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To what extent can we treat accretion disks locally?

✦ Gravity ties disks together on nearly instantaneous timescales

✦ Cannot treat self gravitating disks locally on anything but the shortest of 
timescales

✦ Let us try to consider a not-self-gravitating disk locally.

✦ We can do so only to the extent that we can ignore the inner and 
outer disk.
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Quick refresher

This talk assumes horizontal stresses (MRI) 
are significant and that the stresses are 

powered by accretion (not irradiation etc...)
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in determining the Shakura & Sunyaev ↵ parameter. When
performing such mean-field decompositions, one needs to be
sure that the averaging schemes are internally consistent. For
example, if one decomposes the magnetic fields using an az-
imuthal average, but then performs an azimuthal-vertical or
azimuthal-temporal average to calculate stresses, the “mean”
magnetic fields include fluctuating terms from the perspective
of the subsequent averaging.

4.1.2. Independence of Torques from Density Gradients

Past studies, such as Balbus & Papaloizou (1999), have cho-
sen to perform a density weighted vertical and azimuthal av-
erage of Equation (40). The horizontal stress term is given
by
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where the disk surface density ⌃ is given by
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For a truly viscous, azimuthally symmetric disk, the T�r term
in Equation (40) is:
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where ⌫ is the kinematic viscosity (Lynden-Bell & Pringle
1974). This averaging serves the purpose of showing that the
horizontal Maxwell and Reynolds stresses act like a viscosity
if we equate

Wr� ⇠ �⌫r@r⌦, (46)

and induces no mathematical error. However, it can lead to
confusion. A naive reading of Equation (42) suggests that a
spatially varying surface density ⌃ can create torques from a
Maxwell stress with radially constant r2M�r, in contradiction
to of Equation (40). A careful reading of Equation (44) makes
clear however that W�r is defined by dividing by ⌃, so W�r

and ⌃ cannot be varied independently.

4.2. Azimuthal Lorentz Forces

While a viscous torque will drive an outwards angular
momentum flux, the torques associated with Maxwell or
turbulent-Reynolds stresses are more complicated, and can
in unusual circumstances be directed inwards (Balbus & Pa-
paloizou 1999; Hubbard & Blackman 2009). Further, when
the advective angular momentum flux is included the total
flux of angular momentum is often directed inwards, as can be
seen by considering a steady state accreting disk: the angular
momentum within the disk itself is constant, but to avoid pile
up, material must accrete from the disk to the central object,
or be ejected from the system in a jet or wind. The angular
momentum carried away by that material must be resupplied
by an inwards directed flux.

Therefore, while the tensor formulation is compact, we em-
phasize that the Maxwell stress interacts with the fluid only
through Lorentz forces, and it can be instructive to unpack the

Maxwell tensor formulation in favor of those Lorentz forces
themselves. In cylindrical coordinates, the magnetic field

B = Brêr +B�ê� +Bzêz, (47)

and the current density

µ0J =r⇥B, (48)
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The azimuthal component of the Lorentz force FL = J ⇥B
can be usefully expanded and rearranged:
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We can now invoke r ·B = 0 to clarify the component terms
of the azimuthal Lorentz force:

µ0FL,� =
1

r2
@r(r

2B�Br)
| {z }

Radial Stress

+ @z(B�Bz)| {z }
Vertical Stress

+
1

2r
@�

�
B2

� �B2
r �B2

z

�

| {z }
Anisotropic magnetic pressure

. (54)

The components of Equation (54) are derivatives of the radial
and vertical components of the Maxwell stress tensor, while
the pressure term azimuthally averages to zero due to period-
icity.

4.3. Accretion versus Decretion: Condition

Equation (54) tells us that the effect of the azimuthal force
deriving from M�r depends on the sign of the product of
@r(r2B�Br) with the (assumed positive) angular velocity ⌦.
If

⌦@r(r
2B�Br) > 0, (55)

then the Lorentz force exerts a torque on the disk aligned with
the orbital rotation, resulting in decretion, while if it is nega-
tive, the Lorentz force exerts a torque acting against the rota-
tion, resulting in an accretion flow.

The Maxwell stress M�r < 0 in any self-similar, power-law
region (Eq. 14). Driving an accretion flow then requires

@r
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> 0 (56)
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ẑ (2)

hr · Si�,t = (1/2� s)⌦hM�ri�,t ⇠
3

2
⌦hM�ri�,t (3)

Tij = ⇢vivi �
BiBj

µ0
ET =

Z

z
fT (4)

@th⇢rv�i� +
1

r
@rhr2T�ri� + r@zhT�zi� = 0 (5)

1

This talk assumes horizontal stresses (MRI) 
are significant and that the stresses are 

powered by accretion (not irradiation etc...)

Reynolds stress

Maxwell stressTotal stress

6 HUBBARD ET AL.

in determining the Shakura & Sunyaev ↵ parameter. When
performing such mean-field decompositions, one needs to be
sure that the averaging schemes are internally consistent. For
example, if one decomposes the magnetic fields using an az-
imuthal average, but then performs an azimuthal-vertical or
azimuthal-temporal average to calculate stresses, the “mean”
magnetic fields include fluctuating terms from the perspective
of the subsequent averaging.
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sen to perform a density weighted vertical and azimuthal av-
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where ⌫ is the kinematic viscosity (Lynden-Bell & Pringle
1974). This averaging serves the purpose of showing that the
horizontal Maxwell and Reynolds stresses act like a viscosity
if we equate

Wr� ⇠ �⌫r@r⌦, (46)

and induces no mathematical error. However, it can lead to
confusion. A naive reading of Equation (42) suggests that a
spatially varying surface density ⌃ can create torques from a
Maxwell stress with radially constant r2M�r, in contradiction
to of Equation (40). A careful reading of Equation (44) makes
clear however that W�r is defined by dividing by ⌃, so W�r

and ⌃ cannot be varied independently.
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While a viscous torque will drive an outwards angular
momentum flux, the torques associated with Maxwell or
turbulent-Reynolds stresses are more complicated, and can
in unusual circumstances be directed inwards (Balbus & Pa-
paloizou 1999; Hubbard & Blackman 2009). Further, when
the advective angular momentum flux is included the total
flux of angular momentum is often directed inwards, as can be
seen by considering a steady state accreting disk: the angular
momentum within the disk itself is constant, but to avoid pile
up, material must accrete from the disk to the central object,
or be ejected from the system in a jet or wind. The angular
momentum carried away by that material must be resupplied
by an inwards directed flux.

Therefore, while the tensor formulation is compact, we em-
phasize that the Maxwell stress interacts with the fluid only
through Lorentz forces, and it can be instructive to unpack the

Maxwell tensor formulation in favor of those Lorentz forces
themselves. In cylindrical coordinates, the magnetic field
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and the current density

µ0J =r⇥B, (48)

=


1

r
@�Bz � @zB�

�
êr
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We can now invoke r ·B = 0 to clarify the component terms
of the azimuthal Lorentz force:
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The components of Equation (54) are derivatives of the radial
and vertical components of the Maxwell stress tensor, while
the pressure term azimuthally averages to zero due to period-
icity.

4.3. Accretion versus Decretion: Condition

Equation (54) tells us that the effect of the azimuthal force
deriving from M�r depends on the sign of the product of
@r(r2B�Br) with the (assumed positive) angular velocity ⌦.
If
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then the Lorentz force exerts a torque on the disk aligned with
the orbital rotation, resulting in decretion, while if it is nega-
tive, the Lorentz force exerts a torque acting against the rota-
tion, resulting in an accretion flow.

The Maxwell stress M�r < 0 in any self-similar, power-law
region (Eq. 14). Driving an accretion flow then requires
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in determining the Shakura & Sunyaev ↵ parameter. When
performing such mean-field decompositions, one needs to be
sure that the averaging schemes are internally consistent. For
example, if one decomposes the magnetic fields using an az-
imuthal average, but then performs an azimuthal-vertical or
azimuthal-temporal average to calculate stresses, the “mean”
magnetic fields include fluctuating terms from the perspective
of the subsequent averaging.
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where ⌫ is the kinematic viscosity (Lynden-Bell & Pringle
1974). This averaging serves the purpose of showing that the
horizontal Maxwell and Reynolds stresses act like a viscosity
if we equate

Wr� ⇠ �⌫r@r⌦, (46)

and induces no mathematical error. However, it can lead to
confusion. A naive reading of Equation (42) suggests that a
spatially varying surface density ⌃ can create torques from a
Maxwell stress with radially constant r2M�r, in contradiction
to of Equation (40). A careful reading of Equation (44) makes
clear however that W�r is defined by dividing by ⌃, so W�r
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momentum flux, the torques associated with Maxwell or
turbulent-Reynolds stresses are more complicated, and can
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paloizou 1999; Hubbard & Blackman 2009). Further, when
the advective angular momentum flux is included the total
flux of angular momentum is often directed inwards, as can be
seen by considering a steady state accreting disk: the angular
momentum within the disk itself is constant, but to avoid pile
up, material must accrete from the disk to the central object,
or be ejected from the system in a jet or wind. The angular
momentum carried away by that material must be resupplied
by an inwards directed flux.

Therefore, while the tensor formulation is compact, we em-
phasize that the Maxwell stress interacts with the fluid only
through Lorentz forces, and it can be instructive to unpack the
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We can now invoke r ·B = 0 to clarify the component terms
of the azimuthal Lorentz force:
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The components of Equation (54) are derivatives of the radial
and vertical components of the Maxwell stress tensor, while
the pressure term azimuthally averages to zero due to period-
icity.

4.3. Accretion versus Decretion: Condition

Equation (54) tells us that the effect of the azimuthal force
deriving from M�r depends on the sign of the product of
@r(r2B�Br) with the (assumed positive) angular velocity ⌦.
If
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then the Lorentz force exerts a torque on the disk aligned with
the orbital rotation, resulting in decretion, while if it is nega-
tive, the Lorentz force exerts a torque acting against the rota-
tion, resulting in an accretion flow.

The Maxwell stress M�r < 0 in any self-similar, power-law
region (Eq. 14). Driving an accretion flow then requires
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Alpha disks have decreting power law regions

DECRETION BY MAXWELL STRESS 3

local saturation strength in an accretion disk (and hence its
saturation mechanism) depends on distant regions of an ac-
cretion disk.

This result can be generalized to global accretion disk mod-
els. Accretion in MRI-active or turbulent disks is medi-
ated by the fluctuating magnetic and velocity fields. How-
ever, these fields only possess a very small energy den-
sity, generally comparable to an orbit’s worth of local accre-
tion/decretion power, something which was not considered
when XXBP99XX derived the time dependent energetics of
an accretion disk (they dropped the time dependence of the
energy in the fluctuating fields). This means that local regions
of accretion disks are only very weakly buffered against vari-
ations in the radial energy flow. This is known to be important
because observations of protoplanetary disks see systems with
strongly time-varying accretion rates XXrefXX, which is not
surprising because the energy source is near the inner edge of
the disk, with short dynamical time scales.

