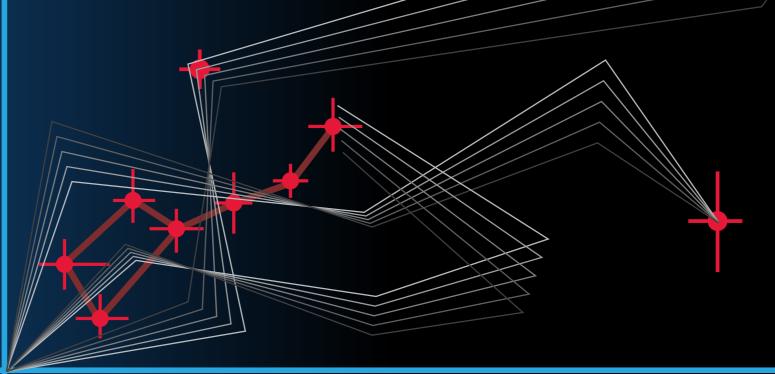


Bayesian Model Comparison

Roberto Trotta - www.robertotrotta.com



Copenhagen PhD School Oct 6th-10th 2014

Imperial College London

Frequentist hypothesis testing

- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be interpreted as a statement about the probability of the hypothesis!
- **Example:** to test the null hypothesis H_0 : $\theta = 0$, draw n normally distributed points (with known variance σ^2). The χ^2 is distributed as a chi-square distribution with (n-1) degrees of freedom (dof). Pick a significance level α (or p-value, e.g. $\alpha = 0.05$). If $P(\chi^2 > \chi^2_{obs}) < \alpha$ reject the null hypothesis.
- This is a statement about the likelihood of observing data as extreme or more extreme than have been measured assuming the null hypothesis is correct.
- It is not a statement about the probability of the null hypothesis itself and cannot be interpreted as such! (or you'll make gross mistakes)
- The use of p-values implies that a hypothesis that may be true can be rejected because it has not predicted observable results that have not actually occurred. (Jeffreys, 1961)

The significance of significance

- Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the time: at least 29% of 2-sigma results are wrong!
 - Take an equal mixture of H₀, H₁
 - Simulate data, perform hypothesis testing for H₀
 - Select results rejecting H₀ at (or within a small range from) 1-α CL (this is the prescription by Fisher)
 - What fraction of those results did actually come from H₀ ("true nulls", should not have been rejected)?

p–value	$_{ m sigma}$	fraction of true nulls	lower bound
0.05	1.96	0.51	0.29
0.01	2.58	0.20	0.11
0.001	3.29	0.024	0.018

Recommended reading:

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Bayesian model comparison

Bayesian inference chain

- Select a model (parameters + priors)
- Compute observable quantities as a function of parameters
- Compare with available data
 - derive parameters constraints: PARAMETER INFERENCE
 - compute relative model probability: MODEL COMPARISON
- Go back and start again

The 3 levels of inference

Imperial College London

LEVEL 1

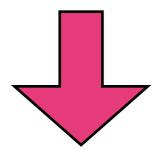
I have selected a model M and prior P(θ|M)

LEVEL 2

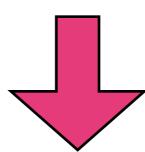
Actually, there are several possible models: M₀, M₁,...

LEVEL 3

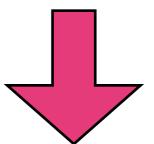
None of the models is clearly the best



$$P(\theta|d,M) = \frac{P(d|\theta,M)P(\theta|M)}{P(d|M)}$$



$$odds = \frac{P(M_0|d)}{P(M_1|d)}$$



$$P(\theta|d) = \sum_{i} P(M_i|d)P(\theta|d, M_i)$$

Parameter inference

(assumes M is the true model)

Model comparison

What is the relative plausibility of M₀, M₁,... in light of the data?

Model averaging

What is the inference on the parameters accounting for model uncertainty?

