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Problems are divided in “introductory”, “intermediate” and “advanced” level. I suggest you work on the
introductory problems first unless you are already familiar with the techniques and concepts used.

You should not try and do everything in the time available! Focus on the subject/problem that interests
you the most and try to get to the bottom of it during the tutorial session. Work through the rest at your own
pace.

A dagger (†) denotes harder questions, for aficionados.

1 Bayesian reasoning

1.1 Introductory level

1. Medical evidence. A batch of chemistry undergraduates are screened for a dangerous medical con-
dition called Bacillum Bayesianum (BB). The incidence of the condition in the population (i.e., the
probability that a randomly selected person has the disease) is estimated at about 1%. If the person
has BB, the test returns positive 95% of the time. There is also a known 5% rate of false positives, i.e.
the test returning positive even if the person is free from BB. One of your friends takes the test and it
comes back positive. Here we examine whether your friend should be worried about her health.

(a) Translate the information above in suitably defined conditional probabilities. The two rele-
vant propositions here are whether the test returns positive (denote this with a + symbol) and
whether the person is actually sick (denote this with the symbol BB = 1. Denote the case when
the person is healthy as BB = 0).

(b) Compute the conditional probability that your friend is sick, knowing that she has tested posi-
tive, i.e., find P(BB = 1∣+).

(c) Imagine screening the general population for a very rare desease, whose incidence in the pop-
ulation is 10−6 (i.e., one person in a million has the disease on average, i.e. P(BB = 1) = 10−6).
What should the reliability of the test (i.e., P(+∣BB = 1)) be if we want to make sure that the
probability of actually having the disease after testing positive is at least 99%? Assume first that
the false positive rate P(+∣BB = 0) (i.e, the probability of testing positive while healthy), is 5% as
in part (a). What can you conclude about the feasibility of such a test?

(d) Now we write the false positive rate as P(+∣BB = 0) = 1−P(−∣BB = 0). It is reasonable to assume
(although this is not true in general) that P(−∣BB = 0) = P(+∣BB = 1), i.e. the probability of
getting a positive result if you have the disease is the same as the probability of getting a negative
result if you don’t have it. Find the requested reliability of the test (i.e., P(+∣BB = 1)) so that
the probability of actually having the disease after testing positive is at least 99% in this case.
Comment on whether you think a test with this reliability is practically feasible.
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2. The three doors problem. In a game, you can pick one of three doors, labelled A, B and C. Behind
one of the three doors lies a highly desirable price, such as for example a cricket bat. After you have
picked one door (e.g., door A) the person who is presenting the game opens one of the remaining 2
doors so as to reveal that there is no prize behind it (e.g., door C might be opened). Notice that the
gameshow presenter knows that the door he opens has no prize behind it. At this point you can either
stick with your original choice (door A) or switch to the door which remains closed (door B). At the
end, all doors are opened, at which point you will only win if the prize is behind your chosen door.

(a) Given the above rules (and your full knowledge of them), should you stick with your choice or is
it better to switch?

(b) In a variation, you are given the choice to randomly pick one of doors B or C and to open it, after
you have chosen door A. You pick door C, and upon opening it you discover there is nothing
behind it. At this point you are again free to either stick with door A or to switch to door B. Are
the probabilities different from the previous scenario? Justify your answers.

3. Top Scientists on Twitter. A Twitter survey of the “Top 50 Science Stars on Twitter” claims that “most
high-performing scientists have not embraced Twitter”1 . That article is debatable on other grounds,
as well, in particular in terms of what defines a “Top Scientist” on Twitter. In fact, on closer inspec-
tion, the data on which this strong statement is based are fairly debatable, having been obtained by
“sampl[ing] Twitter usage among 50 randomly chosen living scientists from the Scholarometer list”,
which is arguably not a great statistics.

Even so, it is interesting to use some real maths to answer the question: Assuming it is true that top
scientists shun Twitter, does being on Twitter make me (statistically) less of a good scientist? In other
words, is it more probable for me to be a “mediocre” scientist if I’m a Twitter user?

Use Bayes theorem to estimate the probability of being a Top Scientists (TS) given that one is a Twitter
User (TU), i.e. the quantity P(TS∣TU).

For the sake of definiteness, define “Top Scientists" as somebody in the top 10% of their discipline.
Also, use the fact that (according to the same source) “only a fifth of scientists have an identifiable
Twitter profile.”