While meridional circulation models have net vertically
integrated accretion, the accreting surface layers can only
power the decreting midplane if there is vertical energy trans-
port. The general result of radial energy flows (for horizontal
stresses) means that even though meridional circulations have
a net accretion flow, this is not sufficient to satisfy the energet-
ics. Instead, disks should be though of, not as adjacent annuli,
but rather as layered slabs, and the inner edge of a slab needs
to accrete enough to power the outer, decreting portions of the
slab.

3. DISK MODELING

3.1. Power-law Regions

Shearing boxes correspond to self-similar, power-law, re-
gions of accretion disks because the only scales available to
shearing boxes are those of the boxes themselves. In a ver-
tically isothermal disk in hydrostatic equilibrium, the density
is

⇢(r, z) = ⇢0(r)e
�z2/2H2(r), (5)

where ⇢0 is the midplane density and H the scale height. Tak-
ing the radial derivative we find
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1

H(r)
@rH(r). (6)

The density, then, can only be taken to be a power-law in r
if the term capturing the radial dependence of H is negligible
compared to the radial dependence of the midplane density,
i.e. that z2/H2 ⌧ 1. Invoking power-law behavior implies
that one is considering a slab of the accretion disk which is
near the midplane, well below the surface of the disk.

Invoking such self-similar, power law regions implicitly
assumes that there are length and time scales on which the
disk is homogeneous. On much smaller length and time
scales, though, other effects can be important. Any turbu-
lence present, for example, will have its own length and time
scales `t and tt. Self-similarity will still hold at larger scales
if there are intermediate length scales less than r and time
scales less than the disk evolution time scale such that averag-
ing over those length and time scales erases the influence of
the physical scales `t and tt, forcing the averaged quantities to
behave as radial power laws. Such averaging can be success-
fully performed even on large structures. For example, the
single-armed spirals that form the largest mode of the MRI
have an azimuthal length scale r, but averaging over azimuth

and orbital times erases its phase, leaving only the power-law
radial variation of the amplitude of the spiral.

If the disk is indeed self-similar, the envelopes of parame-
ters such as the radial magnetic field vary as power laws on
the disk’s own (radial) length scale, and evolve on the disk
evolution time scale. In such a self-similar region we can per-
form a multi-scale (WKB like) decomposition. We can write
this for the radial magnetic field as

Br = f(r, t)Br0
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, (7)

where f captures the small scale variation in Br while the
power-law m is of order unity. In particular, f has a well de-
fined, spatially and temporally constant ensemble average. In
physical disks, which have finite extent and so are not per-
fectly self-similar, Br0 and m can vary slowly with time and
radius.

Orbital motion, with Keplerian angular velocity ⌦ /
r�3/2, will shear Br to create an azimuthal field that corre-
lates with its parent Br according to the induction equation:

@tB� = @r (r⌦Br) = r0⌦0Br0@r

h
f(r, t) (r/r0)

�m� 1
2

i
.

(8)
This evolution equation implies that B� is also a power law
of radius, with

B� = g(r, t)Br0
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When Br has a finite auto-correlation time tt, we can estimate
the azimuthal B� generated from Br by integrating over that
correlation time:
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dt0@t0B�. (10)

Using Equation (8) we see that B� scales as
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Note that the power-law n depends not only on m but also
on the radial dependency of tt, which in the turbulent case is
generally assuming to scale as ⌦�1 / r3/2.

By averaging over azimuth and time, we find

hB�Bri4r,�,t = hfgi4r,�,tB
2
r0
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where we have denoted averaging performed over the dimen-
sion i with the notation h. . . ii and 4r represents a small inter-
val in r with 4r > `t. The assumed homogeneity means that
after averaging out the small scale fluctuations, the correlator

hfgi4r,�,t /
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is itself a power law of the radius. Its index p measures the
inevitable inhomogeneity of the turbulence on length scales
comparable to r (perfect homogeneity implies p = 0). This
allows us to conclude that in self-similar (power-law) re-
gions of a protoplanetary disk, the average Maxwell stress
hM�ri4r,�,t will also be a power-law with

hM�ri4r,�,t / (r/r0)
�s < 0, (14)
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local saturation strength in an accretion disk (and hence its
saturation mechanism) depends on distant regions of an ac-
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behave as radial power laws. Such averaging can be success-
fully performed even on large structures. For example, the
single-armed spirals that form the largest mode of the MRI
have an azimuthal length scale r, but averaging over azimuth
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ters such as the radial magnetic field vary as power laws on
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form a multi-scale (WKB like) decomposition. We can write
this for the radial magnetic field as
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where f captures the small scale variation in Br while the
power-law m is of order unity. In particular, f has a well de-
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physical disks, which have finite extent and so are not per-
fectly self-similar, Br0 and m can vary slowly with time and
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Orbital motion, with Keplerian angular velocity ⌦ /
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Note that the power-law n depends not only on m but also
on the radial dependency of tt, which in the turbulent case is
generally assuming to scale as ⌦�1 / r3/2.

By averaging over azimuth and time, we find
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val in r with 4r > `t. The assumed homogeneity means that
after averaging out the small scale fluctuations, the correlator
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is itself a power law of the radius. Its index p measures the
inevitable inhomogeneity of the turbulence on length scales
comparable to r (perfect homogeneity implies p = 0). This
allows us to conclude that in self-similar (power-law) re-
gions of a protoplanetary disk, the average Maxwell stress
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Simulations see decretion
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Fig. 31.— Comparison of the mass accretion rates of Case I-high (left) and Case II-high (right). In each panel, the measured accretion
rate (red solid; Equation 72) is compared with the accretion rate estimated from the transport of the angular momentum, Equation (73;
black solid). The other three lines are the breakdown of the estimated accretion rate; the dashed line corresponds to the mass accretion
driven by the turbulent stress, the dot-dashed line is that by the disk winds, and the dotted line is the contribution from the time-dependent
term in Equation (71).

The contributions from the disk winds (dot-dashed lines)
and the time-dependent term (dotted lines) can be de-
rived in the same manner.
Figure 31 shows that the estimated accretion rates

(ṀR,ang; black solid lines) explain the overall trends
of the measured accretion rates (ṀR; red solid lines),
whereas the deviations of ṀR from ṀR,ang are not small
because of the truncation errors when converting from
the spherical coordinates used in the simulations to the
cylindrical coordinates, which are further accumulated
during the long time integration. In both the cases, the
radial mass flows are mainly determined by the turbu-
lent stress (dashed lines). The time-dependent term also
gives significant contributions in some regions, which in-
dicates that the assumption of the steady state is not
good for the simulated disks. The contribution from
the disk winds (dotted lines) is much smaller than the
other two components. Although in the outer region
(R > 15rin) of Case I-high the disk winds become sig-
nificant, the effect of the disk winds is overestimated in
this region because the simulation box can cover up to
only z ≈ ±H in Case I-high.
While in Case I-high the mass is accreting (ṀR < 0) in

the entire region, in Case II-high the mass is going out-
ward (ṀR > 0) in R > 5rin. This radially outward flow
is natural during the evolution of accretion disks (e.g.,
Lynden-Bell & Pringle 1974). In this region of Case II-
high, the angular momentum supplied from the inner
region is larger than the angular momentum lost to the
outer region. The net angular momentum increases in a
ring located in R > 5rin, and then the gas moves out-
ward.
Figure 32 displays radial dependences of the motion of

the vertical magnetic field,

〈
vR,Bz

cs
〉t,φ,z =

〈BzvR〉t,φ,z(R)

〈Bz〉t,φ,z(R)cs
, (74)

in comparison with the radial velocity of the gas,

〈
vR,gas

cs
〉t,φ,z =

〈ρvR〉t,φ,z(R)

〈ρ〉t,φ,z(R)cs
. (75)

For the radial velocity of Bz in Equation (74) we take
the average in the midplane region, ∆zmid (Equation
28), and in the surface regions, ∆zsfc (Equation 29), to
compare the motions of the vertical magnetic flux at the
midplane and in the surface regions. For the radial flow
of gas in Equation (75), we average vR over the entire
surface ∆ztot (Equation 26) to see the net gas flow. As
shown in Figures 28 & 31, the radial velocities could be
either positive or negative. In order to display both posi-
tive and negative values in the logarithmic scale, we take
the absolute values and use dashed lines for radially in-
ward flows (vR < 0) and solid lines for radially outward
flows (vR > 0).
In both Cases I-high (left panel in Figure 32) and II-

high (right panel), the motions of the net 〈Bz〉 near the
midplane and in the surface regions are very different.
In the surface regions, the vertical magnetic flux mostly
moves inward at a quite high speed, ! 0.1cs. On the
other hand, at the midplane, no clear tendencies are ob-
served in either case; 〈Bz〉moves outward in some regions
and inward in other regions at slow speeds, " 0.01cs.
(Note that in the outer region of Case I-high, vR/cs be-
comes large because of the effect of the surface bound-
aries.) These different properties of the net 〈Bz〉 indicate
that the vertical magnetic field lines are not connected
from the midplane to the surface regions when consider-
ing the long time integration, ∆tave. The inward dragged
magnetic field lines in the surface regions continuously
reconnect with field lines in the midplane region because
of the numerical resistivity; although our simulations as-
sume the ideal MHD, magnetic reconnections could take
place in the sub-grid scales as a result of the numerical
diffusion. For the same reason, the motions of the ver-
tical magnetic fields are also not strictly coupled to the
motions of the gas.
As shown so far, our simulations show the inward drag-

ging of the vertical magnetic flux in the surface regions,
which follows the trend of the layered accretion of the
gas component. Interestingly enough, this is consistent
with a recent result based on an analytic model (Roth-
stein & Lovelace 2008), while different trends could be
realized with different settings (Lubow et al. 1994). The
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Simulations see decretion

A&A 534, A107 (2011)

Fig. 3. Left panel: time and azimuthally averaged radial velocity for the model p = −2. Positive velocities are marked with white colors, while
black regions correspond to negative vR. The raw simulation data have been averaged in time between t = 400 and t = 600. Right panel: the solid
line shows the vertical profile of the radial velocity averaged in time between t = 400 and t = 600, in the azimuthal direction and in the radial
direction between R = 3 and R = 6. The dashed lines show the theoretical prediction of Eq. (14) for α = 10−2 and 5 × 10−3, respectively . The
dotted line simply marks the zero point as a reference.

Fig. 4. Vertical profile of the radial velocity for the case p = −2. In both panels, the solid line is identical to that plotted on the right panel of
Fig. 3 (time average over [400, 600] and radial average over [3, 6]). The left panel investigates the sensitivity of the result on the time average
while keeping the same radial range: the time average is taken over [400, 500] (dotted line) and [500, 600] (dashed line). The right panel shows
data obtained with the same time average, [400, 600], but different radial range, namely R ∈ [2, 4.5] (dotted line) and R ∈ [4.5, 7] (dashed line).

3.2.3. Turbulent vs. viscous torques

The results presented above demonstrate important differences
between the large-scale flow properties of viscous and turbulent
disks. This is due to differences between viscous and turbulent
stresses. Indeed, as outlined in Sect. 2.4, stress tensors responsi-
ble for angular momentum transport have no reason to be iden-
tical in viscous and in turbulent disks. We now compare them in
detail.