Level 2: model comparison

$$P(\theta|d, M) = \frac{P(d|\theta, M)P(\theta|M)}{P(d|M)}$$

Bayesian evidence or model likelihood

The evidence is the integral of the likelihood over the prior:

$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

Bayes' Theorem delivers the model's posterior:

$$P(M|d) = \frac{P(d|M)P(M)}{P(d)}$$

When we are comparing two models:

The Bayes factor:

$$\frac{P(M_0|d)}{P(M_1|d)} = \frac{P(d|M_0)}{P(d|M_1)} \frac{P(M_0)}{P(M_1)}$$

$$B_{01} \equiv \frac{P(d|M_0)}{P(d|M_1)}$$

Posterior odds = Bayes factor × prior odds

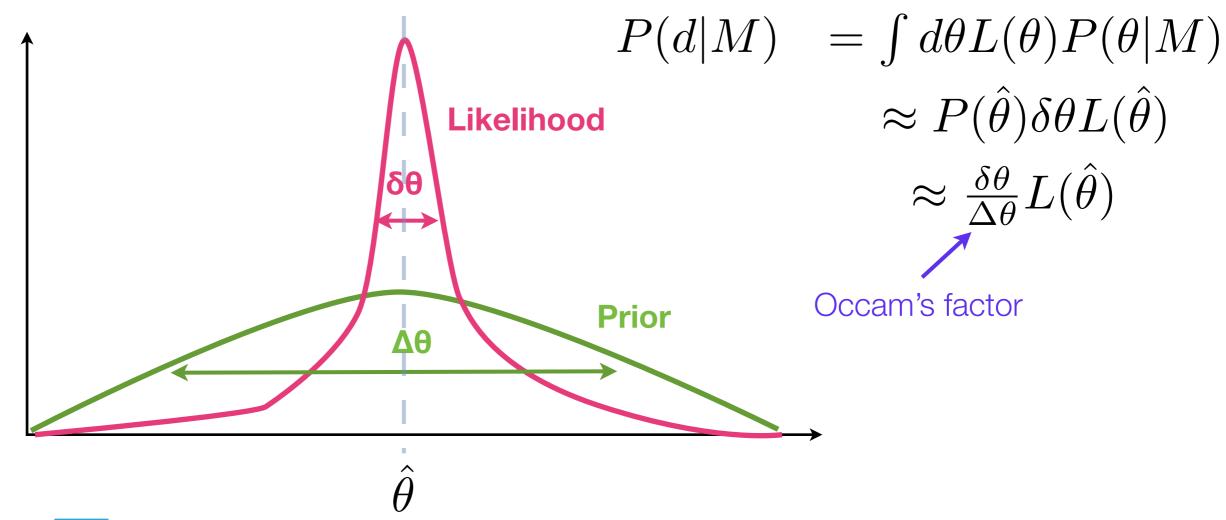
Scale for the strength of evidence

• A (slightly modified) Jeffreys' scale to assess the strength of evidence (**Notice:** this is empirically calibrated!)

InB	relative odds	favoured model's probability	Interpretation
< 1.0	< 3:1	< 0.750	not worth mentioning
< 2.5	< 12:1	0.923	weak
< 5.0	< 150:1	0.993	moderate
> 5.0	> 150:1	> 0.993	strong

