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How does the MRI saturate?
• Parasite modes? (Goodman & Xu (1994); Pessah & 

Goodman (2009); Latter et al. (2009); Pessah (2010) 
Longaretti & Lesur (2010), this talk) 

• Flattening of the background shear profile?
(Knobloch & Julien (2005)) 

• Saturation via diversion of energy into generating 
magnetosonic waves, or generation of large-scale 
magnetic fields via a dynamo process? (Liverts et 
al. (2012), Vishniac (2011) Brandenburg (1995))



MRI Exact Solutions
• MRI exact nonlinear modes exist but are unstable to Kelvin-Helmholtz 

and tearing mode instabilities (Goodman & Xu 1994, Pessah 2010)



KH parasite mode

• Analytical prediction (Goodman & Xu,
1994) - 2d structure from Pessah (2010) 

• Background has been subtracted 

• Colourmap= vorticity, arrows=velocity field
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• 2D HD simulations  

• Reproduces predicted vorticity and velocity  

• Typical alternating polarity cellular vortices



Simplified model
• Unstratified shearing box  

• SNOOPY code (G. Lesur) 

• Ideal MHD, isothermal, constrained transport 

• Vertical magnetic field 

• Box aspect ratio 2L:2L:1L  

• L=wavelength of fastest growing mode 

• single fastest-growing MRI mode perturbed t=0  

• Mode perturbed t=6 orbits

Chapter 2

Magnetorotational Instability

Motivation to study the Kelvin-Helmholtz and tearing mode instabilities arises from study-
ing the MRI.

Ideal MHD, PLUTO, isothermal, constrained transport Quasi-2D MRI , 3D MRI shear-
ing box Box aspect ratio 2L x 0.1L xL (quasi-2d) , 2L x2L xL L is wavelength of fastest
growing mode
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Vertical Bz, initial perturbation vx = sin(2⇡z), vz = sin(2⇡x)

2.1 MRI Simulations
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MRI growing @ exp(0.75t)

parasite 

 growing @  

exp(exp(0.75t))





KH: decaying vs MRI-driven

MRI-driven KH

Decaying KH





Anisotropy

• In late linear regime, Bx=By > Bz  

• In the turbulent regime, By > Bx,Bz 

• => flow anisotropy changes significantly from the linear to 
the nonlinear regime of the MRI.  

• Understanding the transition can shed light on the 
saturation of the instability.

G. Lesur and P.-Y. Longaretti: MRI non-linear energy transfers. I.
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Fig. 2. Energy Injection spectrum at Pm = 0.0625 (left) and Pm = 0.25 (right). Although the injection is significantly reduced at small Pm, shape
of the spectrum is similar and dominated by the largest scale.
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Fig. 3. Bidimensional magnetic energy spectra at Pm = 0.25. Left: (kx, kz) spectrum, averaged in ky. Centre: (kx, ky) spectrum, averaged in kz. Right:
(ky, kz) spectrum averaged in kx . Each contour correspond to a factor 10 in magnetic energy.

the IK phenomenology. Moreover, the magnetic field spectrum
does not follow any well-defined power law, as expected from
the wide and overlapping injection (see below) and dissipation
spectra, indicating that the spectrum we get is not an inertial
spectrum. We are therefore forced to conclude that although the
kinetic spectrum looks like an IK or Kolmogorov spectrum, it
is described neither by the IK or Kolmogorov phenomenologies
nor by recent extensions (Boldyrev 2005).

Changing the magnetic Prandtl number does not change the
power-law index for the kinetic energy. We note, however, two
major effects: the overall spectra amplitudes are reduced and
the dissipation scales move to larger scale as one reduces Pm.
These two effects are expected since it is known that smaller Pm
turbulence is associated with lower transport efficiency hence a
weaker injection of energy in the cascade. This effect is con-
firmed by the injection spectra (Fig. 2), which are significantly
reduced at smaller Pm.

We note that the energy injection peaks at the largest scale
of the box, although injection still exists at k ∼ 10. Therefore,
although a power-law spectrum is found for 2 < k < 10, this
spectrum cannot be described as an “inertial range” since energy
is still injected at these intermediate scales.

We present in Fig. 3 bidimensional spectra of magnetic en-
ergy for Pm = 0.25. Kinetic spectra are not shown as they

share essentially the same properties. These spectra were ob-
tained by averaging 3D energy spectra over 40 orbits and tak-
ing the average in the kx, ky, or kz directions. We first note a
strong anisotropy in the (kx, ky) plane which indicates that trail-
ing shearing waves (kxky > 0) have more energy than leading
shearing waves (kxky < 0). As we see below, this results in non-
zero shear transfer terms.