We first consider the Zφ components of those stresses. Both
T visc

Zφ and T turb
Zφ are respectively given by Eq. (12), along with

the α-prescription for the viscosity and Eq. (17). The left hand
panel of Fig. 5 compares the vertical profile of T turb

Zφ /Pmid and
T visc

Zφ /Pmid. As for the right hand panel of Fig. 3, the simulation
data have been averaged in azimuth over the entire computa-
tional domain and in radius between R = 3 and R = 6. A further

average over 11 snapshots evenly spaced between t = 300 and
t = 600 was also performed1. The two stresses display a compa-
rable amplitude and a similar vertical profile, which is ultimately
related to the sign and the amplitude of the vertical derivative
of Ω.

We now turn our attention to the Rφ components of the vis-
cous and turbulent stress tensors. These are given by Eq. (11),
along with the α-prescription for the viscosity, and Eq. (16),
respectively. Snapshots of both tensors in the disk’s meridional

1 Unlike the Rφ component of the turbulent stress, the derivation of the
Zφ component of the turbulent stress had not been anticipated before
the simulations were performed. Their calculation was done using the
small number of dump files available after their completion rather than
during the simulations themselves as for the TRφ components. Although
such a procedure unfortunately results in larger fluctuations, it is not
prohibitive because stress tensors tend to converge faster than other sta-
tistical diagnostics like the mean radial velocity.

A107, page 6 of 14

Fromang, Lyra &
Masset (2011)
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Decretion costs energy.  What powers it?

✦ Where does the energy come from?

✦ If there is net accretion, there is net power

✦ Maybe boundary work?

✦ Balbus & Papaloizou 1999:

4 HUBBARD ET AL.

where s = m + n + p is of order unity. The assumption that
M�r < 0 arises from multiplying Equations (7) and (11). By
construction f has a spatially constant ensemble average, so

hf@rfi4r,�,t =
1

2
@rhf2i4r,�,t = 0. (15)

The remaining term in Equation (11), proportional to f2, has
a sign that depends on �m � 1/2. It will be negative unless
the radial magnetic field grows faster than m < �1/2, which
requires an improbable situation where Br is fed by bending
vertical magnetic field lines outwards through the disk mid-
plane.

3.2. The Shearing Box Approximation

The shearing bax approximation neglects curvature terms
in disk flows, focusing on their behavior locally near a radius
r0. In addition, the radial gradients of the background den-
sity and temperature are either taken to be zero or neglected.
This allows replacing the cylindrical coordinate system with a
local, Cartesian one to which shear-periodic boundary condi-
tions can be applied. Flattening the orbital curvature removes
the geometry terms in the equations, and so removes the dis-
tinction between inwards and outwards directions. Neglecting
radial gradients in background temperature and density means
that the shearing box cannot account for radial variations in
the scale height H . In turn, this implies that if a shearing
box is treated as a local model for an accretion disk, it is re-
stricted to the midplane power-law region, where the @rH(r)
of Equation (6) can be neglected.

In this approximation, the angular momentum flux diver-
gence becomes

r ·FL = @rFLr +
FLr

r
+

1

r
@�FL� + @zFLz, (16)

⇡ @rFLr +
1

r
@�FL� + @zFLz. (17)

This approximation has two effects. First, as noted above,
there is now no difference between the radially inward and
outward direction of the angular momentum flux. Second, this
allows the imposition of triply (shear)-periodic boundary con-
ditions on FL in a shearing box, forcing the integral over the
box of r ·FL to be zero by the divergence theorem, so no an-
gular momentum can be extracted or deposited locally. Sym-
metry considerations require that the result

R
V
dvr ·FL = 0

applies even when the vertical boundary conditions are not
periodic, absent an imposed large scale field that breaks the
radial symmetry.

The strength of the angular momentum flux is controlled by
the Maxwell and Reynolds stresses. However, shearing box
simulations are often used to estimate the local accretion flow,
which requires understanding whether angular momentum is
being deposited or extracted. This in turn requires calculation
of r · FL. If the appropriately vertically, azimuthally and
time-averaged stresses vary smoothly with radial position, we
can estimate |r · FL| ⇠ |FL/r|, i.e. that FL is a modest
power-law function of radial position r. However, while that
approximates the magnitude of r·FL, it does not specify the
sign since the shearing box approximation cannot distinguish
between êr and �êr. The direction of the resulting mass flow
is usually assumed to be inwards, but this assumption does not
appear to be justified across large swaths of accretion disks,
as we will discuss in Section 5.

3.2.1. Generalized Energy Fluxes

Microphysical viscosity is too low by orders of magnitude
to explain meaningful accretion flow in observed disks. Fur-
ther, while turbulent viscosity could be adequate in magni-
tude, it is unclear whether hydrodynamical turbulence can
power adequate accretion flows to sustain itself. Accordingly
this paper focuses on Maxwell (magnetic) stresses. Nonethe-
less, the energy flux in a shearing box can be analyzed in a
more general manner. Starting with the ideal MHD energy
flux and generalizing Balbus & Papaloizou (1999, Eq. 32) one
arrives at

FE = v
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(18)

which includes the kinetic energy, potential energy, thermal
energy, magnetic energy, and viscous fluxes. Here v is the
velocity, which can be decomposed into v̄+w with the back-
ground shear flow v̄ = �q⌦xêy , and w the fluctuation, and
q = 3/2 in the case of Keplerian rotation with ⌦ / r�3/2. In
addition P is the thermal pressure and � is the gravitational
potential. The viscous stress tensor is

�0
ik(v) = ⌫⇢

✓
@vi
@xk

+
@vk
@xi

� 2

3
�ik

@vl
@xl

◆
+ ⇣�ik

@vl
@xl

, (19)

where ⌫ is the viscosity, and ⇣ the bulk viscosity (Landau &
Lifshitz 1959).

The y and z components of FE are periodic, but the x com-
ponent is not:

FE · êx =� q⌦x⇢wxwy + wx

✓
1

2
⇢(v̄2 +w2) + ⇢�+ P

◆

+ q⌦x
1

µ0
BxBy +

1

µ0
wxB

2 � 1

µ0
BxwkBk

+ q⌦x⌫⇢


@(�q⌦x)

@x

�
+ q⌦x�0

xy(w)

� wy⌫⇢


@(�q⌦x)

@x

�
� wi�

0
xi(w) (20)

Hence, the divergence of the energy flux contains the terms

r ·FE =� q⌦⇢wxwy + q⌦
1

µ0
BxBy � ⌫⇢q2⌦2 + ...

(21)

This expression is essentially a differential version of Hawley
et al. (1995)’s equation 8. These are the energy sources which
result from the non-periodic nature of the energy flux in the
shearing box.

3.2.2. Importance of the Poynting flux

Consider an incompressible ideal unstratified shearing box.
The governing equations are:

@tw + v̄ ·rw +w ·rw =

� 2⌦êz ⇥w + q⌦wxêy +
1

µ0⇢
(r⇥B)⇥B, (22)

@tB = r⇥ [(w + q⌦xêy)⇥B] , (23)
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Note that the equations solved are identical for both sets
of BC – they are the two-dimensional restriction of the SSB
Eqs. (1)−(5). We take β = 1 and remark that since there is no
z dependence in our 2D setup, B0 (the background vertical field)
does not play any dynamical role in the problem. In addition, it is
convenient in this case to use the flux function Φ and the stream
function ψ, such that

∂xψ = v, ∂yψ = −u, and ∂xΦ = by, ∂yΦ = −bx, (16)

and so the solenoidal property of the velocity and magnetic field
disturbances is automatically insured. It is perhaps instructive
to also remark that the energy integral (10) appropriate for our
2D numerical calculation takes on the form

Ė = qΩ0

∫ [
uv − 1

β
bxby
]Lx/2

−Lx/2
dy,−D. (17)

for periodic-BC, and

Ė =
1

Re

∫ [
v(−qΩ0)

]Lx/2

−Lx/2
dy −D (18)

for wall-BC. Thus, as is apparent, the surface term S reduces to
a simple and readily understandable form.

The code we use in the experiment with periodic-BC is a
modification (so as to include the MHD terms) of the spectral
evolver we developed for the purely hydrodynamic problem, see
Umurhan & Regev (2004) for details. The numerical experiment
employing wall-BC also consists of a spectral code, but there
a different spectral function basis is used, appropriate for wall-
BC. In both cases, we evolve the flux function Φ and the stream
function ψ, instead of u, v, bx and by, as explained above. We
temporally evolve the resulting set of equations using the mod-
ified Crank-Nicholson scheme as implemented in Umurhan &
Regev (2004). We investigate the dynamics of a flow with Re =
2000 and Rm = 700 and make sure that the resolved dynamical
scales are in the viscous and resistive regimes so as to guaran-
tee that the dissipation is fully resolved in all simulations. For
both types of BC we run the simulations for a SB of size Lx = π
and Ly = 2π as well as for an SB of double size (in Lx, that is
Lx = 2π).

The resolution in the x-direction in the small domain (Lx = π
and Ly = 2π) is taken to be nx = 64 and ny = 64. Because of our
experience with externally driven shear problems (e.g. Umurhan
& Regev 2004), we are careful to to increase the resolution in
the shear-wise direction on account of the strong crenellation
that the external shear creates out of the disturbances (the Orr-
mechanism), so that for the double (in the shear-wise extent of
the domain) case, we double the resolution too, i.e., when Lx =
2π we take nx = 128.

The simulations are initiated with white noise in the vortic-
ity (ω = ∇2ψ) and the source J of the flux function (J = ∇2Φ).
The initial ω and Φ are shown in Fig. 1. This initial disturbance
is identical in all simulations and it is localized away from the
radial boundaries. We do this to gain better control of the ef-
fects that the boundaries have in the evolution. The only relevant
spatial dynamical scale that may be perceived as the integral, or
injection, scale is the extent of the initial perturbation, suggest-
ing that & ∼ 2, initially.

