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1 Coin tossing

The solutions are:

(a) The likelihood function is given by

L(p) = P (r = H |p, n) =
(

n

H

)

pH(1− p)n−H , (1)

where the unknown parameter is p and the data are the number of heads, H (for a fixed
number of trials, n = 10 here).

(b) The Maximum Likelihood Estimator (MLE) for the success probability p is found by maximis-
ing the log likelihood, see Example 20 in the handout:

∂ lnL(p)
∂p

=
∂

∂p

(

ln

(

n

H

)

+H ln p+ (n−H) ln(1− p)

)

=
H

p
− n−H

1− p

!
= 0

⇔ pML =
H

n
.

(2)

Therefore the ML value for p is pML = 0.8.

(c) We approximate the likelihood function as a Gaussian, with standard deviation given by minus
the curvature of the log-likelihood at the peak:

L(p) ≈ Lmax exp

(

−1

2

(pML − p)2)

Σ2

)

, (3)

where (see Eq. (65) in the handout)

Σ−2 = −∂2 lnL(p)
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n
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(4)

The 1σ confidence interval for p is given by Σ = 0.13. Therefore the result would be reported
as p = 0.80± 0.13.

(d) Following the hint, the number of σ confidence with which the hypothesis that the coin is fair
can be ruled out is given by

|pML − 1
2 |

Σ
=

0.8− 0.5

0.13
= 2.31. (5)

Therefore the fairness hypothesis can be ruled out at the ∼ 2.3 σ level.

(e) Using above equations, the MLE for the success probability is still pML = 0.8, as before.
However, the uncertainty is now much reduced, because of the large number of trials. In fact,
we get Σ = 0.013 (notice how the uncertainty has decreased by a factor of

√
n, as expected.

I.e., 100 times more trials correspond to a reduction in the uncertainty by a factor of 10). The
fairness hypothesis can now be excluded with much higher confidence:s of p = 1/2, expressed
in number of sigmas:

number of sigmas =
|pML − 1

2 |
Σ

=
0.8− 0.5

0.013
= 23.1 ≈ 23. (6)

This constitutes more than decisive evidence against the hypothesis that the coin is fair. Notice
however that the Gaussian approximation to the likelihood we employed will most probably
not be accurate so far into the tails of the likelihood function (i.e., the Taylor expansion on
which it is based is a local expansion around the peak).
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2 Counting experiment

(a) The discrete PMF for the number of counts r of a Poisson process with average rate λ is
(assuming a unit time, t = 1 throughout)

P (r) =
λr

r!
e−λ

(b) In this case

P (r̂i|λ) =
λr̂i

r̂i!
e−λ ,

for each independent measurement r̂i. So the joint likelihood is given by (as measurements
are independent)

L(λ) =
M
∏

i=1

P (r̂i|λ) =
M
∏

i=1

λr̂i

r̂i!
e−λ . (7)

(c) The Maximum Likelihood Principle states that the estimator for λ can be derived by finding
the maximum of the likelihood function. The maximum is found more easily by considering
the log of the likelihood

lnL(λ) =
M
∑

i=1

[r̂i ln(λ) − ln(r̂i!)− λ] .

with the maximum given by the condition dlnL/dλ = 0.

We have

dlnL
dλ

=

M
∑

i=1

[

r̂i
λ

− 1

]

=
1

λ

M
∑

i=1

r̂i −M .

So the Maximum Likelihood (ML) estimator for λ is

λML =
1

M

M
∑

i=1

r̂i ,

which is just the average of the observed counts.

(d) The Taylor expansion is (see Eq. (63) in the handout)

lnL(λ) = lnL(λML) +
dlnL
dλ

∣

∣

∣

∣

λ=λML

(λ− λML) +
1

2

d2lnL
dλ2

∣

∣

∣

∣

λ=λML

(λ− λML)
2 + . . . .

By definition the linear term vanishes at the maximum so we just need the curvature around
the ML point

d2lnL
dλ2

= −
M
∑

i=1

r̂i
λ2

,

such that

d2lnL
dλ2

∣

∣

∣

∣

λ=λML

= − 1

λ2
ML

M
∑

i=1

r̂i = −MλML

λ2
ML

= − M

λML
.
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Putting this into the Taylor expansion gives

lnL(λ) = lnL(λML)−
1

2

M

λML
(λ− λML)

2 ,

which gives an approximation of the likelihood function around the ML point

L(λ) ≈ L0 exp

(

−1

2

M

λML
(λ− λML)

2

)

,

(the normalisation constant L0 is irrelevant).

