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Frequentist hypothesis testing

• Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be 
interpreted as a statement about the probability of the hypothesis! 


• Example: to test the null hypothesis H0: θ = 0, draw n normally distributed points (with 
known variance σ2). The χ2 is distributed as a chi-square distribution with (n-1) 
degrees of freedom (dof). Pick a significance level α (or p-value, e.g. α = 0.05). If P(χ2  

> χ2obs) < α reject the null hypothesis.

• This is a statement about the likelihood of observing data as extreme or more extreme 

than have been measured assuming the null hypothesis is correct.

• It is not a statement about the probability of the null hypothesis itself and cannot 

be interpreted as such! (or you’ll make gross mistakes)   
• The use of p-values implies that a hypothesis that may be true can be rejected 

because it has not predicted observable results that have not actually occurred.  
(Jeffreys, 1961)
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The significance of significance
• Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the 

time: at least 29% of 2-sigma results are wrong! 

• Take an equal mixture of H0, H1 


• Simulate data, perform hypothesis testing for H0


• Select results rejecting H0 at (or within a small range from) 1-α CL 
(this is the prescription by Fisher)


• What fraction of those results did actually come from H0 ("true nulls", should not 
have been rejected)?

Recommended reading:  
Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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Bayesian inference chain
• Select a model (parameters + priors)

• Compute observable quantities as a function of parameters

• Compare with available data 


• derive parameters constraints: PARAMETER INFERENCE  

• compute relative model probability: MODEL COMPARISON  
• Go back and start again 
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The 3 levels of inference

LEVEL 1  
I have selected a model M 

and prior P(θ|M)

LEVEL 2  
Actually, there are several 

possible models: M0, M1,...

Parameter inference 
(assumes M is the true 

model)

Model comparison 
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3  
None of the models is clearly 

the best

Model averaging 
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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Level 2: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
� d�P (d|�, M)P (�|M)

The evidence is the integral of the likelihood over the prior: 

 Bayes’ Theorem delivers the model’s posterior:

P (M |d) = P (d|M)P (M)
P (d)

When we are comparing two models:

P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

B01 � P (d|M0)
P (d|M1)
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Scale for the strength of evidence
• A (slightly modified) Jeffreys’ scale to assess the strength of evidence (Notice: this 

is empirically calibrated!)

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth 
mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong
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An automatic Occam’s razor

• Bayes factor balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space 

Δθ

δθ

Prior

Likelihood

Occam’s factor

�̂

P (d|M) =
R

d✓L(✓)P (✓|M)

⇡ P (✓̂)�✓L(✓̂)

⇡ �✓
�✓ L(✓̂)✓̂
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
under the model M: 

More complex model M1

Simpler model M0

P(d|M)

dObserved value dobs



Simple example: nested models

• This happens often in practice: 
we have a more complex 
model, M1 with prior P(θ|M1), 
which reduces to a simpler 
model (M0) for a certain value of 
the parameter,  
e.g. θ = θ* = 0 (nested models)


• Is the extra complexity of M1 

warranted by the data?  

Δθ

δθ

Prior

Likelihood

θ* = 0 �̂



Δθ

δθ

Prior

Likelihood

θ* = 0 �̂

Define: � � ⇥̂�⇥�

�⇥

For “informative” data: 

lnB01 ⇥ ln �⇥
�⇥ �

⇤2

2

wasted parameter 
space 

(favours simpler model) 

mismatch of 
prediction with 
observed data 
(favours more 

complex model)

Simple example: nested models
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The rough guide to model comparison
wider prior (fixed data)

I10 � log10
�⇥
�⇥

Trotta (2008)

larger sample (fixed prior and significance)

WMAP1

WMAP3

Planck

Δθ = Prior width  
𝛿θ = Likelihood width
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Information criteria
• Several information criteria exist for approximate model comparison 

k = number of fitted parameters 
N = number of data points,  
-2 ln(Lmax) = best-fit chi-squared


• Akaike Information Criterium (AIC):

!