In the upper panel of Fig. 2, we show the evolution of the to-
tal energy in the SB of shear-wise extent Lx = π, for periodic-BC
and wall-BC, while this figure’s lower panel depicts the same
for a SB of double shear-wise extent (Lx = 2π). The fluctua-
tions in E depicted on the upper panel in periodic-BC simula-
tions are quite dramatic and we have found that they correlate

−0.2 0 0.2

−1

0

1

−40 −20 0 20 40

−1

0

1

0 2 4 6
−3

−2

−1

0

1

2

3

0 2 4 6
−3

−2

−1

0

1

2

3

x 

y 

x 

y 

Short
Domain 

Long
Domain 

Initial Flux Function: Φ Initial Vorticity: ω 

Fig. 1. The initial conditions used for the simulations. The perturbations
are localized away from the radial boundaries and are identical for the
periodic-BC and wall-BC runs.
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Fig. 2. The total energy (in arbitrary units) in the SB as a function of
time (in units of Ω−1

0 ). In the upper panel, the size of the SB is Lx =
π and Ly = 2π and the result of the calculation with periodic-BC is
compared with the one using wall-BC. In the lower panel, the same is
shown for a SB having a double shear-wise extent. In both cases the
simulations are started with the same initial conditions, as depicted in
Fig. 1 and the evolution is shown during the period in which the typical
(of 2D) decay of the activity has not yet fully set in.

with the action taking place on the boundaries. Clearly, in the
smaller SB we have Lx ∼ &, that is we are in the situation in
which the periodic box size is too small, as we have discussed at
the end of the previous section. The dynamics, for the periodic-
BC case, is seriously affected by the artificial distortion of the
correlation function brought about by the periodic-BC on a too
small domain. In contrast, the evolution with wall-BC proceeds
smoothly, as the boundary conditions do not allow artificial en-
ergy inflow/outflow. The fluctuations in the periodic-BC case
have a time scale related to the period time of the shearing box
given by

T =
Ly
Ω0qLx

,

as we can clearly see from the time behavior of the surface term
(not shown). This behavior is also apparent in Fig. 2, but is
less prominent and clear. We reason that these fluctuations are
driven by successive passages of the developed coherent struc-
tures (vortices, in this case) in the imaginary neighboring boxes.
The vortices that appear in all our simulations are actually some-
what tighter than the initial vorticity perturbation extent, sug-
gesting that & ∼ 1 or so. We also see this trend played out in the

Regev and Umurhan (2008)
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Note that the equations solved are identical for both sets
of BC – they are the two-dimensional restriction of the SSB
Eqs. (1)−(5). We take β = 1 and remark that since there is no
z dependence in our 2D setup, B0 (the background vertical field)
does not play any dynamical role in the problem. In addition, it is
convenient in this case to use the flux function Φ and the stream
function ψ, such that

∂xψ = v, ∂yψ = −u, and ∂xΦ = by, ∂yΦ = −bx, (16)

and so the solenoidal property of the velocity and magnetic field
disturbances is automatically insured. It is perhaps instructive
to also remark that the energy integral (10) appropriate for our
2D numerical calculation takes on the form

Ė = qΩ0

∫ [
uv − 1

β
bxby
]Lx/2

−Lx/2
dy,−D. (17)

for periodic-BC, and

Ė =
1

Re

∫ [
v(−qΩ0)

]Lx/2

−Lx/2
dy −D (18)

for wall-BC. Thus, as is apparent, the surface term S reduces to
a simple and readily understandable form.

The code we use in the experiment with periodic-BC is a
modification (so as to include the MHD terms) of the spectral
evolver we developed for the purely hydrodynamic problem, see
Umurhan & Regev (2004) for details. The numerical experiment
employing wall-BC also consists of a spectral code, but there
a different spectral function basis is used, appropriate for wall-
BC. In both cases, we evolve the flux function Φ and the stream
function ψ, instead of u, v, bx and by, as explained above. We
temporally evolve the resulting set of equations using the mod-
ified Crank-Nicholson scheme as implemented in Umurhan &
Regev (2004). We investigate the dynamics of a flow with Re =
2000 and Rm = 700 and make sure that the resolved dynamical
scales are in the viscous and resistive regimes so as to guaran-
tee that the dissipation is fully resolved in all simulations. For
both types of BC we run the simulations for a SB of size Lx = π
and Ly = 2π as well as for an SB of double size (in Lx, that is
Lx = 2π).

The resolution in the x-direction in the small domain (Lx = π
and Ly = 2π) is taken to be nx = 64 and ny = 64. Because of our
experience with externally driven shear problems (e.g. Umurhan
& Regev 2004), we are careful to to increase the resolution in
the shear-wise direction on account of the strong crenellation
that the external shear creates out of the disturbances (the Orr-
mechanism), so that for the double (in the shear-wise extent of
the domain) case, we double the resolution too, i.e., when Lx =
2π we take nx = 128.

The simulations are initiated with white noise in the vortic-
ity (ω = ∇2ψ) and the source J of the flux function (J = ∇2Φ).
The initial ω and Φ are shown in Fig. 1. This initial disturbance
is identical in all simulations and it is localized away from the
radial boundaries. We do this to gain better control of the ef-
fects that the boundaries have in the evolution. The only relevant
spatial dynamical scale that may be perceived as the integral, or
injection, scale is the extent of the initial perturbation, suggest-
ing that & ∼ 2, initially.

In the upper panel of Fig. 2, we show the evolution of the to-
tal energy in the SB of shear-wise extent Lx = π, for periodic-BC
and wall-BC, while this figure’s lower panel depicts the same
for a SB of double shear-wise extent (Lx = 2π). The fluctua-
tions in E depicted on the upper panel in periodic-BC simula-
tions are quite dramatic and we have found that they correlate
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Fig. 1. The initial conditions used for the simulations. The perturbations
are localized away from the radial boundaries and are identical for the
periodic-BC and wall-BC runs.

62

64

66

68

70

72

74

76

78

time

D
om

ai
n 

In
te

gr
at

ed
 E

ne
rg

y

0 5 10 15 20 25
235

240

245

250

255

 

L
x
 = π, L

y
 = 2π 

L
x
 = 2π, L

y
 = 2π 

wBC 

pBC 

wBC 

pBC 

Fig. 2. The total energy (in arbitrary units) in the SB as a function of
time (in units of Ω−1

0 ). In the upper panel, the size of the SB is Lx =
π and Ly = 2π and the result of the calculation with periodic-BC is
compared with the one using wall-BC. In the lower panel, the same is
shown for a SB having a double shear-wise extent. In both cases the
simulations are started with the same initial conditions, as depicted in
Fig. 1 and the evolution is shown during the period in which the typical
(of 2D) decay of the activity has not yet fully set in.

with the action taking place on the boundaries. Clearly, in the
smaller SB we have Lx ∼ &, that is we are in the situation in
which the periodic box size is too small, as we have discussed at
the end of the previous section. The dynamics, for the periodic-
BC case, is seriously affected by the artificial distortion of the
correlation function brought about by the periodic-BC on a too
small domain. In contrast, the evolution with wall-BC proceeds
smoothly, as the boundary conditions do not allow artificial en-
ergy inflow/outflow. The fluctuations in the periodic-BC case
have a time scale related to the period time of the shearing box
given by

T =
Ly
Ω0qLx

,

as we can clearly see from the time behavior of the surface term
(not shown). This behavior is also apparent in Fig. 2, but is
less prominent and clear. We reason that these fluctuations are
driven by successive passages of the developed coherent struc-
tures (vortices, in this case) in the imaginary neighboring boxes.
The vortices that appear in all our simulations are actually some-
what tighter than the initial vorticity perturbation extent, sug-
gesting that & ∼ 1 or so. We also see this trend played out in the
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Note that the equations solved are identical for both sets
of BC – they are the two-dimensional restriction of the SSB
Eqs. (1)−(5). We take β = 1 and remark that since there is no
z dependence in our 2D setup, B0 (the background vertical field)
does not play any dynamical role in the problem. In addition, it is
convenient in this case to use the flux function Φ and the stream
function ψ, such that

∂xψ = v, ∂yψ = −u, and ∂xΦ = by, ∂yΦ = −bx, (16)

and so the solenoidal property of the velocity and magnetic field
disturbances is automatically insured. It is perhaps instructive
to also remark that the energy integral (10) appropriate for our
2D numerical calculation takes on the form

Ė = qΩ0

∫ [
uv − 1

β
bxby
]Lx/2

−Lx/2
dy,−D. (17)

for periodic-BC, and

Ė =
1

Re

∫ [
v(−qΩ0)

]Lx/2

−Lx/2
dy −D (18)

for wall-BC. Thus, as is apparent, the surface term S reduces to
a simple and readily understandable form.

The code we use in the experiment with periodic-BC is a
modification (so as to include the MHD terms) of the spectral
evolver we developed for the purely hydrodynamic problem, see
Umurhan & Regev (2004) for details. The numerical experiment
employing wall-BC also consists of a spectral code, but there
a different spectral function basis is used, appropriate for wall-
BC. In both cases, we evolve the flux function Φ and the stream
function ψ, instead of u, v, bx and by, as explained above. We
temporally evolve the resulting set of equations using the mod-
ified Crank-Nicholson scheme as implemented in Umurhan &
Regev (2004). We investigate the dynamics of a flow with Re =
2000 and Rm = 700 and make sure that the resolved dynamical
scales are in the viscous and resistive regimes so as to guaran-
tee that the dissipation is fully resolved in all simulations. For
both types of BC we run the simulations for a SB of size Lx = π
and Ly = 2π as well as for an SB of double size (in Lx, that is
Lx = 2π).

The resolution in the x-direction in the small domain (Lx = π
and Ly = 2π) is taken to be nx = 64 and ny = 64. Because of our
experience with externally driven shear problems (e.g. Umurhan
& Regev 2004), we are careful to to increase the resolution in
the shear-wise direction on account of the strong crenellation
that the external shear creates out of the disturbances (the Orr-
mechanism), so that for the double (in the shear-wise extent of
the domain) case, we double the resolution too, i.e., when Lx =
2π we take nx = 128.

The simulations are initiated with white noise in the vortic-
ity (ω = ∇2ψ) and the source J of the flux function (J = ∇2Φ).
The initial ω and Φ are shown in Fig. 1. This initial disturbance
is identical in all simulations and it is localized away from the
radial boundaries. We do this to gain better control of the ef-
fects that the boundaries have in the evolution. The only relevant
spatial dynamical scale that may be perceived as the integral, or
injection, scale is the extent of the initial perturbation, suggest-
ing that & ∼ 2, initially.

In the upper panel of Fig. 2, we show the evolution of the to-
tal energy in the SB of shear-wise extent Lx = π, for periodic-BC
and wall-BC, while this figure’s lower panel depicts the same
for a SB of double shear-wise extent (Lx = 2π). The fluctua-
tions in E depicted on the upper panel in periodic-BC simula-
tions are quite dramatic and we have found that they correlate
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Fig. 1. The initial conditions used for the simulations. The perturbations
are localized away from the radial boundaries and are identical for the
periodic-BC and wall-BC runs.
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Fig. 2. The total energy (in arbitrary units) in the SB as a function of
time (in units of Ω−1

0 ). In the upper panel, the size of the SB is Lx =
π and Ly = 2π and the result of the calculation with periodic-BC is
compared with the one using wall-BC. In the lower panel, the same is
shown for a SB having a double shear-wise extent. In both cases the
simulations are started with the same initial conditions, as depicted in
Fig. 1 and the evolution is shown during the period in which the typical
(of 2D) decay of the activity has not yet fully set in.

with the action taking place on the boundaries. Clearly, in the
smaller SB we have Lx ∼ &, that is we are in the situation in
which the periodic box size is too small, as we have discussed at
the end of the previous section. The dynamics, for the periodic-
BC case, is seriously affected by the artificial distortion of the
correlation function brought about by the periodic-BC on a too
small domain. In contrast, the evolution with wall-BC proceeds
smoothly, as the boundary conditions do not allow artificial en-
ergy inflow/outflow. The fluctuations in the periodic-BC case
have a time scale related to the period time of the shearing box
given by

T =
Ly
Ω0qLx

,

as we can clearly see from the time behavior of the surface term
(not shown). This behavior is also apparent in Fig. 2, but is
less prominent and clear. We reason that these fluctuations are
driven by successive passages of the developed coherent struc-
tures (vortices, in this case) in the imaginary neighboring boxes.
The vortices that appear in all our simulations are actually some-
what tighter than the initial vorticity perturbation extent, sug-
gesting that & ∼ 1 or so. We also see this trend played out in the
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where s = m + n + p is of order unity. The assumption that
M�r < 0 arises from multiplying Equations (7) and (11). By
construction f has a spatially constant ensemble average, so

hf@rfi4r,�,t =
1

2
@rhf2i4r,�,t = 0. (15)

The remaining term in Equation (11), proportional to f2, has
a sign that depends on �m � 1/2. It will be negative unless
the radial magnetic field grows faster than m < �1/2, which
requires an improbable situation where Br is fed by bending
vertical magnetic field lines outwards through the disk mid-
plane.