So the likelihood is approximated by a Gaussian with variance

Σ2 =
λML

M
.

(e) Comparing this with the standard result for the variance of the mean for the Gaussian case,
i.e.

Σ2 =
σ2

M
,

where M is the number of measurements and σ is the standard deviation of each measurement,
we can conclude that the variance of the Poisson distribution itself is indeed

σ2 = λ .

3 Gaussian measurements with variable variance

(a) The photon counts follow a Poisson distribution. We know that the MLE for the Poisson
distribution is the observed number of counts (n) and its standard deviation is

√
n. However,

for large n (≫ 20) the Poisson distribution is well approximated by a Gaussian of mean n and
standard deviation

√
n. In this case, n is of order 105, hence the standard deviation intrinsic

to the Poisson process (the so-called “shot noise”) is of order
√
105 ≈ 3 · 102. The quoted

experimental uncertainty is much larger than that (of order 104 for each datum), hence we
can conclude that the statistical error is dominated by the noise in the detector rather than
by the Poisson variance.

Therefore we can approximate the likelihood for each observation as a Gaussian with mean
given by the observed counts n̂i and standard deviation given by the quoted error, σ̂i:

Li(F ) =
1√
2πσ̂i

exp

(

−1

2

(F − n̂i)
2

σ̂2
i

)

(i = 1, . . . , 4). (8)

(b) Since the measurements are independent, the total likelihood is the product of the 4 terms:

L(F ) =

4
∏

i=1

Li(F ). (9)

(c) To estimate the mean of the distribution, we apply the MLE procedure for the mean (F ),
obtaining:

∂ lnL(F )

∂F
= −

∑

i

F − n̂i

σ̂2
i

!
= 0

⇔ FML =
∑

i

n̂i

σ̂2
i /σ̄

2
,

(10)
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where
1

σ̄2
≡

∑

i

1

σ̂2
i

. (11)

We thus see that the ML estimate for the mean is the mean of the observed counts weighted
by the inverse error on each on them (verify that Eq. (??) reverts to the usual expression for
the sample mean for σ̂i = σ̂ for (i = 1, . . . , 4), i.e., if all observations have the same error).
This automatically gives more weight to observations with a smaller error.

(d) From the given observations, one thus obtains FML = 29.2×104 photons/cm2. By comparison
the sample mean is F̄ = 30.3× 104 photons/cm2.

(e) The inverse variance of the mean is given by the second derivative of the log-likelihood evalu-
ated at the ML estimate, see Eq. (65) in the handout:

Σ−2 = −∂2 lnL(F )

∂F 2

∣

∣

∣

F=FML

=
∑

i

1

σ̂2
i

. (12)

(again, it is simple to verify that the above formula reverts to the usual N/σ̂2 expression if all
measurements have the same error).

Therefore the variance of the mean is given by Σ2 = 2.16 × 108 (photons/cm2)2, and the
standard deviation is Σ = 1.47×104 photons/cm2. Our measurement can thus be summarized
as F = (29.2± 1.5)× 104 photons/cm2.

4 Photon counts and source strength

(a) The likelihood function is given by the Poisson distribution

L(r̂) = P (r̂|λ) = (λt)r̂

r̂!
exp(−λt), (13)

where t is the time of observation in minutes. The unknown parameter is the source strength
λ (in units of photons/min), while the data are the observed counts, r̂.

(b) We can compute the requested probability by substituting in the Poisson distribution above
the values for r̂ and λ, obtaining:

P (r̂ = 15|λ = 10, t = 1 min) = 0.0347. (14)

(c) The maximum likelihood estimate is obtained by finding the maximum of the log likelihood
as a function of the parameter (here, the rate λ). Hence we need to find the value of λ such
that:

∂ lnL(r̂)
∂λ

= 0. (15)

The derivative gives (see Example 21 in the handout)

∂ lnL(r̂)
∂λ

=
∂

∂λ
(r̂ ln(λt) − ln r̂!− λt) = r̂

t

λt
− t = 0 ⇔ λMLE =

r̂

t
. (16)

So the maximum likelihood estimator for the rate is the observed number of counts divided
by the time, in agreement with Eq. (62) in the handout. In this case, t = 1 min so the MLE
for λ is 10 photons per minute.