• Bayesian Information Criterium (BIC): 
!

• Deviance Information Criterium (DIC):
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Notes on information criteria
• The best model is the one which minimizes the AIC/BIC/DIC

• Warning: AIC and BIC penalize models differently as a function of the number of 

data points N.  
For N>7 BIC has a more strong penalty for models with a larger number of free 
parameters k.


• BIC is an approximation to the full Bayesian evidence with a default Gaussian prior 
equivalent to 1/N-th of the data in the large N limit. 


• DIC takes into account whether parameters are measured or not (via the Bayesian 
complexity, see later).


• When possible, computation of the Bayesian evidence is preferable (with explicit 
prior specification). 
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Computing the evidence 

• Usually computational demanding: multi-dimensional integral!

• Several techniques available:


• Brute force: thermodynamic integration 


• Laplace approximation: approximate the likelihood to second order around 
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.


• Savage-Dickey density ratio: good for nested models, gives the Bayes factor


• Nested sampling: clever & efficient, can be used generally 

P (d|M) =
�
� d�P (d|�, M)P (�|M)evidence:

Bayes factor: B01 � P (d|M0)
P (d|M1)
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The Savage-Dickey density ratio

• This methods works for nested models and gives the Bayes factor analytically.

• Assumptions: nested models (M1 with parameters θ,Ψ reduces to M0 for e.g. Ψ =0) 

and separable priors (i.e. the prior P(θ,Ψ|M1) is uncorrelated with  P(θ|M0))

• Result: 

• Advantages:


• analytical


• often accurate 


• clarifies the role of prior


• does not rely on Gaussianity

B01 = P (�=0|d,M1)
P (�=0|M1)

Prior

Marginal posterior 
under M1 

Ψ = 0
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“Prior-free” evidence bounds
• What if we do not know how to set the prior? For nested models, we can still choose a 

prior that will maximise the support for the more complex model: 

maximum evidence for Model 1 

wider prior (fixed data)

larger sample (fixed prior and significance)
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Maximum evidence for a detection

• The absolute upper bound: put all prior mass for the alternative onto the observed 
maximum likelihood value. Then 
 

• More reasonable class of priors: symmetric and unimodal around Ψ=0, then  
(α = significance level)

If the upper bound is small, no other choice of prior 
will make the extra parameter significant.

B < exp(��2/2)

B < �1
exp(1)� ln �

 Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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How to interpret the “number of sigma’s”

α sigma Absolute bound 
on lnB (B)

“Reasonable” 
bound on lnB 

(B)

0.05 2
2.0 
(7:1) 
weak

0.9 
(3:1) 

undecided

0.003 3
4.5 

(90:1) 
moderate

3.0 
(21:1) 

moderate

0.0003 3.6
6.48 

(650:1) 
strong

5.0  
(150:1) 
strong
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How to assess p-values
Rule of thumb:  

interpret a n-sigma result as a (n-1)-sigma result

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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Nested sampling

• Perhaps the method to compute the 
evidence 


• At the same time, it delivers samples 
from the posterior: it is a highly efficient 
sampler! (much better than MCMC in 
tricky situations)


• Invented by John Skilling in 2005: the 
gist is to convert a n-dimensional 
integral in a 1D integral that can be 
done easily.

Liddle et al (2006)
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Nested sampling

x1

L(x)

0

1

2
θ

θ

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where ⟨·⟩ denotes the expectation value with respect to the posterior)

⟨m⟩ ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

⟨f(m)⟩ ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

(animation courtesy of David Parkinson)

X(⇥) =
�
L(�)>⇥ P (�)d�

An algorithm originally aimed primarily at the Bayesian evidence computation 
(Skilling, 2006):

P (d) =

Z
d✓L(✓)P (✓) =

Z 1

0
L(X)dX
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The MultiNest algorithm

• Feroz & Hobson (2007)

