

Global simulations of protoplanetary discs with Ohmic resistivity and ambipolar diffusion

Oliver Gressel*

Niels Bohr International Academy (NBIA), Copenhagen

Richard P. Nelson (QMUL, London) Neal J. Turner (JPL-Caltech, Pasadena) Colin P. McNally (NBIA, Copenhagen) Udo Ziegler (AIP, Potsdam)

August 04-08, 2014 "Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks"

* oliver.gressel@nbi.dk

schematics of protostellar disc

Armitage (2011)

embedded sub-disc

isothermal HD non-isoth. HD non-isoth. MHD

embedded sub-disc

isothermal HD non-isoth. HD non-isoth. MHI

embedded sub-disc

isothermal HD non-isoth. HD non-isoth. MHD

variability of circumplanetary disc

circum-jovian jet

Gressel et al. (2013), predicted by Quillen & Trilling (1998) and Fendt (2003), also cf. Machida et al. (2006)

revised schematics of protostellar disc

Bai & Stone (2013), Simon et al. (2013), Bai (2013), Kunz & Lesur (2013), Lesur, Fromang & Kunz (2014)

adding ambipolar diffusion

Gressel, Nelson, Turner & McNally (2014) in prep. magneto-centrifugal wind from PPD with AD

- external ionisationvia X-Rays, CRs, new: FUV layer
 - Ohmic resistivity, new: ambipolar diffusion
 - (no) magnetorotational instability (MRI)
 - ightarrow (no) turbulent surface layers
 - magneto-centrifugal (laminar) disc winds
- effect of reduced gas column in the gap region
 - ionisation state of the CPD
 - effect on jet launching

adding ambipolar diffusion

Gressel, Nelson, Turner & McNally (2014) in prep. magneto-centrifugal wind from PPD with AD

- external ionisationvia X-Rays, CRs, new: FUV layer
 - Ohmic resistivity, new: ambipolar diffusion
 - (no) magnetorotational instability (MRI)
 - \rightarrow (no) turbulent surface layers
 - magneto-centrifugal (laminar) disc winds
- effect of reduced gas column in the gap region
 - ionisation state of the CPD
 - effect on jet launching

MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm s}$, d/g mass ratio 10^{-3} , XR+CR+FUV

MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV

 \blacksquare MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm s},$ d/g mass ratio $10^{-3},$ XR+CR+FUV

MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV

MMSN disc model, NVF with midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV

collisional ionisation of inner disc

- MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV + thermal
 - lacksquare puffed-up turbulent disc shadows FUV radiation ightarrow variability/intermittency of disc wind

collisional ionisation of inner disc

- \blacksquare MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5},$ d/g mass ratio $10^{-3},$ XR+CR+FUV + thermal
- lacksquare puffed-up turbulent disc shadows FUV radiation ightarrow variability/intermittency of disc wind

stability of current sheets

flaring MMSN disc model, midplane $\beta_{\rm p\,0}=10^{\rm 5}$, d/g mass ratio 10^{-3} , XR+CR+FUV

stability of current sheets

flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV

stability of current sheets

If a flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV

non-axisymmetric evolutior

(flaring) MMSN disc with AD+Ohm MMSN with Ohmic resistivity alone

If laring MMSN disc model, midplane $\beta_{p0} = 10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV

non-axisymmetric evolutior

flaring MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-3} , XR+CR+FUV

reduced dust fraction

MMSN disc model, midplane $\beta_{p\,0}=10^5$, d/g mass ratio 10^{-4} , XR+CR+FUV

- velocity shear-layer at FUV transition also seen in Bai & Stone (2013)
- most probably distinct from Moll (2012) "clumping" instability
- \longrightarrow coincidence of FUV transition and wind base, yes or no?!
- \longrightarrow need to control tapering of FUV transition?!

- velocity shear-layer at FUV transition also seen in Bai & Stone (2013)
- most probably distinct from Moll (2012) "clumping" instability
- \rightarrow coincidence of FUV transition and wind base, yes or no?!
- → need to control tapering of FUV transition?!