(d) The likelihood function now needs to be modified to account for the fact that the observed
counts are the superposition of the background rate and the source rate (the star). According
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Figure 1: Distribution of the outcomes for the sum of the values of the two dice.

to the hint, the likelihood for the total number counts, r̂t, is Poisson with rate λ = λs + λb,
and thus

P (r̂t|λ = λs + λb) =
(λtt)

r̂t

r̂t!
exp(−λtt). (17)

Similarly to what we have done above, the MLE estimate for λs is found by setting to 0 the
derivative of the log likelihood wrt λs:

∂ lnP (r̂t|λ = λs + λb)

∂λs
= r̂t

tt
(λs + λb)tt

− tt = 0 ⇔ λs =
r̂t
tt

− λb. (18)

So the MLE for the source is given by the observed average total rate ( r̂ttt ) minus the background
rate.

(e) Inserting the numerical results, we have that λs = 3. The MLE estimate for λs gives a negative
rate if r̂t/tt < λb, which is clearly non-physical. However, this can definitely happen because
of downwards fluctuations in the number counts due to the Poisson nature of the signal (even
if the background is assumed to be known perfectly). So this is an artefact of the MLE
estimator (nothing to do with physics! We know that the actual physical source rate has to
be a non-negative quantity!). The solution is to use Bayes theorem instead.

5 Dice throwing

The possible outcomes for the sum of the values are {2, 3, 4, 5, 6, 7, 8}, with probabilities given
respectively by { 1

16 ,
2
16 ,

3
16 ,

4
16 ,

3
16 ,

2
16 ,

1
16}. Those are plotted in Fig. 1.

For the case of 1000 dice, we appeal to the central limit theorem (CLT): the mean value of one dice

is E(X) =
∑4

i=1 pixi = 2.5 and its variance is V ar(X) =
∑4

i=1(xi−E(x))2pi = 5/4, where pi = 1/4
(i = 1, . . . , 4). Thus the sum of 1000 such variables will be approximately Gaussian distributed in
virtue of the CLT, with mean 2500 and variance 1000 × 5/4 = 1250. The standard deviation is
therefore

√
1250 ≈ 35.

6 Bayesian estimation of the flux

(a) The true flux of the source, Fsrc. (Even though this is a definite physical number, it is reason-
able to consider it’s value in probabilistic terms, as it is not uniquely/logically determined by
the data.)
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(b) The datum is Nsrc, the number of photons registered in the measurement of the source.

(c) The starting point for answering this question is to see that photons from the source hit the
detector at a given rate (Fsrc/C per unit observation time) but that the photons propagate
independently. This implies that the number of photons that hit the detector in a given period
is Poisson distributed, and so

P(Nsrc|Fsrc) =
(Fsrc/C)Nsrce−Fsrc/C

Nsrc!
. (19)

In the case of bright sources, for which Fsrc/C ≫ 1, the distribution of Nsrc is still Poisson,
although mathematically extremely well approximated as a Gaussian of the form

P(Nsrc|Fsrc) ∝
1

(Fsrc/C)1/2
e−1/2(Nsrc−Fsrc/C)2/(Fsrc/C), (20)

where, in the large Nsrc limit, it is being treated as a continuous variable. This equation is no
longer correctly normalised as an awkward sum over Nsrc must be done; however the relative
probabilities of the different possible Nsrc values for a given Fsrc are correct. More importantly,
the likelihood is a smooth function of Fsrc, and it is this interpretation that will be required for
later inference. However, whilst P(Nsrc|Fsrc) is a Gaussian in Nsrc, it is not Gaussian in terms
of Fsrc, as Fsrc appears in the normalising constant and in the denominator of the exponential.

It is important not only to obtain the mathematical form of the likelihood but also to under-
stand what it means. It is not the probability of Fsrc, even though in some cases it might
have a similar form (e.g., peaked in the same place, or with a similar spread). It is only the
probability that Nsrc photons would be received from the source if its flux was Fsrc.

(d) You, as an astronomer, are very far from total ignorance about astronomical sources and their
fluxes. If you know the type of the source (e.g., a quasar or a Galactic star, etc) then previous
astronomical knowledge about all sorts of astronomical sources. Even without any particular
knowledge about the type of source, there is the generic fact that, due to geometry, there are
significantly more faint sources than bright sources. The immediate implication is that, in any
situation where the data do not strongly constrain the source’s flux, it will be important to
include the preponderence of faint sources in the prior.

