Magnetic Turbulence in Inner Radii of Protoplanetary Disks

Shigenobu Hirose (JAMSTEC, Japan)

August 6, 2014 Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks Niels Bohr Institute

Ideal MHD Expected in Inner Radii of Protoplanetary Disks

- □ Thermal ionization can revive ideal MHD in inner radii.
- □ What is the MRI turbulence with ionization transitions there?

Outbursts in Accretion Disks

 \Box Episodical outbursts (sudden increase in \dot{M}) are observed in some systems.

protoplanetary disk (FU Ori outbursts)

accretion disk + white dwarf (Dwarf nova)

Thermal Equilibrium Curve

 \Box Thermal balance in a vertical column (angular velocity Ω):

- $\Box T_{\text{eff}} = T_{\text{eff}}(\Sigma) \text{ or } \dot{M} = \dot{M}(\Sigma): \dot{M} \text{ or } T_{\text{eff}} \text{ is uniquely determined by } \Sigma$ (thermal equilibrium curve).
- This is a non-trivial relation due to $T_{mid} = T_{mid}(T_{eff})$, which is determined by thermodynamics in the vertical column.

Disk Instability Model (DIM) of Outbursts

□ "S-shaped" thermal equilibrium curve is associated with hydrogen ionization transition around $T = 10^4$ K (Hoshi 79).

- Episodical outbursts is well modeled as a limit-cycle on an "S-shaped" thermal equilibrium curve (e.g. Mineshige & Osaki 83).
- Outburst phase corresponds to a hot and fully-ionized gas state while quiescent phase corresponds to a cool and neutral gas state.

Observational Constraint on Saturation Level of Turbulence

□ The most reliable estimate on "alpha" in acccretion disks is obtained from the decay time of the outbursts (e.g. Smak 99):

 $\alpha_{\rm hot} = 0.1 \sim 0.3$

□ The value in quiescent phases is estimated as $\alpha_{cool} \sim 0.01$ from comparison of duration times.

Saturation Level of MRI Turbulence

 \Box Ideal MHD simulations without net vertical fields show a universal value of α :

 $\alpha_{\rm MRI}=0.01\sim 0.02$

- □ Non-negligible discrepancy between alpha in the hot ionized state (α_{hot}) and alpha in MRI turbulence assuming ideal MHD (α_{MRI}) (King+ 07).
- □ Where the discrepancy comes from? Cannot MRI explain the turbulence in fully-ionized accretion disks?
- \Box CAVEAT: MRI turbulent stress depends on net vertical flux: $\propto B_z^2$ (e.g. Suzuki+ 11)
- □ CAVEAT: Isothermal process is usually assumed in the MRI simulations.

In This Work

- Magnetic turbulence in accretion disks with ionization transitions is studied by 3D radiation MHD simulations using realistic opacities and EOS.
- $\hfill\square$ Stratified shearing box is employed with angular velocity $\Omega =$
 - $6.4 \times 10^{-3} \text{s}^{-1}$: dwarf nova case $M_* = 0.6 M_{\odot}$, $r = 14 R_*$ (Hirose+ 14)
 - $2.5 \times 10^{-5} \text{s}^{-1}$: protoplanetary disk case $M_* = M_{\odot}$, r = 0.05 AU
- \Box To map out a thermal equilibrium $\dot{M} = \dot{M}(\Sigma)$ (or $T_{\text{eff}} = T_{\text{eff}}(\Sigma)$), we repeat a simulation to measure \dot{M} (and α) for a given Σ .

Basic Equations

□ ideal MHD + radiative transfer with FLD approximation

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= 0 \\ \frac{\partial (\rho \boldsymbol{v})}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) &= -\nabla p + \frac{1}{4\pi} (\nabla \times \boldsymbol{B}) \times \boldsymbol{B} + \frac{\kappa^{\mathsf{R}} \rho}{c} \boldsymbol{F} \\ \frac{\partial e}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) &= -(\nabla \cdot \boldsymbol{v}) p - (4\pi \boldsymbol{B} - c\boldsymbol{E}) \kappa^{\mathsf{P}} \rho \\ \frac{\partial E}{\partial t} + \nabla \cdot (\boldsymbol{E} \boldsymbol{v}) &= -\nabla \boldsymbol{v} : \mathsf{P} + (4\pi \boldsymbol{B} - c\boldsymbol{E}) \kappa^{\mathsf{P}} \rho - \nabla \cdot \boldsymbol{F} \\ \frac{\partial \boldsymbol{B}}{\partial t} - \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) &= 0 \\ \boldsymbol{F} &= -\frac{c\lambda_{\mathsf{limiter}}}{\kappa^{\mathsf{R}} \rho} \nabla \boldsymbol{E} \qquad \mathsf{FLD} \text{ approximation} \end{split}$$

 $\hfill\square$ pre-computed EOS and opacities

$$\begin{split} p &= p(\rho, e/\rho), \quad T = T(\rho, e/\rho) & \text{non-ideal EOS} \\ \kappa^{\mathsf{R}} &= \kappa^{\mathsf{R}}(\rho, T) & \text{Rosseland-mean opacity} \\ \kappa^{\mathsf{P}} &= \kappa^{\mathsf{P}}(\rho, T) & \text{Planck-mean opacity} \end{split}$$

Pre-computed EOS and Opacities

□ EOS

• Solar abundance

Mean opacities

Semenov+ 03

Opacity Project

• Ferguson+ 05

• chemical equilibrium

Temperature Dependence of Opacities

Opacities peak around $T = 10^4$ K.