3.2. The Shearing Box Approximation

The shearing bax approximation neglects curvature terms
in disk flows, focusing on their behavior locally near a radius
r0. In addition, the radial gradients of the background den-
sity and temperature are either taken to be zero or neglected.
This allows replacing the cylindrical coordinate system with a
local, Cartesian one to which shear-periodic boundary condi-
tions can be applied. Flattening the orbital curvature removes
the geometry terms in the equations, and so removes the dis-
tinction between inwards and outwards directions. Neglecting
radial gradients in background temperature and density means
that the shearing box cannot account for radial variations in
the scale height H . In turn, this implies that if a shearing
box is treated as a local model for an accretion disk, it is re-
stricted to the midplane power-law region, where the @rH(r)
of Equation (6) can be neglected.

In this approximation, the angular momentum flux diver-
gence becomes

r ·FL = @rFLr +
FLr

r
+

1

r
@�FL� + @zFLz, (16)

⇡ @rFLr +
1

r
@�FL� + @zFLz. (17)

This approximation has two effects. First, as noted above,
there is now no difference between the radially inward and
outward direction of the angular momentum flux. Second, this
allows the imposition of triply (shear)-periodic boundary con-
ditions on FL in a shearing box, forcing the integral over the
box of r ·FL to be zero by the divergence theorem, so no an-
gular momentum can be extracted or deposited locally. Sym-
metry considerations require that the result

R
V
dvr ·FL = 0

applies even when the vertical boundary conditions are not
periodic, absent an imposed large scale field that breaks the
radial symmetry.

The strength of the angular momentum flux is controlled by
the Maxwell and Reynolds stresses. However, shearing box
simulations are often used to estimate the local accretion flow,
which requires understanding whether angular momentum is
being deposited or extracted. This in turn requires calculation
of r · FL. If the appropriately vertically, azimuthally and
time-averaged stresses vary smoothly with radial position, we
can estimate |r · FL| ⇠ |FL/r|, i.e. that FL is a modest
power-law function of radial position r. However, while that
approximates the magnitude of r·FL, it does not specify the
sign since the shearing box approximation cannot distinguish
between êr and �êr. The direction of the resulting mass flow
is usually assumed to be inwards, but this assumption does not
appear to be justified across large swaths of accretion disks,
as we will discuss in Section 5.

3.2.1. Generalized Energy Fluxes

Microphysical viscosity is too low by orders of magnitude
to explain meaningful accretion flow in observed disks. Fur-
ther, while turbulent viscosity could be adequate in magni-
tude, it is unclear whether hydrodynamical turbulence can
power adequate accretion flows to sustain itself. Accordingly
this paper focuses on Maxwell (magnetic) stresses. Nonethe-
less, the energy flux in a shearing box can be analyzed in a
more general manner. Starting with the ideal MHD energy
flux and generalizing Balbus & Papaloizou (1999, Eq. 32) one
arrives at

FE = v

✓
1

2
⇢v2 + ⇢�+ P

◆
+

B

µ0
⇥ (v ⇥B)� �0(v) · v

(18)

which includes the kinetic energy, potential energy, thermal
energy, magnetic energy, and viscous fluxes. Here v is the
velocity, which can be decomposed into v̄+w with the back-
ground shear flow v̄ = �q⌦xêy , and w the fluctuation, and
q = 3/2 in the case of Keplerian rotation with ⌦ / r�3/2. In
addition P is the thermal pressure and � is the gravitational
potential. The viscous stress tensor is

�0
ik(v) = ⌫⇢
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@vk
@xi
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�ik
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◆
+ ⇣�ik

@vl
@xl

, (19)

where ⌫ is the viscosity, and ⇣ the bulk viscosity (Landau &
Lifshitz 1959).

The y and z components of FE are periodic, but the x com-
ponent is not:

FE · êx =� q⌦x⇢wxwy + wx
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� wi�
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Hence, the divergence of the energy flux contains the terms

r ·FE =� q⌦⇢wxwy + q⌦
1

µ0
BxBy � ⌫⇢q2⌦2 + ...

(21)

This expression is essentially a differential version of Hawley
et al. (1995)’s equation 8. These are the energy sources which
result from the non-periodic nature of the energy flux in the
shearing box.

3.2.2. Importance of the Poynting flux

Consider an incompressible ideal unstratified shearing box.
The governing equations are:

@tw + v̄ ·rw +w ·rw =

� 2⌦êz ⇥w + q⌦wxêy +
1

µ0⇢
(r⇥B)⇥B, (22)

@tB = r⇥ [(w + q⌦xêy)⇥B] , (23)

Energy is transported radially

1 Equations

v = vK +w ! FE = w
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+

B

µ0
⇥ (vK ⇥B) (1)
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
⇢w�wz �

B�Bz
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ˆz (2)

hr · Si�,t = (1/2� s)⌦hM�ri�,t ⇠
3

2
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where s = m + n + p is of order unity. The assumption that
M�r < 0 arises from multiplying Equations (7) and (11). By
construction f has a spatially constant ensemble average, so

hf@rfi4r,�,t =
1

2
@rhf2i4r,�,t = 0. (15)

The remaining term in Equation (11), proportional to f2, has
a sign that depends on �m � 1/2. It will be negative unless
the radial magnetic field grows faster than m < �1/2, which
requires an improbable situation where Br is fed by bending
vertical magnetic field lines outwards through the disk mid-
plane.

3.2. The Shearing Box Approximation

The shearing bax approximation neglects curvature terms
in disk flows, focusing on their behavior locally near a radius
r0. In addition, the radial gradients of the background den-
sity and temperature are either taken to be zero or neglected.
This allows replacing the cylindrical coordinate system with a
local, Cartesian one to which shear-periodic boundary condi-
tions can be applied. Flattening the orbital curvature removes
the geometry terms in the equations, and so removes the dis-
tinction between inwards and outwards directions. Neglecting
radial gradients in background temperature and density means
that the shearing box cannot account for radial variations in
the scale height H . In turn, this implies that if a shearing
box is treated as a local model for an accretion disk, it is re-
stricted to the midplane power-law region, where the @rH(r)
of Equation (6) can be neglected.

In this approximation, the angular momentum flux diver-
gence becomes

r ·FL = @rFLr +
FLr

r
+

1

r
@�FL� + @zFLz, (16)

⇡ @rFLr +
1

r
@�FL� + @zFLz. (17)

This approximation has two effects. First, as noted above,
there is now no difference between the radially inward and
outward direction of the angular momentum flux. Second, this
allows the imposition of triply (shear)-periodic boundary con-
ditions on FL in a shearing box, forcing the integral over the
box of r ·FL to be zero by the divergence theorem, so no an-
gular momentum can be extracted or deposited locally. Sym-
metry considerations require that the result

R
V
dvr ·FL = 0

applies even when the vertical boundary conditions are not
periodic, absent an imposed large scale field that breaks the
radial symmetry.

The strength of the angular momentum flux is controlled by
the Maxwell and Reynolds stresses. However, shearing box
simulations are often used to estimate the local accretion flow,
which requires understanding whether angular momentum is
being deposited or extracted. This in turn requires calculation
of r · FL. If the appropriately vertically, azimuthally and
time-averaged stresses vary smoothly with radial position, we
can estimate |r · FL| ⇠ |FL/r|, i.e. that FL is a modest
power-law function of radial position r. However, while that
approximates the magnitude of r·FL, it does not specify the
sign since the shearing box approximation cannot distinguish
between êr and �êr. The direction of the resulting mass flow
is usually assumed to be inwards, but this assumption does not
appear to be justified across large swaths of accretion disks,
as we will discuss in Section 5.

3.2.1. Generalized Energy Fluxes

Microphysical viscosity is too low by orders of magnitude
to explain meaningful accretion flow in observed disks. Fur-
ther, while turbulent viscosity could be adequate in magni-
tude, it is unclear whether hydrodynamical turbulence can
power adequate accretion flows to sustain itself. Accordingly
this paper focuses on Maxwell (magnetic) stresses. Nonethe-
less, the energy flux in a shearing box can be analyzed in a
more general manner. Starting with the ideal MHD energy
flux and generalizing Balbus & Papaloizou (1999, Eq. 32) one
arrives at

FE = v
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which includes the kinetic energy, potential energy, thermal
energy, magnetic energy, and viscous fluxes. Here v is the
velocity, which can be decomposed into v̄+w with the back-
ground shear flow v̄ = �q⌦xêy , and w the fluctuation, and
q = 3/2 in the case of Keplerian rotation with ⌦ / r�3/2. In
addition P is the thermal pressure and � is the gravitational
potential. The viscous stress tensor is
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where ⌫ is the viscosity, and ⇣ the bulk viscosity (Landau &
Lifshitz 1959).

The y and z components of FE are periodic, but the x com-
ponent is not:

FE · êx =� q⌦x⇢wxwy + wx
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Hence, the divergence of the energy flux contains the terms

r ·FE =� q⌦⇢wxwy + q⌦
1

µ0
BxBy � ⌫⇢q2⌦2 + ...

(21)

This expression is essentially a differential version of Hawley
et al. (1995)’s equation 8. These are the energy sources which
result from the non-periodic nature of the energy flux in the
shearing box.

3.2.2. Importance of the Poynting flux

Consider an incompressible ideal unstratified shearing box.
The governing equations are:
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1

µ0⇢
(r⇥B)⇥B, (22)

@tB = r⇥ [(w + q⌦xêy)⇥B] , (23)
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where s = m + n + p is of order unity. The assumption that
M�r < 0 arises from multiplying Equations (7) and (11). By
construction f has a spatially constant ensemble average, so

hf@rfi4r,�,t =
1

2
@rhf2i4r,�,t = 0. (15)

The remaining term in Equation (11), proportional to f2, has
a sign that depends on �m � 1/2. It will be negative unless
the radial magnetic field grows faster than m < �1/2, which
requires an improbable situation where Br is fed by bending
vertical magnetic field lines outwards through the disk mid-
plane.