(e) The complicated nature of astronomical surveys – and particular their attendant selection
effects – makes this a potentially difficult question to answer. However the underlying principle
is that the observed flux distribution of the sources in question would serve as a good, if
approximate, prior for the flux of the source of interest.

(f) The prior implied is (up to a normalisation constant)

P(Fsrc)Θ(Fsrc) ∝ F−5/2
src , (21)

where Θ(x) is the Heavyside step function, to ensure that the prior is zero for negative fluxes.
This might seem a little fussy, but in exploring an unfamiliar problem it is generally worth
being more careful/explicit about the assumptions you’re making.

The posterior distribution of the source’s true flux would then be (up to a normalisation
constant)

P(Fsrc|Nsrc) ∝ Θ(Fsrc)(Fsrc/C)Nsrc−5/2e−Fsrc/C . (22)

In the limit of a large number of photons, the Gaussian approximatin invoked above leads to
the posterior

P(Fsrc|Nsrc) ∝ Θ(Fsrc)F
−3
src e

−1/2(Nsrc−Fsrc/C)2/(Fsrc/C). (23)

The prior is not normaliseable unless a minimum flux, Fmin is assumed (or justified somehow),
and so care must be taken with these posteriors to check that they are normaliseable. The
obvious potential problem is as Fsrc → 0, as it is here that the improper prior becomes
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Figure 2: Unnormalised posterior in the source flux, Fsrc in the cases where Nsrc = 5 (left) and Nsrc = 104

(right). In both cases the dashed lines show the likelihood as a function of Fsrc.

infinite. The prior diverges as a power-law, as does the likelihood, when expressed as a function
of Fsrc, although the latter is dominant provided Nsrc > 5/2, so the posterior is bounded
and integrable. The Gaussian approximation does not have this property, however, and the
likelihood is finite, if very small, at Fsrc = 0, leading to a sharp “spike” in the posterior at
Fsrc = 0 that contains infinite probability. This is an artefact of the Gaussian approximation
to the Poisson likelihood and is not a serious problem in practice.

(g) The likelihoods and unnormalised posterior distributions are shown in Fig. 2. In the Nsrc = 5
case the full Poisson formula is used; in the Nsrc = 104 case the Gaussian approximation
is adopted. In the latter case the posterior and likelihood are almost indistinguishable and
also both very close to Gaussian. The prior does not play a strong role as the high-precision
measurement is much more informative. In the Nsrc = 5 case, however, the measurement
contains far less information and the source is probably fainter than the data might naively
be taken to indicate.

(h) The full answer to any Bayesian parameter estimation problem is the posterior distribution in
the parameter(s) of interest. However in many practical situations (e.g., reporting flux esti-
mates of millions of sources) there is no way of assimilating or visualising the full distribution.
Hence it is useful to try and condense it into, e.g., an estimated value and an error. That
said, there can be no definitive algorithm for doing this. In some cases a few parameters can
completely encapsulate the posterior (e.g., the mean/mode/median and standard deviation if
it’s Gaussian), but in most cases this is not strictly possible.

For singly-peaked distributions it is reasonable to use the peak of the posterior, or the median or
the mean. Whichever of these characterising numbers is chosen will be less than the “natural”
estimator, F̂src = CNsrc. This result is potentially counter-intuitive, especially if you’ve gotten
used to using sampling statistis. One of the first tests many people would run to test an
algorithm being used to estimate some quantity of interest would be to generate lots of fake
data with the flux equal to some known Fsrc and then see if the resultant estimates (from
the peak or mean or whatever) are centred around the true value. Bayesian estimates do not

satisfy this test (unless the prior happens to be symmetric about Fsrc). The reason is that the
prior distribution reflects the distribution of source fluxes in the Universe, which is explicitly
contradicted if one simulates data with a single flux value.

Put another way, in any real astronomical measurement most of the sources with photon counts
Nsrc will have true fluxes which are less than Fsrc = CNsrc as there are more faint sources
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which are randomly scattered bright than there are brighter sources scattered faint. This
phenomenon has long been known as Eddington bias, where the term ”bias” is used because
of the fact that conventional flux estimates are biased high. In terms of Bayesian statistics
it would simply be the result of having made a poor choice of prior (that didn’t reflect the
prevalence of faint sources).
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