Looking at the aspect ratio of the energy contours, we see
that turbulence is slightly less anisotropic at large k than at small
k (the contours are less “elongated” at large k), although com-
plete isotropy is not yet reached in this simulation. Let us, how-
ever, point out that the spectral truncation (due to the finite res-
olution) tends to deform the contours at large k, which might
accelerate the return to isotropy. One should therefore perform
higher resolution runs (or at least double Ny) in order to confirm
this return to isotropy. In principle, one would expect a return
to isotropy at small scales if the non-linear transfer terms domi-
nate all the other terms (injection, body forces) at large enough
k. However, this is not always the case (e.g. in the presence of a
strong mean magnetic field).

The (kx, kz) spectrum shows that turbulence is essentially
isotropic at large k in that plane. For k ∼ 1, we find a slight
anisotropy where modes with kz ! 0 are favoured. This is prob-
ably a result of large-scale MRI unstable modes, which all have
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DFT of magnetic energy averaged in 
kz (Lesur & Longaretti 2011)



Shell averages

• Shell averages have been used to predict/
determine power spectrum for MRI turbulence 
(Hawley et al 1995, Workman & Armitage 2008, 
Fromang 2010) 

• => Shell averages might not describe anisotropic 
turbulence correctly



Stress tensor analysis

• Used to quantify anisotropy level, 
temporal variation and spatial 
distribution (Lumley 1977) 

(a) Compute Reynolds and Maxwell stress 

(b) Normalize and subtract isotropic part 

(c) Calculate second and third invariants
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4. ANISOTROPY OF MRI TURBULENCE

In section 3, we presented numerical evidence of the growth
of parasitic instabilities responsible for the breakdown of the
linear exponential growth driven by the MRI. Just as the
standard Kelvin-Helmholtz instability partially isotropizes the
shear flow that gives rises to it, the growth of the Kelvin-
Helmholtz parasitic modes feeding o↵ the MRI background
act to suppress the anisotropy imposed by the MRI-induced
shear flow. It is plausible that, if parasitic modes play a
role in the saturated state as well as the late linear stage, the
anisotropy of the MRI-turbulent flow fluctuates in the satu-
rated state as well. In this section, we analyze in detail how
the anisotropy of MRI-driven turbulence varies with time.

The statistical nature of the turbulent state makes it neces-
sary to employ averages in order to quantify in a meaningful
way the properties of the flow. The power spectra o↵ers a
useful tool to understand what scales contribute to the process
of interest (Lorenz 1972). Most statistical analyses of MRI-
driven turbulence rely on shell averages in Fourier space that
are obtained by time-averaging over periods that can span up
to 50 orbits. Averaging over shells in Fourier space is a sen-
sible approach in the case of isotropic turbulence. However,
this is not the case for MRI-driven turbulence. It is clear that,
the flow properties, including the degree of anisotropy, vary
strongly on timescales of the order of ⇠ 10 orbital periods.
Averaging over longer periods of time masks valuable infor-
mation about the properties of the turbulence that we are aim-
ing to understand. This is specially true about processes with
characteristic timescales that are comparable with the 10 or-
bital periods. This is the case, for example, of the dynamo
waves observed in simulations of stratified accretion disks
(Davis et al. 2010; Gressel 2010).

4.1. The Spatial Distribution of Anisotropy

In order to obtain a better understanding of the anisotropy of
the flow, we employ the turbulent stress invariant analysis de-
veloped by Lumley & Newman (1977) and collaborators and
apply it to the Reynolds and Maxwell stress tensors, defined
according to

Ri j = h�vi �v ji , (12)
Mi j = h�Bi �Bji (13)

where the brackets represent an appropriate spatial average.
Each of these real and symmetric tensors can be divided

into a deviator and an isotropic part. By normalising the ten-
sors using their trace, the kinetic (magnetic) energy, and then
subtracting the isotropic component, we arrive at a single ten-
sor quantity which parametrises the deviation from isotropy.
The Reynolds stress anisotropy tensor (Lumley & Newman
1977) is defined as:

Ri j =
Ri j

trace(Ri j)
� 1

3
�i j (14)

where �i j is the Kronecker delta, and a similar definition fol-
lows for the Maxwell stress tensor Mi j. These tensors are
an important diagnostic of anisotropy and have been used ex-
tensively in numerical and experimental studies of turbulence
(Biferale & Procaccia 2005).