3.2. The Shearing Box Approximation

The shearing bax approximation neglects curvature terms
in disk flows, focusing on their behavior locally near a radius
r0. In addition, the radial gradients of the background den-
sity and temperature are either taken to be zero or neglected.
This allows replacing the cylindrical coordinate system with a
local, Cartesian one to which shear-periodic boundary condi-
tions can be applied. Flattening the orbital curvature removes
the geometry terms in the equations, and so removes the dis-
tinction between inwards and outwards directions. Neglecting
radial gradients in background temperature and density means
that the shearing box cannot account for radial variations in
the scale height H . In turn, this implies that if a shearing
box is treated as a local model for an accretion disk, it is re-
stricted to the midplane power-law region, where the @rH(r)
of Equation (6) can be neglected.

In this approximation, the angular momentum flux diver-
gence becomes

r ·FL = @rFLr +
FLr

r
+

1

r
@�FL� + @zFLz, (16)

⇡ @rFLr +
1

r
@�FL� + @zFLz. (17)

This approximation has two effects. First, as noted above,
there is now no difference between the radially inward and
outward direction of the angular momentum flux. Second, this
allows the imposition of triply (shear)-periodic boundary con-
ditions on FL in a shearing box, forcing the integral over the
box of r ·FL to be zero by the divergence theorem, so no an-
gular momentum can be extracted or deposited locally. Sym-
metry considerations require that the result

R
V
dvr ·FL = 0

applies even when the vertical boundary conditions are not
periodic, absent an imposed large scale field that breaks the
radial symmetry.

The strength of the angular momentum flux is controlled by
the Maxwell and Reynolds stresses. However, shearing box
simulations are often used to estimate the local accretion flow,
which requires understanding whether angular momentum is
being deposited or extracted. This in turn requires calculation
of r · FL. If the appropriately vertically, azimuthally and
time-averaged stresses vary smoothly with radial position, we
can estimate |r · FL| ⇠ |FL/r|, i.e. that FL is a modest
power-law function of radial position r. However, while that
approximates the magnitude of r·FL, it does not specify the
sign since the shearing box approximation cannot distinguish
between êr and �êr. The direction of the resulting mass flow
is usually assumed to be inwards, but this assumption does not
appear to be justified across large swaths of accretion disks,
as we will discuss in Section 5.

3.2.1. Generalized Energy Fluxes

Microphysical viscosity is too low by orders of magnitude
to explain meaningful accretion flow in observed disks. Fur-
ther, while turbulent viscosity could be adequate in magni-
tude, it is unclear whether hydrodynamical turbulence can
power adequate accretion flows to sustain itself. Accordingly
this paper focuses on Maxwell (magnetic) stresses. Nonethe-
less, the energy flux in a shearing box can be analyzed in a
more general manner. Starting with the ideal MHD energy
flux and generalizing Balbus & Papaloizou (1999, Eq. 32) one
arrives at

FE = v
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which includes the kinetic energy, potential energy, thermal
energy, magnetic energy, and viscous fluxes. Here v is the
velocity, which can be decomposed into v̄+w with the back-
ground shear flow v̄ = �q⌦xêy , and w the fluctuation, and
q = 3/2 in the case of Keplerian rotation with ⌦ / r�3/2. In
addition P is the thermal pressure and � is the gravitational
potential. The viscous stress tensor is
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where ⌫ is the viscosity, and ⇣ the bulk viscosity (Landau &
Lifshitz 1959).

The y and z components of FE are periodic, but the x com-
ponent is not:

FE · êx =� q⌦x⇢wxwy + wx
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Hence, the divergence of the energy flux contains the terms
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(21)

This expression is essentially a differential version of Hawley
et al. (1995)’s equation 8. These are the energy sources which
result from the non-periodic nature of the energy flux in the
shearing box.

3.2.2. Importance of the Poynting flux

Consider an incompressible ideal unstratified shearing box.
The governing equations are:
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where s = m + n + p is of order unity. The assumption that
M�r < 0 arises from multiplying Equations (7) and (11). By
construction f has a spatially constant ensemble average, so

hf@rfi4r,�,t =
1

2
@rhf2i4r,�,t = 0. (15)

The remaining term in Equation (11), proportional to f2, has
a sign that depends on �m � 1/2. It will be negative unless
the radial magnetic field grows faster than m < �1/2, which
requires an improbable situation where Br is fed by bending
vertical magnetic field lines outwards through the disk mid-
plane.

3.2. The Shearing Box Approximation

The shearing bax approximation neglects curvature terms
in disk flows, focusing on their behavior locally near a radius
r0. In addition, the radial gradients of the background den-
sity and temperature are either taken to be zero or neglected.
This allows replacing the cylindrical coordinate system with a
local, Cartesian one to which shear-periodic boundary condi-
tions can be applied. Flattening the orbital curvature removes
the geometry terms in the equations, and so removes the dis-
tinction between inwards and outwards directions. Neglecting
radial gradients in background temperature and density means
that the shearing box cannot account for radial variations in
the scale height H . In turn, this implies that if a shearing
box is treated as a local model for an accretion disk, it is re-
stricted to the midplane power-law region, where the @rH(r)
of Equation (6) can be neglected.

In this approximation, the angular momentum flux diver-
gence becomes

r ·FL = @rFLr +
FLr

r
+

1

r
@�FL� + @zFLz, (16)

⇡ @rFLr +
1

r
@�FL� + @zFLz. (17)

This approximation has two effects. First, as noted above,
there is now no difference between the radially inward and
outward direction of the angular momentum flux. Second, this
allows the imposition of triply (shear)-periodic boundary con-
ditions on FL in a shearing box, forcing the integral over the
box of r ·FL to be zero by the divergence theorem, so no an-
gular momentum can be extracted or deposited locally. Sym-
metry considerations require that the result

R
V
dvr ·FL = 0

applies even when the vertical boundary conditions are not
periodic, absent an imposed large scale field that breaks the
radial symmetry.

The strength of the angular momentum flux is controlled by
the Maxwell and Reynolds stresses. However, shearing box
simulations are often used to estimate the local accretion flow,
which requires understanding whether angular momentum is
being deposited or extracted. This in turn requires calculation
of r · FL. If the appropriately vertically, azimuthally and
time-averaged stresses vary smoothly with radial position, we
can estimate |r · FL| ⇠ |FL/r|, i.e. that FL is a modest
power-law function of radial position r. However, while that
approximates the magnitude of r·FL, it does not specify the
sign since the shearing box approximation cannot distinguish
between êr and �êr. The direction of the resulting mass flow
is usually assumed to be inwards, but this assumption does not
appear to be justified across large swaths of accretion disks,
as we will discuss in Section 5.

3.2.1. Generalized Energy Fluxes

Microphysical viscosity is too low by orders of magnitude
to explain meaningful accretion flow in observed disks. Fur-
ther, while turbulent viscosity could be adequate in magni-
tude, it is unclear whether hydrodynamical turbulence can
power adequate accretion flows to sustain itself. Accordingly
this paper focuses on Maxwell (magnetic) stresses. Nonethe-
less, the energy flux in a shearing box can be analyzed in a
more general manner. Starting with the ideal MHD energy
flux and generalizing Balbus & Papaloizou (1999, Eq. 32) one
arrives at
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which includes the kinetic energy, potential energy, thermal
energy, magnetic energy, and viscous fluxes. Here v is the
velocity, which can be decomposed into v̄+w with the back-
ground shear flow v̄ = �q⌦xêy , and w the fluctuation, and
q = 3/2 in the case of Keplerian rotation with ⌦ / r�3/2. In
addition P is the thermal pressure and � is the gravitational
potential. The viscous stress tensor is
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where ⌫ is the viscosity, and ⇣ the bulk viscosity (Landau &
Lifshitz 1959).

The y and z components of FE are periodic, but the x com-
ponent is not:
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Hence, the divergence of the energy flux contains the terms
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This expression is essentially a differential version of Hawley
et al. (1995)’s equation 8. These are the energy sources which
result from the non-periodic nature of the energy flux in the
shearing box.

3.2.2. Importance of the Poynting flux

Consider an incompressible ideal unstratified shearing box.
The governing equations are:
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@tB = r⇥ [(w + q⌦xêy)⇥B] , (23)

Energy is transported radially
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Energy comes from the inner disk

✦ Radial energy transport means that accreting surface layers do 
not power decreting midplanes.

✦ Energy comes from the inner disk (gravitational potential energy 
scales as 1/r)

✦ If the power law regions decrete (e.g. stress proportional to pressure), then 
the boundary between accretion and decretion must be close enough to the 
inner edge that the disk is locally not a power law.
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they were capable of transporting energy vertically from the
upper, accreting, layers down to the decreting midplane.

As discussed in Section (3.2.2), in the magnetic case, en-
ergy transport by the Poynting flux provides the required de-
cretion power. Clearly, this energy must have been released
outside of the decretion region, so to capture the saturated
strength of the stresses inside the decretion region, this en-
ergy transport must be known. Shearing boxes cannot be in-
formed of this constraint, instead writing themselves blank
energy checks.

6.1. Divergence of the Poynting flux

We examine whether distant energy sources can indeed
drive decretion by rewriting Equation (26) as

@t
B2

2µ0
= �r · S � ⌘J2 � FL · v, (59)

where we recall that S is the Poynting flux and FL the
Lorentz force. Equation (59) states that, up to resistive terms,
any energy taken from the kinetic flow by the Lorentz force
(�FL · v) goes into the magnetic field (either locally, or,
through the Poynting flux, elsewhere) and vice-versa. If there
is a local accretion flow, it is certainly possible that much
of the orbital energy released goes first into magnetic en-
ergy, thence to be dissipated, by resistivity or other mecha-
nisms. However, we can also see that, in a decretion flow,
i.e. FL · v > 0, the energy going into the flow must either
come from the local magnetic energy through the term @tB

2,
or from a deposit of magnetic energy generated elsewhere and
transported by the Poynting flux (r · S).

The radial Poynting flux due to orbital shear is deposited or
extracted locally can be found from Equation (4), using only
the orbital velocity u� = r⌦. Collecting the terms, we find

hr · Si�,t,stretching = �1

r
@r

�
r2⌦hM�ri�,t

�
, (60)

which can be simplified using Equations (12) and (13) to

hr · Si�,t,stretching = (1/2� s)⌦hM�ri�,t. (61)

For comparison to this value, the local power released by ac-
cretion or required by decretion is approximately

3

2
⌦hM�ri�,t. (62)

As argued in Section (3.1), we expect that the power-law in-
dex s for hM�ri�,t satisfies s & 2, in the bulk of the disk,
only falling below 2 in non-power-law regions that are poorly
constrained. Thus, the Poynting flux extracts an order unity
fraction of the accretion power from accreting regions, and
injects similar amounts in decretion regions, except in the un-
likely special case of s = 1/2.