Thermal Equilibrium Curve

□ Two solution branches are obtained:

- upper hot branch with large optical thickness ($\tau_{tot} > 10^4$)
- lower cool branch with small optical thickness ($\tau_{tot} < 10$)
- \Box System shows bistability ($\Sigma_{min} = 100$ and $\Sigma_{max} = 350$ g cm⁻²).

□ (Anticlockwise) limit cycle is indicated.

Saturation Level of Turbulence (alpha = stress / pressure)

 \square Most solutions show typical values of MRI turbulence (~ 0.03).

□ Solutions near the low- Σ end of the upper branch show larger values (up to ~ 0.12).

Vertical Profiles of Heat Fluxes

Radiation and advection account for heat transport:

 $\bar{F}_{\rm rad}^{-}(z) \equiv [\langle F_z \rangle] \quad \text{radiation}$ $\bar{F}_{\rm adv}^{-}(z) \equiv [\langle (e+E)v_z \rangle] \quad \text{advection}$

- Radiation carries heat when α is a typical value of MRI turbulence (solutions (A) and (C)).
- Advective cooling dominates near the midplane when α is large (solution (B)).
- □ Advective cooling is confirmed to be associated with thermal convection due to large opacities around $T = 10^4$ K.

$$\frac{N^2}{\Omega^2} \equiv \frac{1}{\left[\langle \Gamma_1 \rangle\right]} \frac{d \ln\left[\langle p \rangle\right]}{d \ln z} - \frac{d \ln\left[\langle \rho \rangle\right]}{d \ln z}$$

Why α is enhanced by convection?

- Convective plumes create coherent vertical fields that seed axisymmetric MRI, which enhances turbulent stress and dissipation.
- □ Convection enhances cooling, which suppresses pressure increase due to the increased dissipation.

 \Box The α value increases near the low Σ end of the upper branch.

 \Box The α value has a good correlation with f_{adv} .

Surface density (g cm⁻²)

 $\Box \langle V_z^2 \rangle$ and $\langle B_z^2 \rangle$ are strengthened when f_{adv} is large.

 \Box Stress increases as $\langle B_z^2 \rangle$ does while pressure does not, hence $\alpha =$ stress / pressure increases.

Summary 1

- Thermal equilibrium states in accretion disks with ionisation transitions are determined by 3D radiation MHD simulations using realistic opacities and EOS.
- \Box Thermal equilibrium curve $\dot{M}=\dot{M}(\Sigma)$ that is consistent with DIM was obtained.
 - two stable solution branches
 - \circ upper hot branch with large optical thickness (> 10⁴)
 - \circ lower cool branch with small optical thickness (< 10)
 - anti-clockwise limit cycle in the $\Sigma \text{-}\dot{M}$ plane
- $\Box \ \alpha$ is significantly enhanced near the low- Σ end of the hot branch.
 - Strong convection necessarily occurs due to large opacities around the hydrogen ionization temperature $T\sim 10^4{\rm K}.$
 - Convection creates vertical fields feeding axisymmetirc MRI to strengthen turbulent stress.
 - Pressure increase is suppressed by cooling enhanced by convection.
 - Large α in the outbursts can be naturally explained by MRI turbulence enhanced by thermal convection.

S-curve at 0.05 AU in a Protoplanetary Disk

- $\hfill\square$ Hot, optically thick branch and cool, optically thin branch
- \Box Smaller $\Sigma_{max}/\Sigma_{min}$

S-curve at 0.05 AU in a Protoplanetary Disk

 $\Box \ \alpha \text{ enhanced at the low-}\Sigma \text{ end of the upper branch (}>0.1\text{)}$ $\Box \ \alpha \sim 0.03 \text{ for others}$

Summary 2

 \Box Two stable branches with smaller $\Sigma_{\max}/\Sigma_{\min}$

 $\Box~\alpha_{\rm hot}\sim 0.1$ (enhanced by convection) and $\alpha_{\rm cool}\sim 0.03$

• $\alpha_{hot} \sim 10^{-3}$ and $\alpha_{cool} \sim 10^{-4}$ are required to explain light curves of FU Ori outbursts ($\tau_{high} \sim 10^2$ yr and $\tau_{FU} \sim 10^3$ yr).

α _c	a _h	$(10^{-6} \dot{M}_{\odot}^{in} \text{ yr}^{-1})$	τ _{rise} (yr)	$ au_{ ext{high}} (ext{yr})$	τ _{FU} (yr)	$\dot{M}_{\rm FU}$ (10 ⁻⁶ M_{\odot} yr ⁻¹)	${L_{ m bol}}^{ m a}_{ m (L_{\odot})}$	T _{eff} ^b (K)
10 ⁻⁴	10 ⁻³	1	25	85	780	10	14	5600
	• • •	3	50	140	900	30	35	6800
		5	60	170	1050	40	60	7300
		10	80	250	1150	50	85	8000
10 ⁻⁴	3×10^{-4}	3	90	270	700	7	11	5000
10^{-3}	10^{-2}	3	6	12	160	40	65	8500

RESULTS OF OUTBURST MODELS

TABLE 2

^a The bolometric luminosity given is the peak during outburst and includes radiation from only one surface of the disk.

^b Temperature is the maximum value during outburst.

from Bell & Lin 94

- □ Another mechanisms (non-ideal MHD effects and gravitational instability) are proposed to reproduce outburst cycles (e.g. Armitage+ 01, Zhu+ 09).
- \Box Need to include the stellar irradiation, non-thermal ionization, and B_z