In order to understand the deviation from isotropy when
parasite modes grow in the MRI, in Figure 9 we show
three time frames in the evolution of R. Each ellipsoidal

glyph’s scaling and rotation is controlled by the eigenvalues,
�1, �2, �3, and eigenvectors of R. The three eigenvalues in de-
scending order are the principal, medium and minor axes of
the ellipsoidal glyph, and the direction of the glyph is aligned
along the principal stress eigenvector. The first panel shows
that all the tensors are aligned in the direction given by kh,
where the MRI-induced shear is strongest, indicating that in
the late linear stage of the MRI we have highly organised and
highly anisotropic flow, with the principal eigenvalue at .666.
The middle panel showsR, after the perturbation has been ex-
cited and the parasites have start to grow. The initially highly
anisotropic flow has now been partially isotropized and the
principal stress eigenvectors of R are no longer parallel over
the domain. The third figure shows the partially isotropized
field in saturation. GM: The system has not yet reached fully
developed turbulence but has reached the closest approach to
isotropy.

In order to probe how the anisotropy varies as a function of
time in a quantitive way, we employ invariant analysis. For a
traceless tensor, �1+�2+�3 = 0, the degree of anisotropy can
be characterized by calculating the two nonzero invariants

�R2 = �(�2
1 + �

2
2 + �

2
3) (15)

�R3 = �1 �2 �3 (16)

By plotting all the possible values of these two independent
invariants of the Reynolds stress in a plane, Lumley & New-
man (1977) found that every realizable Reynolds stress is con-
strained to lie within three loci which intersect at three ver-
tices. The enclosed deltoid, known as the Lumley triangle,
represents all possible values for R. The upper right vertex
corresponds to the case of �1 > �2, �3, the origin corresponds
to isotropy, �1 = �2 = �3. The upper left vertex corresponds
to two component turbulence �1, �2 > �3. The vertical axis
in the plots corresponds to the deviation from isotropy, from
zero (fully isotropic) through 0.083 (2 component isotropic)
to 0.333 (1 component). The horizontal axis in the plots corre-
spond to the determinant, which distinguishes between those
cases which have the same magnitude of deviation but a dif-
ferent sign.

In order to quantitively estimate the time evolution of
anisotropy fluctuations, we plot the anisotropy invariant map
at representative times (see Figure 10). At time t = 41, 42
and t = 47, the stress tensors have a 2D anisotropy. The
majority of points are located on the 1D-2D locus. The en-
tire flow is collectively at a local peak in anisotropy. At
time t = 40, t = 44, 45, 46, it is clear that there has been a
sharp transition in the invariants of the stress tensors, and they
are now distributed more evenly between the upper and right
loci. The flow has now developed localised regions which
are nearly fully isotropic. Examining other timeframes (not
reproduced here) reveal that this pattern of increase and de-
crease in anisotropy is quasi-periodic. This implies a regu-
lar return to isotropy. In Figure 11 the equivalent plot for
M is shown. A similar sharp transition occurs between time
t = 41, 42 and t = 47. The Maxwell stress tensor, M, is
isotropised from its highly organised state in the upper left
quarter of the invariant plane, to a quasi-3D isotropic state.

The cycles observed in both the Reynolds and Maxwell
stress tensors are repeated as the MRI grows again. We spec-
ulate that these cycles in the anisotropic properties of the tur-
bulentflow could be due to similar process than the one re-
sponsible for the saturation of the MRI in its linear regime.
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AB = BA , !16"

then the matrices A and B share the same eigenvectors.
Since the tensor 1 /3!ij is equal to the identity matrix I /3,
Eq. !16" always holds between the matrices T and I. They
therefore share the same eigenvector n and the following
relationship will hold:

bn = # T
Tkk

−
1
3

I$n . !17"

The relationship between the eigenvalues of b and T then
becomes

"i =
#i

Tkk
−

1
3

. !18"

For the nondimensional anisotropy tensor, b, related
shapes of the ellipsoid formed by the Reynolds stresses are
illustrated in Fig. 3 and characteristics of the flow are given
in Table I.

Now it is time to address the misconception encountered
in the designation of the limits of Lumley’s invariant map.
Axisymmetric turbulence means that two of the principal
stresses #i, or "i, are equal. Writing b in terms of the prin-
cipal stresses we have

FIG. 4. Anisotropy invariant map with correct designations of the axisym-
metric states.