- velocity shear-layer at FUV transition also seen in Bai & Stone (2013)
- most probably distinct from Moll (2012) "clumping" instability
- \rightarrow coincidence of FUV transition and wind base, yes or no?!
- \longrightarrow need to control tapering of FUV transition?!

- velocity shear-layer at FUV transition also seen in Bai & Stone (2013)
- most probably distinct from Moll (2012) "clumping" instability
- ightharpoonup ightharpoonup coincidence of FUV transition and wind base, yes or no?!
- \longrightarrow need to control tapering of FUV transition?!

summary of simulation results

Table 2. Summary of simulation results.

	z _b [H]	z _A [<i>H</i>]	$T_{R\phi}^{\text{Reyn}}$ [10 ⁻⁶ p_0]	$T_{R\phi}^{\text{Maxw}}$ [10 ⁻⁵ p_0]	$T_{z\phi}^{\text{Maxw}}$ [10 ⁻⁵ p_0]	$\dot{M}_{\rm wind}$ [10 ⁻⁸ M_{\odot} yr ⁻¹]	$\dot{M}_{\rm accr}$ [10 ⁻⁸ M_{\odot} yr ⁻¹]
O-b6	_	7.60 ± 0.45	6.87 ± 14.4	7.44 ± 0.95	_	1.47 ± 0.37	0.14 ± 1.53
OA-b5	5.23 ± 0.07	7.31 ± 0.17	3.63 ± 0.19	2.22 ± 0.06	9.82 ± 0.08	0.78 ± 0.01	0.43 ± 0.01
OA-b6	7.22 ± 0.48	6.94 ± 0.37	-0.21 ± 0.18	0.79 ± 0.06	0.58 ± 0.06	0.36 ± 0.03	0.08 ± 0.02
OA-b7	7.31 ± 0.70	6.39 ± 0.16	0.07 ± 0.13	< 0.01	0.22 ± 0.01	0.03 ± 0.01	0.00 ± 0.03
OA-b5-d4	5.27 ± 0.07	7.33 ± 0.18	0.11 ± 0.30	2.88 ± 0.11	9.88 ± 0.12	0.75 ± 0.01	0.33 ± 0.04
OA-b5-flr	4.81 ± 0.03	6.90 ± 0.31	0.26 ± 0.21	1.78 ± 0.02	14.3 ± 0.02	1.44 ± 0.01	0.64 ± 0.02
OA-b5-flr-nx	4.78 ± 0.03	7.50 ± 0.30	2.28 ± 9.24	1.87 ± 0.04	13.0 ± 0.04	1.31 ± 0.01	0.64 ± 0.03
OA-b5-nx	5.10 ± 0.04	7.34 ± 0.13	0.94 ± 9.29	1.89 ± 0.06	7.84 ± 0.02	0.66 ± 0.01	0.29 ± 0.03

The vertical position of the base of the wind, z_b , and the Alfvén point, z_A , are found independent on the radial location when measured in local scale heights, H. The viscous accretion stresses $T_{R\delta}$ are vertically integrated within $|z| \le z_b$ note the different units for Reynolds and Maxwell stresses. The wind stress, $T_{2\delta}$, is inferred at $z = \pm z_b$. All tressess depend weakly on radius; listed values are at r = 3 as

summary of results

- First stratified global simulations of PPDs with Ohm+AD
 - proper wind geometry is naturally obtained
 - mass-loss rates agree with expectations from observations
- Long-term evolution and secondary instabilities
 - strong current sheets form adjacent to "un-dead" field belts
 - current layers break-up via tearing-mode (?!) instability
 - FUV transition drives (KH-unstable) velocity shear layer
- Future prospects
 - study time-variability induced by MRI-active inner disc
 - understand dependence of wind solution on input parameters
 - effect of AD within gap region / CPD evolution / core accretion
 - inclusion of Hall term / ...