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Protoplanetary disks in hot water
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Bai & Goodman (2009)
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» Viscous heating timescale: tyea; ~ ()71

» Cooling time 2 time for Hy molecule to encounter a grain:
2 -1
teool Z (ﬂ—adndvth)

ag = dust grain radius < 1 pum
: P
ng = grains/volume = fdust_to_gasﬂ
grain

vih = thermal speed ~ QHgqs

—14d —14 -
pcrit(tcool - theat) ~ af ﬁpsolid ~2x10 gcm 3

NH crit ™~ 101%cm ™3

fora=01,f=103 a5 =1pum, H=0.1AU, ps=3gcm™3

= NH,crit ~ nH,critH ~ 1022 cm

2



Glassgold, Najita, & Igea (2004)
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Hirose & Turner (2011)
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CO rovibrational spectra of disks at 4 — 5 um
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CO line shapes @ resolution Av ~ 3kms™!
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CO & its rovibrational spectrum
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CO & its rovibrational spectrum

E(V, J) ~ v1b( ) + Erot(-l)7
Evin(v) =3122 (v + 3) ke K,
Eot(V)ky ! = 779J(J + 1)k K

E(v,J) > E(v—1,J+1)
hc

— =~ 461
3122k, K pm

line strength

vel{0,1,2,...
Je€{0,1,2,...

R branch

wavenumber v —

P branch
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Protostellar Disk Modeling code: PRODIMO

» Principal authors: P. Woitke, W.-F. Thi, I. Kamp
» Physics:

>

>

>

vV vy VY VvVYyy

Non-LTE atomic & molecular level populations
Non-LTE heating, cooling, & ionization
Frequency-dependent continuuum radiation transfer
(axisymmetric)

Lines via escape-probability approximation

UV photochemistry

X-rays

Vertical hydrostatic equilibrium

Iterates toward equilibrium



Density and temperature structure: M = dex(—10)
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» Radial profile T;‘H o Mr—3

» Vertical profile following Hirose & Turner (2011)

Qs = Mr =3z F(z/zaet)

act

Zact = 1.97r 025 < r,w<2



Density and temperature structure: M = dex(—8)
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Model spectra
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Spectral ratios
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Line sums

logM 45 pm (CO) 0.35-1.0 um (All) 0.13-0.3 pm (All)

-10 0.92 x 1073 1.14 x 10~* 3.38 x 107°
-9 1.08 x 1073 3.84 x 104 1.41 x 10~*
-8 1.76 x 1073 2.97 x 1073 1.70 x 1073

Table : Line luminosities [ L] vs. accretion rate [ Mg yr—!] in several
wavelength regions

M, =0.7Mg, L, = 1Lo, fyy = 0.01, Lx = 10¥ ergs™!,
fdust—to—gas = 10_4



Summary

» Accretion via MRI or magnetocentrifugal winds would have
different implications for heating the upper layers of the disk

» The MRI heating is small bolometrically compared to
reprocessed star light, but potentially observable if effective at
high altitudes where Tgas > Taust (na S 101%cm—3

» There is a wealth of data for resolved (Av ~ 3kms~!)
mid-IR CO and HO lines that have not been systematically
compared to dynamical (MRI/wind) models

> Line shapes are puzzling in most cases
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