Global simulations of protoplanetary discs with Ohmic resistivity and ambipolar diffusion Oliver Gressel* Niels Bohr International Academy (NBIA), Copenhagen Richard P. Nelson (QMUL, London) Neal J. Turner (JPL-Caltech, Pasadena) Colin P. McNally (NBIA, Copenhagen) Udo Ziegler (AIP, Potsdam) August 04-08, 2014 "Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks" * oliver.gressel@nbi.dk ## schematics of protostellar disc Armitage (2011) #### embedded sub-disc isothermal HD non-isoth. HD non-isoth. MHD #### embedded sub-disc isothermal HD non-isoth. HD non-isoth. MHI ### embedded sub-disc isothermal HD non-isoth. HD non-isoth. MHD ## variability of circumplanetary disc ## circum-jovian jet Gressel et al. (2013), predicted by Quillen & Trilling (1998) and Fendt (2003), also cf. Machida et al. (2006) ### revised schematics of protostellar disc Bai & Stone (2013), Simon et al. (2013), Bai (2013), Kunz & Lesur (2013), Lesur, Fromang & Kunz (2014) # adding ambipolar diffusion Gressel, Nelson, Turner & McNally (2014) in prep. magneto-centrifugal wind from PPD with AD - external ionisationvia X-Rays, CRs, new: FUV layer - Ohmic resistivity, new: ambipolar diffusion - (no) magnetorotational instability (MRI) - ightarrow (no) turbulent surface layers - magneto-centrifugal (laminar) disc winds - effect of reduced gas column in the gap region - ionisation state of the CPD - effect on jet launching # adding ambipolar diffusion Gressel, Nelson, Turner & McNally (2014) in prep. magneto-centrifugal wind from PPD with AD - external ionisationvia X-Rays, CRs, new: FUV layer - Ohmic resistivity, new: ambipolar diffusion - (no) magnetorotational instability (MRI) - \rightarrow (no) turbulent surface layers - magneto-centrifugal (laminar) disc winds - effect of reduced gas column in the gap region - ionisation state of the CPD - effect on jet launching MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm s}$, d/g mass ratio 10^{-3} , XR+CR+FUV MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV \blacksquare MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm s},$ d/g mass ratio $10^{-3},$ XR+CR+FUV MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV ### collisional ionisation of inner disc - MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV + thermal - lacksquare puffed-up turbulent disc shadows FUV radiation ightarrow variability/intermittency of disc wind #### collisional ionisation of inner disc - \blacksquare MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5},$ d/g mass ratio $10^{-3},$ XR+CR+FUV + thermal - lacksquare puffed-up turbulent disc shadows FUV radiation ightarrow variability/intermittency of disc wind ## stability of current sheets flaring MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV ### stability of current sheets flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV ## stability of current sheets If a flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV # non-axisymmetric evolutior (flaring) MMSN disc with AD+Ohm MMSN with Ohmic resistivity alone If laring MMSN disc model, midplane $\beta_{p0} = 10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV # non-axisymmetric evolutior flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV #### reduced dust fraction MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-4} , XR+CR+FUV - velocity shear-layer at FUV transition also seen in Bai & Stone (2013) - most probably distinct from Moll (2012) "clumping" instability - \longrightarrow coincidence of FUV transition and wind base, yes or no?! - \longrightarrow need to control tapering of FUV transition?! - velocity shear-layer at FUV transition also seen in Bai & Stone (2013) - most probably distinct from Moll (2012) "clumping" instability - \rightarrow coincidence of FUV transition and wind base, yes or no?! - → need to control tapering of FUV transition?! - velocity shear-layer at FUV transition also seen in Bai & Stone (2013) - most probably distinct from Moll (2012) "clumping" instability - \rightarrow coincidence of FUV transition and wind base, yes or no?! - \longrightarrow need to control tapering of FUV transition?! - velocity shear-layer at FUV transition also seen in Bai & Stone (2013) - most probably distinct from Moll (2012) "clumping" instability - ightharpoonup ightharpoonup coincidence of FUV transition and wind base, yes or no?! - \longrightarrow need to control tapering of FUV transition?! ## summary of simulation results Table 2. Summary of simulation results. | | z _b
[H] | z _A
[<i>H</i>] | $T_{R\phi}^{\text{Reyn}}$ [10 ⁻⁶ p_0] | $T_{R\phi}^{\text{Maxw}}$ [10 ⁻⁵ p_0] | $T_{z\phi}^{\text{Maxw}}$ [10 ⁻⁵ p_0] | $\dot{M}_{\rm wind}$ [10 ⁻⁸ M_{\odot} yr ⁻¹] | $\dot{M}_{\rm accr}$ [10 ⁻⁸ M_{\odot} yr ⁻¹] | |--------------|-----------------------|--------------------------------|---|---|---|---|---| | O-b6 | _ | 7.60 ± 0.45 | 6.87 ± 14.4 | 7.44 ± 0.95 | _ | 1.47 ± 0.37 | 0.14 ± 1.53 | | OA-b5 | 5.23 ± 0.07 | 7.31 ± 0.17 | 3.63 ± 0.19 | 2.22 ± 0.06 | 9.82 ± 0.08 | 0.78 ± 0.01 | 0.43 ± 0.01 | | OA-b6 | 7.22 ± 0.48 | 6.94 ± 0.37 | -0.21 ± 0.18 | 0.79 ± 0.06 | 0.58 ± 0.06 | 0.36 ± 0.03 | 0.08 ± 0.02 | | OA-b7 | 7.31 ± 0.70 | 6.39 ± 0.16 | 0.07 ± 0.13 | < 0.01 | 0.22 ± 0.01 | 0.03 ± 0.01 | 0.00 ± 0.03 | | OA-b5-d4 | 5.27 ± 0.07 | 7.33 ± 0.18 | 0.11 ± 0.30 | 2.88 ± 0.11 | 9.88 ± 0.12 | 0.75 ± 0.01 | 0.33 ± 0.04 | | OA-b5-flr | 4.81 ± 0.03 | 6.90 ± 0.31 | 0.26 ± 0.21 | 1.78 ± 0.02 | 14.3 ± 0.02 | 1.44 ± 0.01 | 0.64 ± 0.02 | | OA-b5-flr-nx | 4.78 ± 0.03 | 7.50 ± 0.30 | 2.28 ± 9.24 | 1.87 ± 0.04 | 13.0 ± 0.04 | 1.31 ± 0.01 | 0.64 ± 0.03 | | OA-b5-nx | 5.10 ± 0.04 | 7.34 ± 0.13 | 0.94 ± 9.29 | 1.89 ± 0.06 | 7.84 ± 0.02 | 0.66 ± 0.01 | 0.29 ± 0.03 | The vertical position of the base of the wind, z_b , and the Alfvén point, z_A , are found independent on the radial location when measured in local scale heights, H. The viscous accretion stresses $T_{R\delta}$ are vertically integrated within $|z| \le z_b$ note the different units for Reynolds and Maxwell stresses. The wind stress, $T_{2\delta}$, is inferred at $z = \pm z_b$. All tressess depend weakly on radius; listed values are at r = 3 as ## summary of results - First stratified global simulations of PPDs with Ohm+AD - proper wind geometry is naturally obtained - mass-loss rates agree with expectations from observations - Long-term evolution and secondary instabilities - strong current sheets form adjacent to "un-dead" field belts - current layers break-up via tearing-mode (?!) instability - FUV transition drives (KH-unstable) velocity shear layer - Future prospects - study time-variability induced by MRI-active inner disc - understand dependence of wind solution on input parameters - effect of AD within gap region / CPD evolution / core accretion - inclusion of Hall term / ...