

Nonlinear Ohm's Law: Plasma Heating by Strong Electric Fields and the Ionization Balance in PPDs

Satoshi Okuzumi (Tokyo Institute of Technology)

in collaboration with Shu-ichiro Inutsuka (Nagoya University)

Ref: Okuzumi & Inutsuka, submitted (arXiv:1407.8110)

Disk Ionization and MRI

- Ionization by external high-energy sources
- Recombination in gas phase and in "solid phase"
- MRI turbulence if gas is sufficiently ionized
- How MRI turbulence changes ionization state?

Electron Heating in Weakly Ionized Gas

Electrons cannot move straight because they frequently collide with neutrals. \Rightarrow Random velocity >> drift velocity

3

Critical E-Field Strength

Electrons are significantly heated when E is higher than

$$E_{\rm crit} = \sqrt{\frac{6m_e}{m_n}} \frac{k_{\rm B}T}{e\ell_e} \sim 10^{-9} \left(\frac{T}{100 \text{ K}}\right) \left(\frac{n_n}{10^{12} \text{ cm}^{-3}}\right) \text{esu cm}^{-2}$$

T: neutral gas temperature $\ell_e = (\sigma_{en} n_n)^{-1}$: electron m.f.p.

E-field Strength in MRI Turbulence

• MHD simulations show RMS current density is insensitive to ohmic resistivity:

$$J_{\rm MRI} \approx 10 J_{\rm eqp}$$
 $J_{\rm eqp} = \sqrt{\frac{\rho}{8\pi}} c \Omega$

(Muranushi, Okuzumi, & Inutsuka 2012)

• By using Ohm's law $E' = (4\pi\eta/c^2)J$, we obtain

$$E'_{\rm MRI} \sim 10^{-7} \Lambda_z^{-1} \left(\frac{10^2}{\beta_z}\right) \left(\frac{T}{100 \text{ K}}\right) \left(\frac{n_n}{10^{-12} \text{ cm}^{-3}}\right)^{1/2} \text{ esu cm}^{-2}$$

 $\Lambda_z \equiv \langle v_{Az}^2 \rangle / \eta \Omega \quad (\approx 1 \text{ for MRI to be active})$ $\beta_z \equiv 2c_s^2 / \langle v_{Az}^2 \rangle \quad (\sim 100\text{--}1000 \text{ for fully saturated turbulence})$

Criterion for Electron Heating in MRI Turbulence

Critical E-field strength for electron heating

$$E_{\rm crit} = \sqrt{\frac{6m_e}{m_n}} \frac{k_{\rm B}T}{e\ell_e} \sim 10^{-9} \left(\frac{T}{100 \text{ K}}\right) \left(\frac{n_n}{10^{12} \text{ cm}^{-3}}\right) \text{esu cm}^{-2}$$

• RMS strength of comoving electric field in MRI turbulence

$$E'_{\rm MRI} \sim 10^{-7} \Lambda_z^{-1} \left(\frac{10^2}{\beta_z}\right) \left(\frac{T}{100 \text{ K}}\right) \left(\frac{n_n}{10^{-12} \text{ cm}^{-3}}\right)^{1/2} \text{ esu cm}^{-2}$$

(Okuzumi & Inutsuka, 2014; based on Muranushi, Okuzumi, & Inutsuka 2012)

If $I \leq \Lambda_z \leq 100$, MRI-induced E-fields heat up free electrons (up to ~ 1 eV)

(see also Inutsuka & Sano 2005)

Ionization Model with Plasma Heating

Okuzumi & Inutsuka (2014)

 $\frac{dZ}{dt} = K_{di}(Z)n_i - K_{de}(Z)n_e$

• Inelastic energy losses neglected

Model Parameters

•	Model	ζ (s ⁻¹)	f_{dg}	Impact ionization?
	А	10^{-17}	10^{-6}	No
Γ	B, B^*	10^{-17}	10^{-4}	No (B), Yes (B*)
	C, C^*	10^{-17}	10^{-2}	No (C), Yes (C*)
	D	10^{-19}	10^{-2}	No
Note. — The other parameters are fixed to $m_n = 2.3$ amu, $m_i = 29$ amu, $T = 100$ K,				
$n_n = 10^{12} \text{ cm}^{-3}$, IP = 15.4 eV, $a = 1 \ \mu \text{m}$, and				
$\rho_{\bullet} = 2 \text{ g cm}^{-3}.$				

Ionization Balance

Electron heating
Electron–grain collision freq. 1

 \Rightarrow Electron abundance \downarrow , Grain charge \uparrow

(if grain charging dominates over gas-phase rec.)

J-E Relation

 $J = J_e + J_i = en_e |\langle \boldsymbol{v}_{e\parallel} \rangle| + en_i |\langle \boldsymbol{v}_{i\parallel} \rangle|$

Effect of Impact Ionization

- "Electric Discharge" at $\langle \epsilon_e \rangle \approx 3 \text{eV}$ (cf. IP =15eV)
- For grain-rich cases, the discharge current becomes triple-valued (S-shaped J-E curve)

Nature of Multiple Equilibria

 Low State (stable) (external ionization) = (grain charging)

- Middle State (unstable) (impact ionization) = (grain charging)
- High State (stable) (impact ionization) = (gas-phase recombination)

Nature of Multiple Equilibria

Negative Differential Resistance (NDR)

NDR Destabilizes E-Field!

Maxwell-Ampère Eq.

$$\frac{\partial \boldsymbol{E}}{\partial t} = c\nabla \times \boldsymbol{B} - 4\pi J(\boldsymbol{E})\hat{\boldsymbol{E}}$$

- Equilibrium: $c\nabla \times B_0 = 4\pi J(E_0)$ (Ampère's law)
- Perturbation: $E = E_0 + \delta E$

In the long-wavelength limit (just for simplicity),

$$\frac{d}{dt}\delta E = -4\pi\sigma_{\rm diff}\delta E \qquad \sigma_{\rm diff} \equiv \frac{dJ}{dE}(|E_0|)$$

If $\sigma_{\text{diff}} < 0$ (NDR), δE grows.

Quasi-steady Ampère's law is no longer valid!

Nonlinear Ohm's Law: Summary

Application to PPDs

(Mori & Okuzumi, in prep.)

At < 60 AU, Λ falls below I in nonlinear regime (self-regulated MRI?)
Caveat: non-ohmic effects (gyromotion of i & e) not included here

Conclusions

- MRI-induced electric fields heat up electrons in PPDs (in particular when $I < \Lambda < 100$).
- Under electron heating, the conductivity decreases with increasing *E*. Even the electric current *J* decreases ("*N*-shaped" *J*–*E* curve).
- Discharge current can have an unstable intermediate branch ("S-shaped" J-E curve) when dust is abundant.
- A «generalized» nonlinear Ohm's law (including AD & Hall drift) is also coming soon!

Effect of Inelastic Energy Losses

With inelastic losses, the electron kinetic energy is

$$\langle \epsilon_e \rangle \approx 0.4 \sqrt{\frac{m_n}{m_e P_\ell}} eE\ell_e$$

Toward a Generalized Nonlinear Ohm's Law

Gyromotion suppresses heating by E perp. to B:

$$E_{\text{eff}}^{2} = E_{\parallel}^{2} + E_{\perp}^{2} \frac{1}{1 + (\Omega_{c,\alpha} t_{s,\alpha})^{2}}$$
(Golant et al. 1980)

- $\Omega_{c,\alpha}$: gyrofrequency of species α
- $t_{s,\alpha}$: stopping time of species α