Make reasonable assumptions about the other probabilities you need, and evaluate the sensitivity of
your answer on those assumptions.

1.2 Intermediate level

Bayes in politics. In a TV debate, politician A affirms that a certain proposition S is true. You trust politician
A to tell the truth with probability 4/5. Politician B then agrees that what politician A has said is indeed
true. Your trust in politician B is much weaker, and you estimate that he lies with probability 3/4.

After you have heard politician B , what is the probability that statement S is indeed true?
(You may assume that you have no other information on the truth of proposition S other than what you

heard from politicians A and B)
Hint: Start by denoting by AT the statement “politician A tells the truth”, and by BT the statement “politi-

cian B tells the truth”. What you are after is the probability of the statement “proposition S is true” after you
have heard politician B say so.

1http://news.sciencemag.org/scientific-community/2014/09/top-50-science-stars-twitter, last accessed on
Sept 26th 2014.
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2 Parameter inference

2.1 Introductory level

Coin tossing. This is a traditional example, but this time you’ll do it in the Bayesian way. A coin is tossed N
times and heads come up H times.

1. What is the likelihood function? Identify clearly the parameter, θ, and the data.

2. What is a reasonable, non-informative prior on θ?

3. Compute the posterior probability for θ. Recall that θ is the probability that a single flip will give
heads. This integral will prove useful:

∫
1

0
dθθN(1−θ)M = Γ(N +1)Γ(M +1)

Γ(N +M +2)
. (1)

4. Determine the posterior mean and standard deviation of θ.

5. Plot your results as a function of H for N = 10,100,1000.

6. † Generalize your prior to the Beta distribution,

p(θ∣ν1,ν2) =
1

B(ν1,ν2)
θν1−1(1−θ)ν2−1 (2)

where B(ν1,ν2) = Γ(ν1)Γ(ν2)/Γ(ν1 +ν2) is the beta function and the “hyperparameters” ν1,ν2 > 0.
Clearly, a uniform prior is given by the choice (ν1,ν2) = (1,1). Evaluate the dependency of your result
to the choice of hyperparameters.

7. † What is the probability that the (N +1)-th flip will give heads?

2.2 Intermediate level

The Gaussian linear model. As idealised a case as it is, the Gaussian linear model is a great tool to hone your
computational skills and intuition. Furthermore, it applies in an approximate way to many cases of interest.
We first solve analytically the general problem in n dimensions, and then specialise to the 2-dimensional
case for a numerical application.

We consider the following linear model
y = Fθ+ε (3)

where the dependent variable y is a d-dimensional vector of observations (the data), θ = {θ1,θ2, . . . ,θn} is a
vector of dimension n of unknown parameters that we wish to determine and F is a d ×n matrix of known
constants which specify the relation between the input variables θ and the dependent variables y (so-called
“design matrix”).

In the following, we will specialize to the case where observations yi(x) are fitted with a linear model
of the form f (x) = ∑n

j=1θ j X j (x). Then the matrix F is given by the basis functions X j evaluated at the

locations xi of the observations, Fi j = X j (xi).
Furthermore, ε is a d-dimensional vector of random variables with zero mean (the noise). If we assume

that ε follows a multivariate Gaussian distribution with uncorrelated covariance matrix C ≡ diag(τ2
1,τ2

2, . . . ,τ2
d),

then the likelihood function takes the form

p(y ∣θ) = 1

(2π)d/2∏ j τ j
exp[−1

2
(b− Aθ)t(b− Aθ)] , (4)

where we have defined Ai j = Fi j /τi and bi = yi /τi where A is a d×n matrix and b is a d-dimensional vector.
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1. Show that the likelihood function can be cast in the form

p(y ∣θ) =L0 exp[−1

2
(θ−θ0)t L(θ−θ0)] , (5)

with the likelihood Fisher matrix L (a n×n matrix) given by

L ≡ At A (6)

and a normalization constant

L0 ≡
1

(2π)d/2∏ j τ j
exp[−1

2
(b− Aθ0)t(b− Aθ0)] . (7)

Here θ0 denotes the parameter value which maximises the likelihood, given by

θ0 = L−1 At b. (8)

2. Assume as a prior pdf a multinormal Gaussian distribution with zero mean and the n×n dimensional
prior Fisher information matrix P (recall that that the Fisher information matrix is the inverse of the
covariance matrix), i.e.

p(θ) = ∣P ∣1/2

(2π)n/2 exp[−1

2
θt Pθ] , (9)

where ∣P ∣ denotes the determinant of the matrix P .