While we focus on the case of decretion to demonstrate the
absolute importance of long distance energy transport, the or-
der unity role played by the Poynting (or kinetic energy) flux
means that long distance energy transport also plays a crucial
role in setting the energy density in the fluctuating fields that
drive Maxwell (or Reynolds) stresses. Accordingly, the sat-
urated strength of those fields everywhere but the innermost
edge of an accretion disk depends on the rate at which energy
is supplied by the inner disk.

6.2. Local, not local and global

As discussed above, any Maxwell or Reynolds stresses in
a decretion region depends on energy exported for elsewhere.
That means that to correctly determine the strength of those
stresses (and hence the decretion velocity) one needs to know
how much energy is, in fact, available. This is one type of
not-locality, which merely states that if one considers an MRI
disk model initialized with a very weak seed magnetic field,
the local steady-state field amplitude depends on the global
disk. Shearing boxes cannot consider global disk parameters,
and so cannot obey this not-locality. Further, radial boundary
conditions for global disk models can artificially modify the
energy fluxes, and therefore must be carefully considered.

Accretion disks are also subject to a second, related type
of not-locality. Clearly, if one knows the local value and the
spatial derivatives of all relevant quantities (such as the den-
sity, velocity and magnetic fields) one can calculate the time
derivative of those quantities. Therefore, on very short time
scales, accretion disks must be locally controlled. Equally
clearly, all regions of accretion disks communicate on global
disk evolution time scales, so on very long time scales accre-
tion disks are globally controlled (and boundary conditions
must be taken into account).

There must then be a time scale on which regions of accre-
tion disks depend on other regions, which means that on those
time scales the problem is, if not global, at least not local. We
can begin to quantify this by looking at (for example) Bal-
bus & Papaloizou (1999), who derived the local rate at which
energy is dissipated into heat under the approximation of a
steady state in their Equation 37. They did this by writing the
full energy evolution equation:

@
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⇢v2 + ⇢�+

B2

2µ0

◆
+r ·FE = �dissipation (63)

(their Equation 31), and setting the time derivatives to zero
(steady state), thereby identifying the divergence of the en-
ergy flux with the local energy dissipation rate.

However, in the case of accretion flows driven by Maxwell
or Reynolds stresses, the accretion/decretion power is medi-
ated by the energy density of the magnetic field or of the tur-
bulent flows. If there is a mismatch between the local accre-
tion power and the divergence of the energy fluxes, energy
must be injected into or extracted from the local magnetic or
turbulent energy densities. For a slab, those energy surface
densities are

ET =

Z

z

dz

✓
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2
⇢w2 +

1

2
⇢wv̄ +

B2

2µ0

◆
, (64)

where we recall that the velocity has been decomposed into a
mean orbital v̄ and a fluctuating w, and note that the term in v̄
vanishes upon averaging.

The terms that survive averaging are related to the stresses:
we have Rij ⌘ ⇢wiwj and Mij = µ�1

0 BiBj . Accordingly
we can write

ET = f⌃|Wr�| (65)

where f > 1 measures the difference between, the magnetic
and fluctuating velocity fields’ amplitudes B2 and w2 and
their correlators |B�Br| and |w�wr|. While orbital shear-
ing does lead to strongly anisotropic magnetic fields, with
B2 ' B2

� � |B�Br|, the ratio seen in numerical simulations
XXmaybe some pitch angle stuffXX is well under two orders
of magnitude, so we can safely assume that 1 < f < 100.
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We can find the accretion power surface density from Bal-
bus & Papaloizou (1999)’s Equations 28:

Pacc = ⌃R⌦2
Khuri⇢ ⇠ 2g⌦⌃Wr� (66)

where we have assumed that ⌃R2Wr� / r�g . We see then
that ET can buffer against changes in the divergence of the
energy fluxes for a time scale

����
ET

Pacc

���� =
����

f

2g⌦

���� . (67)

It immediately follows that local regions in accretion disks
are only buffered against nonlocal effects such as changes in
the incoming energy fluxes for orbital to tens of orbital time
scales. We contend that this implies a not-locality in disk
evolution. This is most clearly the case in decreting regions,
where the energy which powers the decretion must come from
somewhere, but even in accreting regions putting energy into
or removing energy from the magnetic field or the turbulence
will alter the stresses. Note that this time evolution of ET was
set to zero in Balbus & Papaloizou (1999) even when they
considered the non-steady state to derive their Equation 46.

6.3. Not-local energy sources

We also need to confirm that global energy transport allows
for significant decretion flows. The local energy density re-
leased by accretion in a Keplerian disk is

(1/2)⇢vrr⌦
2, (68)

where the factor of one half accounts for half the gravitational
potential energy going into orbital kinetic energy. Vertically
and azimuthally integrating Equation (68) for a given slab, we
find
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. (69)

where Ṁ is the accretion rate (so that Ṁ < 0 implies de-
cretion), and rc is a reference position. We consider an inner
accretion flow Ṁ1 between r0 and rc and an outer decretion
flow Ṁ2 between rc and r1 with r1 � rc � r0. Radially
integrating Equation (69), we find that the condition that net
gravitational potential energy be released by this flow is

�����
Ṁ1

Ṁ2

����� =
r0
r1

✓
r1 � rc
rc � r0

◆
' r0

rc
, (70)

so inner annuli accreting at a rate Ṁ1 release adequate energy
to drive broad regions of decretion.

7. DISCUSSION

7.1. Magnetized Accretion Disks

The study of magnetized accretion flows has until now re-
lied on two fortunate results:

1. Orbital shear inevitably generates a finite, strong corre-
lation between the azimuthal and radial magnetic fields,
so the horizontal M�r = µ�1

0 B�Br component of the
Maxwell stress in magnetized disks is finite and dynam-
ically significant.

2. This stress is determined locally and acts locally (Bal-
bus & Papaloizou 1999).

Figure 2. Structure of a disk dominated by horizontal Maxwell stress.
The inner, non-self-similar, region is accreting, driving Poynting flux out-
wards that powers decretion in the outer, self-similar, region. At the ra-
dius rc the radial dependence of the Maxwell stress passes the critical value
@r[r2(�M�r)] = 0. Yellow arrows indicate the outward going Poynting
flux, which grows though the accretion region, and deposits energy in the
outer, decretion region. The dotted blue box shows a section of the flow that
might be modeled in a self-similar, local, shearing box simulation.

Together, these results were taken to mean that accretion flows
driven by M�r could be studied without worrying about the
poorly constrained boundary conditions, unlike, for example,
accretion flows driven by disk winds. Further, M�r could be
studied in the surety that it existed as long as the disk was
adequately ionized, unlike models that linked the magnetized
disk to an envelope using net vertical magnetic flux that might
not actually exist.

Unfortunately, as we have demonstrated, long distance en-
ergy transport by the Poynting flux is a dynamically important
component of the energetics. This means that the energy in
the fluctuating fields, and hence the saturated strength of the
stresses, depends on how much energy is provided (or con-
sumed) by not local regions of the disk.

These results negate the picture of radial field lines tapping
the local orbital energy by being sheared into azimuthal field,
which drives local accretion to maintain the energy budget.
Further, this contradicts the second result cited at the begin-
ning of this section: the physical boundary conditions can-
not be assumed to be unimportant for the interior of the flow.
However, the first, now less happy fact remains: M�r will be
present, and will be important.

7.2. Simulations of Accretion Disks

7.2.1. Applicability of Shearing Boxes

We have shown, shearing boxes cannot be used to model
local regions in accretion disks controlled by M�r, because
the Poynting flux into the simulation domain is unphysically
set by the boundaries of the simulation domain, with energy
being supplied from infinity. Local shearing box simulations
aimed at studying the strongly diffusive Ohmic and ambipolar
regimes in protoplanetary disks have produced steady state so-
lutions with large wind-driven stresses (Bai & Stone 2013b).
However, that wind was launched by the build up of the mag-
netic pressure exerted by the azimuthal magnetic field gener-
ated through shear, which we have shown that shearing box
simulations cannot correctly model. In particular, the strength
of the saturated field is subject to constraints that are not in-
cluded..

Our conclusions about M�r are primarily based on over-
all energy considerations, and so do not address whether lo-
cal turbulent properties can still be addressed by local mod-
els. Other recent work has indeed called that into question,
though. One example is that the MRI appears to expand to
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will alter the stresses. Note that this time evolution of ET was
set to zero in Balbus & Papaloizou (1999) even when they
considered the non-steady state to derive their Equation 46.
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Ṁrc⌦

2
c

✓
r

rc

◆�2

. (69)

where Ṁ is the accretion rate (so that Ṁ < 0 implies de-
cretion), and rc is a reference position. We consider an inner
accretion flow Ṁ1 between r0 and rc and an outer decretion
flow Ṁ2 between rc and r1 with r1 � rc � r0. Radially
integrating Equation (69), we find that the condition that net
gravitational potential energy be released by this flow is
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so inner annuli accreting at a rate Ṁ1 release adequate energy
to drive broad regions of decretion.

7. DISCUSSION

7.1. Magnetized Accretion Disks

The study of magnetized accretion flows has until now re-
lied on two fortunate results:

1. Orbital shear inevitably generates a finite, strong corre-
lation between the azimuthal and radial magnetic fields,
so the horizontal M�r = µ�1

0 B�Br component of the
Maxwell stress in magnetized disks is finite and dynam-
ically significant.

2. This stress is determined locally and acts locally (Bal-
bus & Papaloizou 1999).

Figure 2. Structure of a disk dominated by horizontal Maxwell stress.
The inner, non-self-similar, region is accreting, driving Poynting flux out-
wards that powers decretion in the outer, self-similar, region. At the ra-
dius rc the radial dependence of the Maxwell stress passes the critical value
@r[r2(�M�r)] = 0. Yellow arrows indicate the outward going Poynting
flux, which grows though the accretion region, and deposits energy in the
outer, decretion region. The dotted blue box shows a section of the flow that
might be modeled in a self-similar, local, shearing box simulation.

Together, these results were taken to mean that accretion flows
driven by M�r could be studied without worrying about the
poorly constrained boundary conditions, unlike, for example,
accretion flows driven by disk winds. Further, M�r could be
studied in the surety that it existed as long as the disk was
adequately ionized, unlike models that linked the magnetized
disk to an envelope using net vertical magnetic flux that might
not actually exist.

Unfortunately, as we have demonstrated, long distance en-
ergy transport by the Poynting flux is a dynamically important
component of the energetics. This means that the energy in
the fluctuating fields, and hence the saturated strength of the
stresses, depends on how much energy is provided (or con-
sumed) by not local regions of the disk.

These results negate the picture of radial field lines tapping
the local orbital energy by being sheared into azimuthal field,
which drives local accretion to maintain the energy budget.
Further, this contradicts the second result cited at the begin-
ning of this section: the physical boundary conditions can-
not be assumed to be unimportant for the interior of the flow.
However, the first, now less happy fact remains: M�r will be
present, and will be important.