FIG. 3. Illustration of the ellipsoid shapes formed by the Reynolds stress
tensor in different regions of the flow.

TABLE I. Characteristics of the turbulence stress tensor and anisotropic tensor.

State
of

turbulence Invariants Eigenvalues of bij

Shape of
stress tensor

%see Eq. !15"&
Symbol in

Figs. 1 and 3

Isotropic I2= I3=0 "i=0 Sphere a,
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3 , − 1
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spheroid
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axisymmetric
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3
= #− I3

2
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− 1
3 $"1$0, 0$"2="3$ 1

6
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spheroid

c,
axisymmetric

!I3$0"

One-comp. I3= 2
27,

I2=− 1
3

"1= 2
3 , "2="3=− 1

3
Line d,

1 component

Two comp., axisym. I3=− 1
108 ,

I2=− 1
12

"1=− 1
3 , "2="3= 1

6
Disk e,

2 component
!axisymmetric"

Two component −I2=3! 1
27 + I3" "1+"2= 1

3 , "3=− 1
3

Ellipsoid f,
2 component

088103-3 Turbulent stress invariant analysis Phys. Fluids 17, 088103 !2005"

• Plot  tensors as glyphs 
• Axes are tensor eigenvalues 
• Glyph points along principal 

eigenvector 



Breakup of anisotropy
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Fig. 7.— 3D tensor visualisation of the Reynolds stress anisotropy tensor, R at 6.2 orbits (immediately before saturation), 6.3 and 6.5 orbits. The ellipsoids
are coloured with the magnitude of the maximum eigenvalue and axes of the ellipsoids are determined by the values of the three eigenvalues. The ellipsoids
are aligned along the direction of the principal eigenvector. In the linear phase of the MRI growth, R is constant and aligned everywhere in the xk direction,
which is the direction of principal stress for the MRI. The second panel shows R immediately after the onset of the parasitic modes, which appear as green and
yellow ellipsoids. The parasites have grown and reduced the principal stress and scattered the direction of principal stress. The third panel shows R well into the
saturated phase, with noticeable regions of peak stress, and regions where parasite modes are present.

Fig. 8.— Invariant map of Reynolds stress tensor at t = 40 � 47 orbits
showing time variation. The points show the second and third invariants of
the Reynolds stress anisotropy tensor, for the saturated stage of the MRI. The
lines delineate the boundaries on the normalised invariants. Data points near
the upper right vertices of the Lumley triangle are dominated by 1-component
turbulence. Data points close to the lower vertex have three equal eigenval-
ues, denoting isotropic 3d turbulence. The left vertex denotes 2-component
turbulence. The plots show an episodic cycle between a 2 component tur-
bulence state, see t = 41, 42 and t = 47 and a 3 component state t = 40,
t = 44, 45, 46.

Fig. 9.— Invariant map of Maxwell stress tensor at t = 40 � 47 orbits. The
plots show an episodic cycle between a 2 component turbulence state, see
t = 41, 42 and t = 47 and a 3 component state t = 40, t = 44, 45, 46.

Longaretti (2011) can show the steady-state anisotropy of the
turbulent magnetic energy. Lesur & Longaretti (2011) chose a
single average over 40 orbits, which has the e↵ect of smearing
out any fluctuation in anisotropy. In our simulations, signs of
anisotropy are seen along with fluctuations on a timescale of
⇠ 10 orbits.
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to shapes of the turbulence. As demonstrated by the above dis-
cussion the shape designated to the axisymmetric limits in the
invariant map may be interpreted in two ways. Although this
has no effect on turbulence modelling it does lead to some con-
fusion when visualizing the turbulence. Since the invariant map
itself is based on the turbulent stress tensor, it would be prefer-
able that the designation of its axis is related to this quantity
only.
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tensor, M, is isotropized from its highly organized state in
the upper left quarter of the invariant plane, to a quasi-2D
isotropic state.

4.2. The Spectral Distribution of Anisotropy

In this section we analyze the distribution and anisotropy of
the saturated MRI in Fourier space. Fourier analysis requires a
periodic domain, and the shearing box domain is only strictly
periodic in the azimuthal and vertical direction. The radial di-
rection, which is only shearing-periodic, becomes strictly pe-
riodic only at specific times (Hawley et al. 1995). In order to
compute Fourier transforms at arbitrary times it is necessary
to first take the DFT in the x-direction, then shift the phase
before taking the DFT in the y and z-direction, as has been
done in, e.g., Heinemann & Papaloizou (2009).