Show that the posterior distribution for θ is given by multinormal Gaussian with Fisher information
matrixF

F = L+P (10)

and mean θ̄ given by
θ̄ =F−1Lθ0. (11)

3. Show that the model likelihood (or “Bayesian evidence”, i.e., the normalizing constant in Bayes theo-
rem) is given by

p(y) =L0
∣F ∣−1/2

∣P ∣−1/2 exp[−1

2
θt

0(L−LF−1L)θ0]

=L0
∣F ∣−1/2

∣P ∣−1/2 exp[−1

2
(θt

0Lθ0− θ̄tF θ̄)] .

(12)

Hints: recall this standard result for Gaussian integrals:

∫ exp[−1

2
(x−m)tΣ−1(x−m)]dx =

√
det(2πΣ) (13)

4. Now we specialize to the case n = 2, i.e.we have two parameters of interest, θ = {θ1,θ2} and the linear
function we want to fit is given by

y = θ1+θ2x. (14)

(In the formalism above, the basis vectors are X 1 = 1, X 2 = x).

The file LinearModel.txt contains an array of d = 10 measurements y = {y1, y2, . . . , y10}, together
with the values of the independent variable xi . Assume that the uncertainty in the same for all mea-
surements, i.e. τi = 0.1 (i = 1, . . . ,10). You may further assume that measurements are uncorrelated.
The data set is shown in the left panel of Fig. 1
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Figure 1: Left panel: data set for the Gaussian linear problem. The solid line shows the true value of the
linear model from which the data have been generated, subject to Gaussian noise. Right panel: 2D cred-
ible intervals from the posterior distribution for the parameters. The the blue diamond is the Maximum
Likelihood Estimator, from Eq. (8), whose value for this data set is x =−0.0136, y = 1.3312.

(a) Assume a Gaussian prior with Fisher matrix P = diag(10−2,10−2) for θ.

Find the posterior distribution for θ given the data, and plot it in 2 dimensions in the (θ1,θ2)
plane (see right panel of Fig. 1 for an example).

Use the appropriate contour levels to demarcate 1, 2 and 3 sigma joint credible intervals of the
posterior.

(b) In a language of your choice, write an implementation of the Metropolis-Hastings Markov Chain
Monte Carlo algorithm explained in the lecture, and use it to obtain samples from the posterior
distribution.

Plot equal weight samples in the (θ1,θ2) space, as well as marginalized 1-dimensional posterior
distributions for each parameter.

(c) Compare the credible intervals that you obtained from the MCMC with the analytical solution
obtained above.

2.3 Advanced level

Toy supernovae type Ia cosmology. Supernovae type Ia can be used as standardizable candles to measure
distances in the Universe. This series of problems explores the extraction of cosmological information from
a simplified SNIa toy model.

The cosmological parameters we are interested in constraining are

C = {Ωm ,ΩΛ,h} (15)

where Ωm is the matter density (in units of the critical energy density) and ΩΛ is the dark energy density,
assumed here to be in the form of a cosmological constant, i.e. w = −1 at all redshifts. In the following, we
will fix h = 0.72 for simplicity, where the Hubble constant today is given by H0 = 100hkm/s/Mpc.

In an FRW cosmology defined by the parameters C , the distance modulus µ (i.e., the difference between
the apparent and absolute magnitudes, µ =m−M) to a SN at redshift z is given by

µ(z,C ) = 5log[DL(z,Ωm ,ΩΛ,h)
Mpc

]+25, (16)
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where DL denotes the luminosity distance to the SN. Recalling that DL = cdL/H0, We can rewrite this as

µ(z,C ) = η+5logdL(z,Ωm ,ΩΛ), (17)

where

η =−5log
100h

c
+25 (18)

and c is the speed of light in km/s. We have defined the dimensionless luminosity distance

dL(z,Ωm ,ΩΛ) =
(1+ z)√

∣Ωκ∣
sinn{

√
∣Ωκ∣∫

z

0
dz′[(1+z′)3Ωm+ΩΛ+(1+z′)2Ωκ]−1/2}. (19)

The curvature parameter is given by the constraint equation

Ωκ = 1−Ωm −ΩΛ (20)

and the function

sinn(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x for a flat Universe (Ωκ = 0);
sin(x) for a closed Universe (Ωκ < 0);
sinh(x) for an open Universe (Ωκ > 0).

