

Protostellar accretion disks and their outflows

- Physically-viable wind-driving solutions in diffusive disks
- 1+1D wind-driving disk models
- Thermal structure & emitted spectrum
- Observational properties & link to launching conditions (DG Tau)
- Summary & Conclusions

Raquel Salmeron The Australian National University

Collaborators Mark Wardle, Arieh Königl, G. Bicknell, P. McGregor, Jan Budaj, Ralph Sutherland, Tracy Beck Students: Marc White, Chris Nolan

Magnetic Diffusion

- Three diffusion mechanisms
 - Which one dominates?
 - Can the magnetic field couple to matter?
 - Impact on the thermal and dynamical structure, evolution and observational signatures of disks

Accretion-outflow correlation

 $\dot{M}_{\rm acc}\Omega_0 r_0^2 = \dot{M}_{\rm w}\Omega_0 r_{\rm A}^2$ $\dot{M}_{\rm acc} \sim (r_{\rm A}/r_0)^2 \dot{M}_{\rm w}$

 $\dot{M}_{\rm w} \sim 0.1 \ \dot{M}_{\rm acc}$ for $r_{\rm A}/r_0 \sim 3$

Jet launch mechanisms

JED: Jet-Emitting Disk SAD: Standard Accretion Disk

JED: Jet-Emitting Disk SAD: Standard Accretion Disk (MRI)

Radially-localised wind-driving disk solutions

Wardle & Königl (1993), Königl, Salmeron & Wardle (2010), Königl & Salmeron (2011)

Outflow criteria - Hall diffusion

	$\eta_{ m A}/\eta_{ m O}$	Ha	Parameter constraints			
(i)	> 1	> 1/2	$(2Am)^{-1/2} \lesssim a_0 \lesssim 2 \lesssim \epsilon Am \lesssim$	$v_{\rm K}/2c_{\rm s}$		
(ii)	> 1	< 1/2	$ (\eta_{\rm A}/\eta_{\rm H})^{1/2} \lesssim a_0 \lesssim 2 {\rm Ha}^{1/2} \lesssim (\epsilon/2)(\eta_{\rm H}/\eta_{\rm A}) \lesssim 1$	$\mathrm{Ha} v_\mathrm{K}/c_\mathrm{s}$		
(iii)	< 1	> 1/2	$ (2Am)^{-1/2} \lesssim a_0 \lesssim 2 \lesssim \epsilon a_0^2 / \tilde{\eta}_0 \lesssim$	$v_{\rm K}/2c_{\rm s}$		
(iv)	< 1	< 1/2	$\left[(\eta_{\rm A}/\eta_{\rm H})^{1/2} \le a_0 \le 2 {\rm Ha}^{1/2} \le (\epsilon/2)(\eta_{\rm H}/\eta_{\rm O}) \le 1 \right]$	Hav_K/c_s		

$$a = \frac{v_{\mathrm{A}}}{c_{\mathrm{s}}}$$
 $\epsilon = -\frac{v_{r0}}{c_{\mathrm{s}}}$

$$\mathrm{Ha} \equiv \frac{v_{\mathrm{A}}^2}{\Omega \eta_{\mathrm{H}}} \quad \mathrm{Am} \equiv \frac{\gamma_i \rho_i}{\Omega} = \frac{v_{\mathrm{A}}^2}{\Omega \eta_{\mathrm{A}}}$$

Hall and Ohm limits: Königl, Salmeron & Wardle (2010); AD limit: Wardle & Königl (1993)

Hall diffusion and wind properties

$$\mathrm{Ha} \equiv \frac{v_{\mathrm{A}}^2}{\Omega \eta_{\mathrm{H}}} \qquad \mathrm{Am} \equiv \frac{v_{\mathrm{A}}^2}{\Omega \eta_{\mathrm{A}}}$$

a

Weak-field solutions

Salmeron, Königl & Wardle (2007); Königl, Salmeron & Wardle (2010)

Global (1+1D) wind-driving disk models

$$\dot{M}_a(r) + \dot{M}_w(r) = \text{const.}$$

Ejection-accretion ratio

М _w /М́а	a ₀ = 0.25	a ₀ = 0.5	$a_0 = 1.0$
$\dot{M}_a = 10^{-4} M_{\odot}/yr$	0.182	0.018	0.023
\dot{M}_a = 10 ⁻⁶ M _o /yr	0.199	0.171	0.305
$\dot{M}_{a} = 10^{-8} M_{\odot}/yr$		0.709	0.520

$$\Sigma(r) = \Sigma_0 \left(\frac{r}{\mathrm{AU}}\right)^{-1} \mathrm{g/cm}^2$$

 $a = \frac{v_{\rm A}}{c_{\rm s}}$

Magnetic diffusivity and heating

Vertical temperature profile Wind solutions

Heating sources: Stellar irradiation & Joule dissipation. C. Dullemond's Radiative transfer code (e.g. Dullemond et al. 2002)

 $\frac{m_{\rm dust}}{m_{\rm gas}} = 2 \times 10^{-4}$

Vertical temperature profile Wind solutions

Casse & Ferreira 2000

Wind-driving disks versus viscous disks

wind
model
$$\mathbf{J} \cdot \mathbf{E}' = \frac{4\pi}{c^2} \left[\eta_{\mathrm{O}} \mathbf{J}_{\parallel}^2 + (\eta_{\mathrm{O}} + \eta_{\mathrm{A}}) \mathbf{J}_{\perp}^2 \right]$$
 $a_0 = 0.8, \ \epsilon = 0.09$

 $\underset{\text{model}}{^{\text{viscous}}} \ \Gamma = \frac{9}{4} \rho \alpha \Omega_{\rm K} c_{\rm s}^2$

Wind-driving versus viscous disks

J. Budaj et al (in progress)

Wind-driving versus viscous disks

J. Budaj et al (in progress)

DG Tau - Approaching outflow

[Fe II] 1.644 µm

Asymptotic poloidal jet velocity vs launch radius

Velocity differences across the jet ridgeline

Average velocity difference across the jet ridge line is 0.0 ± 6.8 km s⁻¹, corresponding to $v_{\Phi} = 0.0 \pm 6.8$ km s⁻¹, after correction for the jet inclination.

A more extended molecular wind?

 H_2 1–0 S(1) 2.1218 μ m line emission from the near side of the DG Tau circumstellar disc

Summary & Conclusions

- Wind-driving protostellar disc models with stratified vertical ionisation and diffusivity structure
- Parameter constraints for physically-viable wind solutions to exist.
- In Hall diffusivity dominated discs the viability and the properties of the solutions are dependent on the magnetic field polarity
- Extent of wind launch region as a function of the surface density profile, field strength and accretion rate onto the source
- Viscous versus wind-driving disks
- Impact of internal heating on the thermal structure and predicted spectrum of disks
- Observations of the DG Tau jet with NIFS and links to properties at the launch point