool and neutral gas state.



Magnitude

Observational Constraint on Saturation Level of Turbulence

[ ] The most reliable estimate on “alpha” in acccretion disks is obtained from
the decay time of the outbursts (e.g. Smak 99):

Ohot — 0.1 ~0.3

[ ] The value in quiescent phases is estimated as oo ~ 0.01 from comparison
of duration times.
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Saturation Level of MRI Turbulence

[ 1 Ideal MHD simulations without net vertical fields show a universal value of «a:
OMR] — 0.01 ~ 0.02

(1 Non-negligible discrepancy between alpha in the hot ionized state (anot) and
alpha in MRI turbulence assuming ideal MHD (amgri) (King+ 07).

[ 1 Where the discrepancy comes from? Cannot MRI explain the turbulence in
fully-ionized accretion disks?

[1 CAVEAT: MRI turbulent stress depends on net vertical flux: oc B? (e.g.
Suzuki+ 11)

[1 CAVEAT: Isothermal process is usually assumed in the MRI simulations.



In This Work

[ ] Magnetic turbulence in accretion disks with ionization transitions is studied
by 3D radiation MHD simulations using realistic opacities and EOS.

[1 Stratified shearing box is employed with angular velocity 2 =
e 6.4 x 1073s™!: dwarf nova case M, = 0.6M, r = 14R, (Hirose+ 14)
e 2.5 x 107°s™1: protoplanetary disk case M, = My, r = 0.05AU
] To map out a thermal equilibrium M = M () (or Tegr = Terr(2)), we repeat
a simulation to measure M (and «) for a given 3.
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Basic Equations

[] ideal MHD —+ radiative transfer with FLD approximation

dp
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[1 pre-computed EOS and opacities
p=nplp,e/p), T =T(p,e/p)  non-ideal EOS
KR = kR (p,T) Rosseland-mean opacity

k" =k (p,T) Planck-mean opacity



Pre-computed EOS and Opacities
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Temperature Dependence of Opacities
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Thermal Equilibrium Curve

[] Two solution branches are obtained:
e upper hot branch with large optical thickness (7o > 10%)
e lower cool branch with small optical thickness (7iot < 10)

[1 System shows bistability (Smin = 100 and . = 350 g cm™2).

(1 (Anticlockwise) limit cycle is indicated.
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Saturation Level of Turbulence (alpha = stress / pressure)

[J Most solutions show typical values of MRI turbulence (~ 0.03).
[J Solutions near the low—=>: end of the upper branch show larger values (up to

~ 0.12).
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Vertical Profiles of Heat Fluxes

[ 1 Radiation and advection account for heat

transport:
F_.(2) = [(F.)] radiation
F . (2) =[((e+ E)v,)] advection

[ ] Radiation carries heat when « is a typical
value of MRI turbulence (solutions (A) and
(€)).

[ 1 Advective cooling dominates near the
midplane when « is large (solution (B)).

[ 1 Advective cooling is confirmed to be
associated with thermal convection due to
large opacities around T' = 10*K.
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Why « is enhanced by convection?

[1 Convective plumes create coherent vertical fields that seed axisymmetric
MRI, which enhances turbulent stress and dissipation.

[1 Convection enhances cooling, which suppresses pressure increase due to the
increased dissipation.
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Convection Causes Enhanced Magnetic Turbulence

[ ] The « value increases near the low > end of the upper branch.
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Convection Causes Enhanced Magnetic Turbulence

[ 1 The « value has a good correlation with f,q,.

Fadv = J [{(e + E) v:)] sgn(2) [(Penerman)] d2
- f [<(6 + E) ’UZ> T <FZ>] Sgn(z) [<pthermal>] dz
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Convection Causes Enhanced Magnetic Turbulence

[0 (V2) and (B2) are strengthened when f,q, is large.
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Convection Causes Enhanced Magnetic Turbulence

[] Stress increases as <B§> does while pressure does not, hence o = stress /
pressure increases.
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Summary 1

[ Thermal equilibrium states in accretion disks with ionisation transitions are
determined by 3D radiation MHD simulations using realistic opacities and

EOS.

] Thermal equilibrium curve M = M(X) that is consistent with DIM was
obtained.

e two stable solution branches

o upper hot branch with large optical thickness (> 10%)
o lower cool branch with small optical thickness (< 10)

e anti-clockwise limit cycle in the >—M plane

[] « is significantly enhanced near the low-X end of the hot branch.

e Strong convection necessarily occurs due to large opacities around the
hydrogen ionization temperature T ~ 10*K.

o Convection creates vertical fields feeding axisymmetirc MRI to
strengthen turbulent stress.
o Pressure increase is suppressed by cooling enhanced by convection.

e Large v in the outbursts can be naturally explained by MRI turbulence
enhanced by thermal convection.



S-curve at 0.05 AU in a Protoplanetary Disk

[ Hot, optically thick branch and cool, optically thin branch
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S-curve at 0.05 AU in a Protoplanetary Disk

[J « enhanced at the low-Y end of the upper branch (> 0.1)
[] a ~ 0.03 for others
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Summary 2

[] Two stable branches with smaller Xax /> min

[J apot ~ 0.1 (enhanced by convection) and oo ~ 0.03
® ot ~ 1073 and aoo ~ 107 are required to explain light curves of FU
Ori outbursts (Thigh ~ 10%yr and 7y ~ 10%yr).

TABLE 2
RESULTS OF OUTBURST MODELS

M, Trise Thigh Tru My Lyy* Teffb

o, oty (107° Mg yr™Y)  (yr) (yr) (yr) (107°*Mgyr™Y)  (Ly) (K)
1074 1073 1 25 85 780 10 14 5600
. 3 50 140 900 30 35 6800
5 60 170 1050 40 60 7300
10 80 250 1150 50 85 8000
1074 3x 1074 3 90 270 700 7 11 5000
1073 1072 3 6 12 160 40 65 8500

2 The bolometric luminosity given is the peak during outburst and includes radiation from only one
surface of the disk.
® Temperature is the maximum value during outburst. from Bell & Lin 94

(] Another mechanisms (non-ideal MHD effects and gravitational instability) are
proposed to reproduce outburst cycles (e.g. Armitage+ 01, Zhu+ 09).

[] Need to include the stellar irradiation, non-thermal ionization, and B,