(21)

We now assume that from each SNIa in our sample we get a measurement of the distance modulus with
Gaussian noise2, i.e., that the likelihood function for each SN i (i = 1, . . . , N ) is of the form

Li(zi ,C , M) = 1√
2πσi

exp(−1

2

(µ̂i −µ(zi ,C ))2

σ2
i

) . (22)

The observed distance modulus is given by µ̂i = m̂i −M , where m̂i is the observed apparent magnitude and
M is the intrinsic magnitude of the SNIa. We assume that each SN observation is independent of all the
others.

The provided data file3 (SNe_simulated.dat) contains simulated observations from the above simpli-
fied model of N = 300 SNIa. The two columns give the redsfhit zi and the observed apparent magnitude m̂i .
The observational error is the same for all SNe, σi =σ = 0.4 mag for i = 1, . . . , N .

A plot of the data set is shown in the left panel of Fig. 2. The characteristics of the simulated SNe are
designed to mimic currently available datasets4.

1. We assume that the intrinsic magnitude5 is known and fix M = M0 = −19.3 and that h = 0.72. We also
assume that the observational error is known, given by the value above.

Using a language of your choice, write a code to carry out an MCMC sampling of the posterior proba-
bility for (Ωm ,ΩΛ) and plot the resulting 68% and 95% posterior regions, both in 2D and marginalized
to 1D, using uniform priors on (Ωm ,ΩΛ) (be careful to define them explicitly).

You should obtain a result similar to the 2D plot shown in the right panel of Fig. 2.

2. † Add the quantity σ (the observational error) to the set of unknown parameters and estimate it from
the data along with C . Notice that since σ is a “scale parameter”, the appropriate (improper) prior is
p(σ)∝ 1/σ.

2We neglect the important issue of applying the empirical corrections known as Phillip’s relations to the observed light curve.
This is of fundamental important in order to reduce the scatter of SNIa within useful limits for cosmological distance measure-
ments, but it would introduce a technical complication here without adding to the fundamental scope of this exercice.

3Thanks to Marisa March for help with the simulation.
4See Kowalski et al, Astrophys. J., 686:749-778, 2008 (arXiv:0804.4142) and Amanullah et al, 2010 (arXiv:1004.1711). More recently,

Rest et al (2013), arXiv: 1310.3828.
5In reality the SNe intrinsic magnitude is not fixed, but there is an “intrinsic dispersion” (even after Phillips’ corrections) reflect-

ing perhaps intrinsic variability in the explosion mechanism, or environmental parameters which are currently poorly understood.
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Figure 2: Left: Simulated SNIa dataset, SNe_simulated.dat. The solid line is the true underlying cosmol-
ogy. Right: constraints onΩm ,ΩΛ from this dataset, with contours delimiting 2D joint 68% and 95% credible
regions (uniform priors on the variables Ωm ,ΩΛ, assuming M = M0 fixed and h = 0.72). The red cross de-
notes the true value.

3. The location of the peaks in the CMB power spectrum gives a precise measurement of the angular
diameter distance to the last scattering surface, divided by the sound horizon at decoupling. This
approximately translates into an effective constraint6 on the following degenerate combination of
Ωm andΩΛ:

1.41ΩΛ+Ωm = 1.30±0.04. (23)

Add this constraint (assuming a Gaussian likelihood, with the above mean and standard deviation) to
the SNIa likelihood and plot the ensuing combined 2D and 1D limits on (Ωm ,ΩΛ).

4. The measurement of the baryonic acoustic oscillation scale in the galaxy power spectrum at small
redshift gives an effective constraint on the angular diameter distance D A out to z ∼ 0.3. This mea-
surement can be summarized7 (simplifying somewhat) by the constraint:

D A(z = 0.3) = (893±27) Mpc. (24)

Add this constraints (again assuming a Gaussian likelihood) to the above CMB+SNIa limits and plot
the resulting combined 2D and 1D limits on (Ωm ,ΩΛ).
Hint: recall that DL(z) = (1+ z)2D A(z).

3 Model comparison

3.1 Introductory level

1. Coin bias. A coin is tossed N = 250 times and it returns H = 140 heads. Evaluate the evidence that
the coin is biased using Bayesian model comparison and contrast your findings with the usual (fre-
quentist) hypothesis testing procedure (i.e., testing the null hypothesis that pH = 0.5). Discuss the
dependency on the choice of priors.

