Observational Signatures of MRI-driven Turbulence in Protoplanetary Disks Connecting Numerical Simulations with ALMA

Jacob B. Simon

Sagan Fellow SwRI, Univ. of Colorado

> <u>Collaborators</u> Meredith Hughes Kevin Flaherty Phil Armitage Xuening Bai

August 7, 2014 Non-ideal MHD, Stability, and Dissipation in Protoplanetary Disks

Courtesy: NASA

The big picture

The big picture

Observe turbulence and compare to theory

HD 163296

200 AU

The big picture

Look for a "smoking gun" for MRI turbulence

The MRI generates vigorous disk turbulence

Hawley (2000)

The MRI generates vigorous disk turbulence

Hawley (2000)

Protoplanetary disks are not so simple...

Protoplanetary disks are not so simple...

The ambipolar damping zone

Simon et al. 2013 (see also Bai & Stone 2011)

This added complexity is both a blessing and a curse!

Another blessing: we can spatially resolve these disks!

HH30

HD 163296

Courtesy: NASA

Hughes et al. (2011)

30 200 AU HD 163296 ∆ð ("') SMA CO(3-2) 20 Flux (Jy) 10 Δα (") 0 8 10 4 6 V_{LSR} (km/s) () 8 30 - 3Δα (")

Hughes et al. (2011)

Fitting a turbulent broadening to the line gives a typical turbulent velocity of ~ 0.4 c_s

These numbers are roughly consistent with theoretical estimates

These numbers are roughly consistent with theoretical estimates

$$v_{turb} \sim \alpha^{1/2} C_s$$

 $\alpha \sim 0.01, v_{turb} \sim 0.1 C_s$

These numbers are roughly consistent with theoretical estimates

$$v_{turb} \sim \alpha^{1/2} C_s$$

 $\alpha \sim 0.01, v_{turb} \sim 0.1 C_s$

But we can do better! (both with observations and theory)

Can examine vertical structure of turbulence using different lines

Meredith Hughes

At much higher resolution!

Rosenfeld et al. (2013)

State-of-the-art MHD code

See Stone et al. (2008) for code details

Local simulations: examine small co-rotating disk patch

ZA

Х

• Assume Cartesian geometry

- Add appropriate source terms
- Solve equations of MHD
- Shearing periodic boundaries
- Valid if H/R << 1
- Assume gas is isothermal
- Net vertical magnetic field

Local simulations: examine small co-rotating disk patch

ZA

Х

• Assume Cartesian geometry

- Add appropriate source terms
- Solve equations of MHD
- Shearing periodic boundaries
- Valid if H/R << 1
- Assume gas is isothermal
- Net vertical magnetic field

z = 0

cosmic rays

cosmic rays

See Bai (2011) and Perez-Becker & Chiang (2011) for details

Center local simulations at several radii

Center local simulations at several radii

Probability distribution of turbulent velocity is fit by Maxwell-Boltzman.

Probability distribution of turbulent velocity is fit by Maxwell-Boltzman.

Probability distribution of turbulent velocity is fit by Maxwell-Boltzman.

Not all distributions are fit as nicely with a Maxwellian, but we need to be consistent

Not all distributions are fit as nicely with a Maxwellian, but we need to be consistent

Strong gradient in turbulent velocity towards disk mid-plane

Strong gradient in turbulent velocity towards disk mid-plane

Strong gradient in turbulent velocity towards disk mid-plane

Construct turbulence model by interpolating simulation results

Construct turbulence model by interpolating simulation results

Put it all together!

Line Modeling Engine

Put it all together!

Put it all together!

LIME Line Modeling Engine

Next: Add more diagnostics and compare to observations

Meredith Hughes

Study radial dependence for turbulence!

Kevin Flaherty

Conclusions

• Differences in turbulent structure of disks should be observable with ALMA

 By directly combining state-of-the-art theory and observations, we will constrain protoplanetary disk models.

 If MRI turbulence is present in these disks, we should observe a strong increase in turbulent velocity away from the mid-plane.