Target Reconstructed

Co
ur

te
sy

 M
ike

 H
ob

so
n
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The egg-box example
• MultiNest reconstruction of the egg-box posterior:
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Ellipsoidal decomposition

Courtesy Mike Hobson

Unimodal distribution Multimodal distribution
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Multinest: Efficiency

Gaussian mixture model: 
!
True evidence:  log(E) = -5.27 
Multinest: 
Reconstruction: log(E) = -5.33 ± 0.11 
Likelihood evaluations ~ 104 
Thermodynamic integration: 
Reconstruction: log(E) = -5.24 ± 0.12 
Likelihood evaluations ~ 106 
!

Co
ur

te
sy

 M
ike

 H
ob

so
n

D N efficiency likes per 
dimension

2 7000 70% 83
5 18000 51% 7
10 53000 34% 3
20 255000 15% 1.8
30 753000 8% 1.6
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Application: the spatial curvature

• Is the Universe spatially flat?  
(Vardanyan, Trotta and Silk, 2009)


• A three-way model comparison:  
Ωk = 0 vs Ωk < 0 vs Ωk > 0  
(with either the Astronomer’s prior or 
Curvature scale prior)


• Result: odds range from moderate evidence 
(lnB = 4) for flatness to undecided (lnB = 0.4) 
depending on the choice of prior


• Probability(infinite Universe) = 98% 
(Astronomer’s prior) 
Probability(infinite Universe) = 45% 
(Curvature scale prior)


• Upper bound: odds of 49:1 at best for n ≠ 1 
(Gordon and Trotta 2007) 

Cur
va

tur
e  

sc
ale

 pr
ior

Astr
on

om
er

’s 

pr
ior
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal + Noise
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Signal: 8 sources
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A “simple” example: how many sources?
Feroz and Hobson 

(2007) Bayesian reconstruction
7 out of 8 objects correctly identified.  

Mistake happens because 2 objects very close.



Cluster detection from Sunyaev-Zeldovich 
effect in cosmic microwave background maps 

Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster cluster

~ 
2 

de
g

Feroz et al 2009



Background 
+ 3 point radio sources

Background 
+ 3 point radio sources 

+ cluster

Bayesian model comparison:  
R = P(cluster | data)/P(no cluster | data)

R = 0.35 ± 0.05 R ~ 1033

Cluster parameters also recovered (position, temperature, profile, etc)
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The cosmological concordance model

lnB < 0: favours ΛCDM
from Trotta (2008)



Bayesian model comparison of 193 models  
Higgs inflation as reference model

disfavoured favoured
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Model complexity
• "Number of free parameters" is a relative concept. The relevant scale is set by the 

prior range

• How many parameters can the data support, regardless of whether their detection is 

significant?

• Bayesian complexity or effective number of parameters:

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)  
Following Spiegelhalter et al (2002)
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Polynomial fitting
• Data generated from a model with n = 6:

GOOD DATA!
Max supported complexity ~ 9

INSUFFICIENT DATA!
Max supported complexity ~ 4
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How many parameters does the CMB 
need?

b4+ns+τ 
measured & 

favoured

Ωκ 
measured & 
unnecessary

7 params  measured  

only 6 
sufficient

WMAP3+HST (WMAP5 qualitatively the same)

Ev
id

en
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Bayesian Model-averaging

Model averaged inferences

Lid
dl

e 
et

 a
l (2

00
7)

P(θ|d) = ∑i P(θ|d,Mi)P(Mi|d)
An application to dark energy: 
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Key points
• Bayesian model comparison extends parameter inference to the space of models

• The Bayesian evidence (model likelihood) represents the change in the degree of 

belief in the model after we have seen the data

• Models are rewarded for their predictivity (automatic Occam’s razor)

• Prior specification is for model comparison a key ingredient of the model building 

step. If the prior cannot be meaningfully set, then the physics in the model is 
probably not good enough. 


• Bayesian model complexity can help (together with the Bayesian evidence) in 
assessing model performance.