6For full details, see Spergel et al, Astrophys. J. Suppl., 170:377, 2007 (astro-ph/0603449), Fig. 20.
7For details, see Percival et al, Mon. Not. Roy. Astron. Soc., 401:2148-2168, 2010 (arXiv:0907.1660).
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2. Light deflection and GR. In 1919 two expeditions sailed from Britain to measure the light deflection
from stars behind the Sun’s rim during the solar eclipse of May 29th. Einstein’s General Relativity
predicts a deflection angle

α = 4GM

c2R
,

where G is Newton’s constant, c is the speed of light, M is the mass of the gravitational lens and R is the
impact parameter. It is well known that this result it exaclty twice the value obtained using Newtonian
gravity. For M = M⊙ and R =R⊙ one gets from Einstein’s theory that α = 1.74 arc seconds.

The team led by Eddington reported 1.61±0.40 arc seconds (based on the position of 5 stars), while
the team headed by Crommelin reported 1.98±0.16 arc seconds (based on 7 stars).

What is the Bayes factor between Einstein and Newton gravity from those data? Comment on the
strength of evidence.

3. Evidence for a cosmological constant. Assume that the combined constraints from CMB, BAO and
SNIa on the density parameter for the cosmological constant can be expressed as a Gaussian posterior
distribution on ΩΛ with mean 0.7 and standard deviation 0.05. Use the Savage-Dickey density ratio
to estimate the Bayes factor between a model with ΩΛ = 0 (i.e., no cosmological constant) and the
ΛCDM model, with a flat prior on ΩΛ in the range 0 ≤ΩΛ ≤ 2. Comment on the strength of evidence
in favour ofΛCDM.

3.2 Intermediate level

The anthropic principle. If the cosmological constant is a manifestation of quantum fluctuations of the
vacuum, QFT arguments lead to the result that the vacuum energy density ρΛ scales as

ρΛ ∼
ch̵

16π
k4

max (25)

where kmax is a cutoff scale for the maximum wavenumber contributing to the energy density8. Adopting
the Planck mass as a plausible cutoff scale (i.e., kmax = c/h̵MPl) leads to “the cosmological constant prob-
lem”, i.e., the fact that the predicted energy density

ρΛ ∼ 1076 GeV4 (26)

is about 120 orders of magnitude larger than the observed value, ρobs ∼ 10−48 GeV4.

1. Repeat the above estimation of the evidence in favour of a non-zero cosmological constant, adopting
this time a flat prior in the range 0 ≤ ΩΛ/Ωobs

Λ < 10120. What is the meaning of this result? What is
the required observational accuracy (as measured by the posterior standard deviation) required to
override the Occam’s razor penalty in this case?

2. It seems that it would be very difficult to create structure in a universe with ΩΛ≫ 100, and so life (at
least life like our own) would be unlikely to evolve. How can you translate this “anthropic” argument
into a quantitative statement, and how would it affect our estimate of ΩΛ and the model selection
problem?

8See e.g. Carroll & Press, Ann. Rev. Astron. Astrophys. 30:499-542, 1992.
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3.3 Advanced level

Flat Universe from SNIa and other data. This problem follows up the cosmological parameter estimation
problem from supernovae type Ia9 in section 2.3.

1. Adopt uniform priorsΩm ∼U(0,2) andΩΛ ∼U(0,2). Produce a 2D marginalised posterior pdf in the
(Ωm,ΩΛ) plane.

2. Produce a 1D marginalised posterior pdf for the curvature parameter,Ωκ = 1−ΩΛ−Ωm, paying atten-
tion to normalising it to unity probability content.

What is the shape of the prior onΩκ implied by your choice of a uniform prior onΩm,ΩΛ?

3. Use the Savage-Dickey density ratio formula to estimate from the above 1D posterior the evidence
in favour of a flat Universe, Ωκ = 0, compared with a non-flat Universe, Ωκ ≠ 0, with prior P(Ωκ) =
U(−1,1).

Discuss the dependency of your result on the choice of the above prior range.

9For a more thorough treatment, see M. Vardanyan, R. Trotta and J. Silk (2009) Mon. Not. R. Astron. Soc. 397 , 431-444 (2009)
and M. Vardanyan, R. Trotta and J. Silk (2011) MNRASLett 413, 1, 2011, L91ÐL95.
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