Previous works have used shell averages to calculate the
Fourier spectrum of di↵erentially rotating turbulent flows.
Hawley et al. (1995) show slices orthogonal to the k̂x, k̂y, k̂z
of the three-dimensional Fourier spectrum which omits struc-
tures which are not preferentially aligned with the Cartesian
axes. In their kx, ky plot, Hawley et al. (1995) show that the
elliptical FFT spectrum is tilted with respect to the Cartesian
axes, which they interpret as energy being sheared to higher kx
modes. Workman & Armitage (2008) calculated the Fourier
spectrum for forced turbulence in the shearing box, again us-
ing shell averages. Fromang (2010) found a single power law
of �3/2 using shell averages. As pointed out by Fromang
(2010), the use of the shell average washes out the anisotropy.
Lesur & Longaretti (2011) used three time-averaged slices
through the Cartesian planes. They chose a single average
over 40 orbits, which has the e↵ect of smearing out any fluc-
tuation in anisotropy.

In order to gain a qualitative understanding of the tempo-
ral evolution of anisotropy in Fourier space, we compute the
power spectrum associated with the magnetic energy den-
sity. It is useful to visualize the results by selecting two-
dimensional cuts in the three-dimensional Fourier space. We
choose the three planes which are perpendicular to k̂h, k̂p,
k̂z, which are mutually orthogonal. The versor k̂h lies along
the direction of maximum anisotropy, which corresponds to
the direction where the shear induced by the MRI is largest,
and k̂z = k̂h ⇥ k̂p. Figure 12 shows the two dimensional cuts
along the three di↵erent planes for two di↵erent times, cor-
responding to the late linear stage of the MRI (t = 8) and
the fully developed turbulent state (t = 40). At early times
In order to quantify the degree of anisotropy, at a given time,
we performed a two-dimensional Gaussian fit, which is over
plotted in each panel of Figure 12. The Gaussian fit is car-
ried out by identifying the peak of the DFT and then fitting a
one-dimensional Gaussian along the direction of maximum
anisotropy and the direction perpendicular to it. The two-
dimensional gaussian are then plotted over the data.

At time t = 8, the parasite mode has reached the peak of
its super-exponential growth, as attested by the presence of
significant power in non-axisymmetric modes. The distri-
bution of power in the (kh, kz) plane is mostly isotropic, the
two-dimensional Gaussian fit has an eccentricity of 1.04. On
the other hand, the Gaussian fits performed in the (kp, kz) and
(kx, ky) planes show eccentricities of ⇠ 1.4, 1.5 respectively.
In the fully developed turbulent state, at t = 40, the flow is
highly anisotropic in the (kp, kz) plane. The eccentricities of
the Gaussian fits in the (kp, kz), (kh, kz) and (kx, ky) planes are

Fig. 12.— Changes in anisotropy of the spectral distribution of magnetic
field energy. Slices of the 3D DFT of the rms magnetic field distribution, in
the (kh, kz),(kp, kz) and (kx, ky) planes. The black contours are 2D gaussian
ellipses fits to the distribution. The upper panels are at t = 8 orbits, the lower
panels are at t = 40 orbits.

Fig. 13.— Changes in anisotropy of the spectral distribution of magnetic
field energy. 1D cuts of the 3D spectrum, with average over plotted.

respectively 4, 1.8 and 1.7. The anisotropy of the spectrum
has therefore increased significantly from the late linear evo-
lution of the MRI to the ensuing turbulent state. This sug-
gests that time-averaged measurements of anisotropy can po-
tentially underestimate the peak fluctuations.

The e↵ect of taking the shell average versus one-
dimensional cuts of the power spectrum is shown in Figure
13. We plot 3 cuts along the 3 principal axes of the elliptical
DFT. We find the that the shell average does not fully rep-
resent the power spectrum of the turbulence. Steeper slopes
are found in the vertical direction kz, whereas the slopes in
This indicates that energy is preferably transferred in hori-
zontal modes rather than vertical modes. At saturation time,
as seen in the first panel, the power laws all converge at higher
kr. The low kr, where most of the power is concentrated, show
strong anisotropy over the first decade of wavenumber space.