7.2. Simulations of Accretion Disks

7.2.1. Applicability of Shearing Boxes

We have shown, shearing boxes cannot be used to model
local regions in accretion disks controlled by M�r, because
the Poynting flux into the simulation domain is unphysically
set by the boundaries of the simulation domain, with energy
being supplied from infinity. Local shearing box simulations
aimed at studying the strongly diffusive Ohmic and ambipolar
regimes in protoplanetary disks have produced steady state so-
lutions with large wind-driven stresses (Bai & Stone 2013b).
However, that wind was launched by the build up of the mag-
netic pressure exerted by the azimuthal magnetic field gener-
ated through shear, which we have shown that shearing box
simulations cannot correctly model. In particular, the strength
of the saturated field is subject to constraints that are not in-
cluded..

Our conclusions about M�r are primarily based on over-
all energy considerations, and so do not address whether lo-
cal turbulent properties can still be addressed by local mod-
els. Other recent work has indeed called that into question,
though. One example is that the MRI appears to expand to

Accretion power
(Balbus & Papaloizou  (1999) Eq 28)
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Poynting flux and accretion power have the same scale!
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Consequences:

✦ Poynting flux ties different radii in disks together

✦ A local simulation from a seed field will not have the right energy flow.

✦ You cannot start a local simulation from a seed field and get the 
stresses or accretion rate!

✦ MRI saturation cannot be determined locally in an accretion disk 
because the saturated state depends on distant regions.

✦ Horizontal stresses mean horizontal energy fluxes

✦ Accreting surface layers do not power decreting midplanes

✦ Disks should be thought of as layered slabs, not adjacent annuli

✦ Under the standard assumption of power law disks, the boundary between 
accretion and decretion in each layer is close to the inner edge of that 
layer.
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Can we extract a local patch from a (low resolution) 
global model?

✦ Disturbances will propagate inwards from the new boundaries.

✦ Viscous time scales are long (thousands of orbits), so maybe the 
inner region of the local patch is protected.
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The energy buffer and the stresses are comparable

✦ ET measures the energy in the fields that exert the stresses

✦ Horizontal magnetic case:

✦ Magnetic pitch angle
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Stresses are proportional to the accretion power

Balbus & 
Papaloizou 

(1999) Eq 28

DECRETION BY MAXWELL STRESS 9

We can find the accretion power surface density from Bal-
bus & Papaloizou (1999)’s Equations 28:

Pacc = ⌃R⌦2
Khuri⇢ ⇠ 2g⌦⌃Wr� (66)

where we have assumed that ⌃R2Wr� / r�g . We see then
that ET can buffer against changes in the divergence of the
energy fluxes for a time scale
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It immediately follows that local regions in accretion disks
are only buffered against nonlocal effects such as changes in
the incoming energy fluxes for orbital to tens of orbital time
scales. We contend that this implies a not-locality in disk
evolution. This is most clearly the case in decreting regions,
where the energy which powers the decretion must come from
somewhere, but even in accreting regions putting energy into
or removing energy from the magnetic field or the turbulence
will alter the stresses. Note that this time evolution of ET was
set to zero in Balbus & Papaloizou (1999) even when they
considered the non-steady state to derive their Equation 46.

6.3. Not-local energy sources

We also need to confirm that global energy transport allows
for significant decretion flows. The local energy density re-
leased by accretion in a Keplerian disk is

(1/2)⇢vrr⌦
2, (68)

where the factor of one half accounts for half the gravitational
potential energy going into orbital kinetic energy. Vertically
and azimuthally integrating Equation (68) for a given slab, we
find
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where Ṁ is the accretion rate (so that Ṁ < 0 implies de-
cretion), and rc is a reference position. We consider an inner
accretion flow Ṁ1 between r0 and rc and an outer decretion
flow Ṁ2 between rc and r1 with r1 � rc � r0. Radially
integrating Equation (69), we find that the condition that net
gravitational potential energy be released by this flow is
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so inner annuli accreting at a rate Ṁ1 release adequate energy
to drive broad regions of decretion.

7. DISCUSSION

7.1. Magnetized Accretion Disks

The study of magnetized accretion flows has until now re-
lied on two fortunate results:

1. Orbital shear inevitably generates a finite, strong corre-
lation between the azimuthal and radial magnetic fields,
so the horizontal M�r = µ�1

0 B�Br component of the
Maxwell stress in magnetized disks is finite and dynam-
ically significant.

2. This stress is determined locally and acts locally (Bal-
bus & Papaloizou 1999).

Figure 2. Structure of a disk dominated by horizontal Maxwell stress.
The inner, non-self-similar, region is accreting, driving Poynting flux out-
wards that powers decretion in the outer, self-similar, region. At the ra-
dius rc the radial dependence of the Maxwell stress passes the critical value
@r[r2(�M�r)] = 0. Yellow arrows indicate the outward going Poynting
flux, which grows though the accretion region, and deposits energy in the
outer, decretion region. The dotted blue box shows a section of the flow that
might be modeled in a self-similar, local, shearing box simulation.

Together, these results were taken to mean that accretion flows
driven by M�r could be studied without worrying about the
poorly constrained boundary conditions, unlike, for example,
accretion flows driven by disk winds. Further, M�r could be
studied in the surety that it existed as long as the disk was
adequately ionized, unlike models that linked the magnetized
disk to an envelope using net vertical magnetic flux that might
not actually exist.

Unfortunately, as we have demonstrated, long distance en-
ergy transport by the Poynting flux is a dynamically important
component of the energetics. This means that the energy in
the fluctuating fields, and hence the saturated strength of the
stresses, depends on how much energy is provided (or con-
sumed) by not local regions of the disk.

These results negate the picture of radial field lines tapping
the local orbital energy by being sheared into azimuthal field,
which drives local accretion to maintain the energy budget.
Further, this contradicts the second result cited at the begin-
ning of this section: the physical boundary conditions can-
not be assumed to be unimportant for the interior of the flow.
However, the first, now less happy fact remains: M�r will be
present, and will be important.

7.2. Simulations of Accretion Disks

7.2.1. Applicability of Shearing Boxes

We have shown, shearing boxes cannot be used to model
local regions in accretion disks controlled by M�r, because
the Poynting flux into the simulation domain is unphysically
set by the boundaries of the simulation domain, with energy
being supplied from infinity. Local shearing box simulations
aimed at studying the strongly diffusive Ohmic and ambipolar
regimes in protoplanetary disks have produced steady state so-
lutions with large wind-driven stresses (Bai & Stone 2013b).
However, that wind was launched by the build up of the mag-
netic pressure exerted by the azimuthal magnetic field gener-
ated through shear, which we have shown that shearing box
simulations cannot correctly model. In particular, the strength
of the saturated field is subject to constraints that are not in-
cluded..

Our conclusions about M�r are primarily based on over-
all energy considerations, and so do not address whether lo-
cal turbulent properties can still be addressed by local mod-
els. Other recent work has indeed called that into question,
though. One example is that the MRI appears to expand to
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where Ṁ is the accretion rate (so that Ṁ < 0 implies de-
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driven by M�r could be studied without worrying about the
poorly constrained boundary conditions, unlike, for example,
accretion flows driven by disk winds. Further, M�r could be
studied in the surety that it existed as long as the disk was
adequately ionized, unlike models that linked the magnetized
disk to an envelope using net vertical magnetic flux that might
not actually exist.
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ergy transport by the Poynting flux is a dynamically important
component of the energetics. This means that the energy in
the fluctuating fields, and hence the saturated strength of the
stresses, depends on how much energy is provided (or con-
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not be assumed to be unimportant for the interior of the flow.
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Ṁrc⌦

2
c

✓
r

rc

◆�2

. (69)

where Ṁ is the accretion rate (so that Ṁ < 0 implies de-
cretion), and rc is a reference position. We consider an inner
accretion flow Ṁ1 between r0 and rc and an outer decretion
flow Ṁ2 between rc and r1 with r1 � rc � r0. Radially
integrating Equation (69), we find that the condition that net
gravitational potential energy be released by this flow is
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Together, these results were taken to mean that accretion flows
driven by M�r could be studied without worrying about the
poorly constrained boundary conditions, unlike, for example,
accretion flows driven by disk winds. Further, M�r could be
studied in the surety that it existed as long as the disk was
adequately ionized, unlike models that linked the magnetized
disk to an envelope using net vertical magnetic flux that might
not actually exist.

Unfortunately, as we have demonstrated, long distance en-
ergy transport by the Poynting flux is a dynamically important
component of the energetics. This means that the energy in
the fluctuating fields, and hence the saturated strength of the
stresses, depends on how much energy is provided (or con-
sumed) by not local regions of the disk.

These results negate the picture of radial field lines tapping
the local orbital energy by being sheared into azimuthal field,
which drives local accretion to maintain the energy budget.
Further, this contradicts the second result cited at the begin-
ning of this section: the physical boundary conditions can-
not be assumed to be unimportant for the interior of the flow.
However, the first, now less happy fact remains: M�r will be
present, and will be important.

7.2. Simulations of Accretion Disks

7.2.1. Applicability of Shearing Boxes

We have shown, shearing boxes cannot be used to model
local regions in accretion disks controlled by M�r, because
the Poynting flux into the simulation domain is unphysically
set by the boundaries of the simulation domain, with energy
being supplied from infinity. Local shearing box simulations
aimed at studying the strongly diffusive Ohmic and ambipolar
regimes in protoplanetary disks have produced steady state so-
lutions with large wind-driven stresses (Bai & Stone 2013b).
However, that wind was launched by the build up of the mag-
netic pressure exerted by the azimuthal magnetic field gener-
ated through shear, which we have shown that shearing box
simulations cannot correctly model. In particular, the strength
of the saturated field is subject to constraints that are not in-
cluded..

Our conclusions about M�r are primarily based on over-
all energy considerations, and so do not address whether lo-
cal turbulent properties can still be addressed by local mod-
els. Other recent work has indeed called that into question,
though. One example is that the MRI appears to expand to

Energy buffer lasts at most a 
few orbits. Local patches are 
very vulnerable to exterior 

influences (i.e. changes in the 
order-unity Poynting flux).

Balbus & Papaloizou (1999) considered the time evolution of the 
orbital energy, but not the energy in the stresses!  The orbital 

energy is vast, and varies on viscous time scales.  Conversely, the 
stress energy is small and can vary on orbital time scales.
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Consequences

✦ Energy transport controls the stresses on short timescales

✦ Large Poynting fluxes, small stress energy densities

✦ Inner disks have fast viscous timescales that control accretion

✦ This allows for, but does not guarantee disk variability

✦ Variability is seen EXors, FUors in protoplanetary disks

✦ Extracting local patches from global simulations is only reliable 
for short (orbital) times.

✦ (AMR will work because it remains global)
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Conclusions

✦ Saturated stresses must be determined globally

✦ Poynting flux deposits/extracts an order unity fraction of the accretion 
power, so tightly links the accreting inner disk to the outer (decreting) disk

✦ Horizontal stresses     horizontal energy fluxes     layered slabs.

✦ Transition between accretion and decretion occurs on a slab-by-slab 
basis.

✦ Viscous disks: transition is at the inner edge of the power law region.

✦ The energy in the stresses is small

✦ Only buffers for orbital time scales.

✦ The evolution of the inner disk over short timescales controls the system.
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