5. DISCUSSION

• MRI exponential growth is halted by parasite instability
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The e↵ect of taking the shell average versus one-
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DFT. We find the that the shell average does not fully rep-
resent the power spectrum of the turbulence. Steeper slopes
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This indicates that energy is preferably transferred in hori-
zontal modes rather than vertical modes. At saturation time,
as seen in the first panel, the power laws all converge at higher
kr. The low kr, where most of the power is concentrated, show
strong anisotropy over the first decade of wavenumber space.
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spectrum for forced turbulence in the shearing box, again us-
ing shell averages. Fromang (2010) found a single power law
of �3/2 using shell averages. As pointed out by Fromang
(2010), the use of the shell average washes out the anisotropy.
Lesur & Longaretti (2011) used three time-averaged slices
through the Cartesian planes. They chose a single average
over 40 orbits, which has the e↵ect of smearing out any fluc-
tuation in anisotropy.

In order to gain a qualitative understanding of the tempo-
ral evolution of anisotropy in Fourier space, we compute the
power spectrum associated with the magnetic energy den-
sity. It is useful to visualize the results by selecting two-
dimensional cuts in the three-dimensional Fourier space. We
choose the three planes which are perpendicular to k̂h, k̂p,
k̂z, which are mutually orthogonal. The versor k̂h lies along
the direction of maximum anisotropy, which corresponds to
the direction where the shear induced by the MRI is largest,
and k̂z = k̂h ⇥ k̂p. Figure 12 shows the two dimensional cuts
along the three di↵erent planes for two di↵erent times, cor-
responding to the late linear stage of the MRI (t = 8) and
the fully developed turbulent state (t = 40). At early times
In order to quantify the degree of anisotropy, at a given time,
we performed a two-dimensional Gaussian fit, which is over
plotted in each panel of Figure 12. The Gaussian fit is car-
ried out by identifying the peak of the DFT and then fitting a
one-dimensional Gaussian along the direction of maximum
anisotropy and the direction perpendicular to it. The two-
dimensional gaussian are then plotted over the data.

At time t = 8, the parasite mode has reached the peak of
its super-exponential growth, as attested by the presence of
significant power in non-axisymmetric modes. The distri-
bution of power in the (kh, kz) plane is mostly isotropic, the
two-dimensional Gaussian fit has an eccentricity of 1.04. On
the other hand, the Gaussian fits performed in the (kp, kz) and
(kx, ky) planes show eccentricities of ⇠ 1.4, 1.5 respectively.
In the fully developed turbulent state, at t = 40, the flow is
highly anisotropic in the (kp, kz) plane. The eccentricities of
the Gaussian fits in the (kp, kz), (kh, kz) and (kx, ky) planes are

Fig. 12.— Changes in anisotropy of the spectral distribution of magnetic
field energy. Slices of the 3D DFT of the rms magnetic field distribution, in
the (kh, kz),(kp, kz) and (kx, ky) planes. The black contours are 2D gaussian
ellipses fits to the distribution. The upper panels are at t = 8 orbits, the lower
panels are at t = 40 orbits.

Fig. 13.— Changes in anisotropy of the spectral distribution of magnetic
field energy. 1D cuts of the 3D spectrum, with average over plotted.

respectively 4, 1.8 and 1.7. The anisotropy of the spectrum
has therefore increased significantly from the late linear evo-
lution of the MRI to the ensuing turbulent state. This sug-
gests that time-averaged measurements of anisotropy can po-
tentially underestimate the peak fluctuations.

The e↵ect of taking the shell average versus one-
dimensional cuts of the power spectrum is shown in Figure
13. We plot 3 cuts along the 3 principal axes of the elliptical
DFT. We find the that the shell average does not fully rep-
resent the power spectrum of the turbulence. Steeper slopes
are found in the vertical direction kz, whereas the slopes in
This indicates that energy is preferably transferred in hori-
zontal modes rather than vertical modes. At saturation time,
as seen in the first panel, the power laws all converge at higher
kr. The low kr, where most of the power is concentrated, show
strong anisotropy over the first decade of wavenumber space.

5. DISCUSSION

• MRI exponential growth is halted by parasite instability



Perspectives
• Superexponential growth of parasite mode halts exponential 

growth of MRI mode 

• Anisotropy of MRI turbulence varies with time 

• Anisotropy of turbulence can influence morphology and 
longevity of flow structures, e.g. vortices 

• Shell averages and simple isotropic scaling relations may not 
adequately describe properties of turbulence 

• Using stress tensor invariants is a useful diagnostic of temporal 
variation of anisotropy, spatial and spectral distribution
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