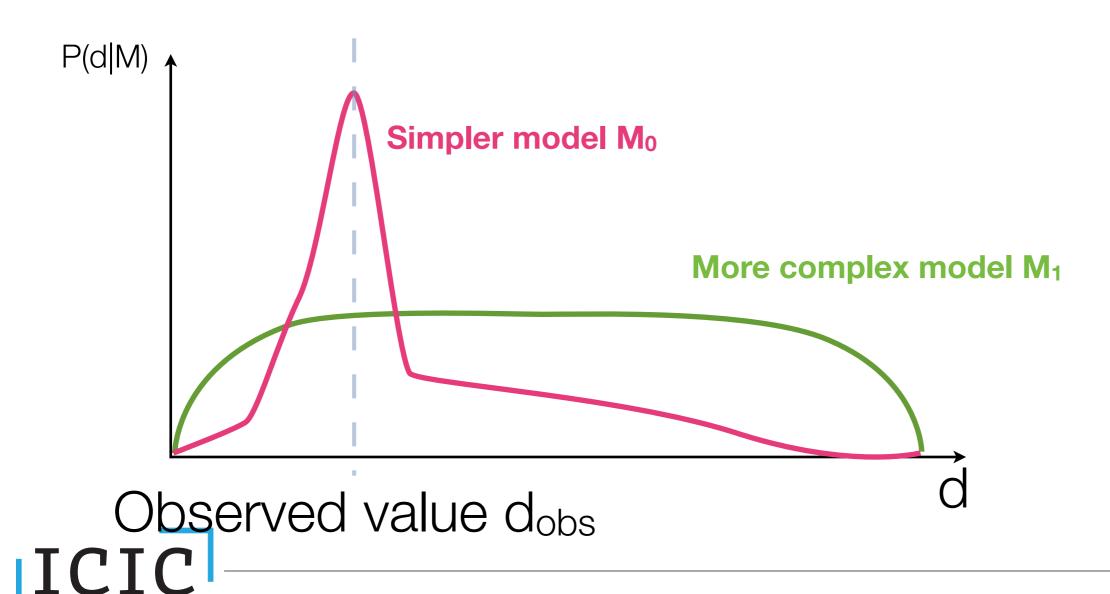
An automatic Occam's razor

- Bayes factor balances quality of fit vs extra model complexity.
- It rewards highly predictive models, penalizing "wasted" parameter space



The evidence as predictive probability

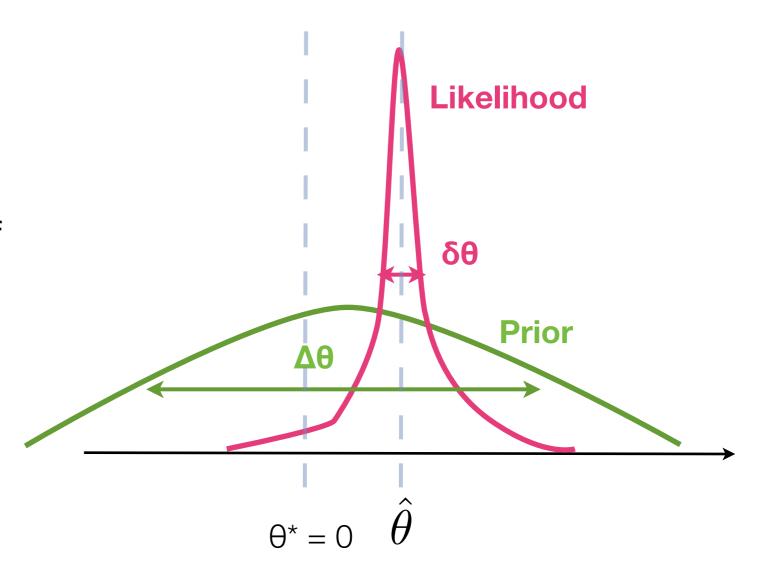
• The evidence can be understood as a function of d to give the predictive probability under the model M:



Simple example: nested models

This happens often in practice: we have a more complex model, M₁ with prior P(θ|M₁), which reduces to a simpler model (M₀) for a certain value of the parameter, e.g. θ = θ* = 0 (nested models)

 Is the extra complexity of M₁ warranted by the data?



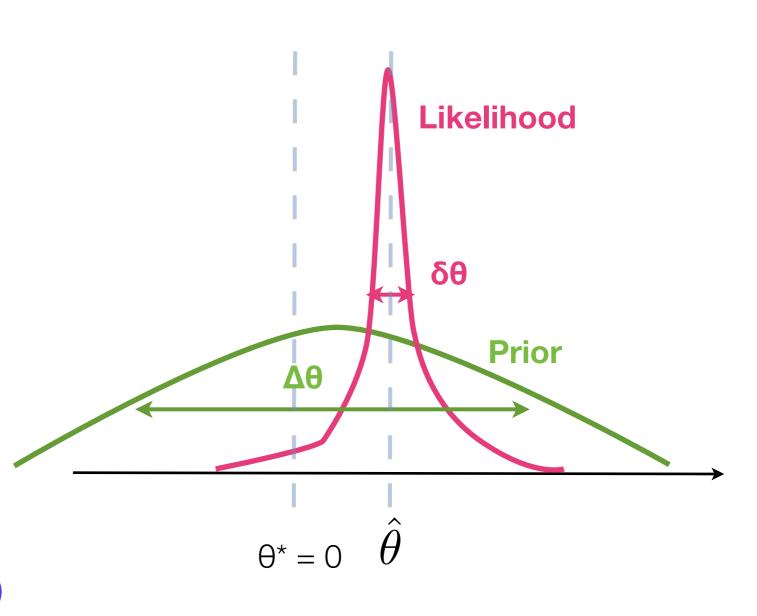
Simple example: nested models

Define: $\lambda \equiv \frac{\hat{\theta} - \theta^*}{\delta \theta}$

For "informative" data:

$$\ln B_{01} \approx \ln \frac{\Delta \theta}{\delta \theta} - \frac{\lambda^2}{2}$$

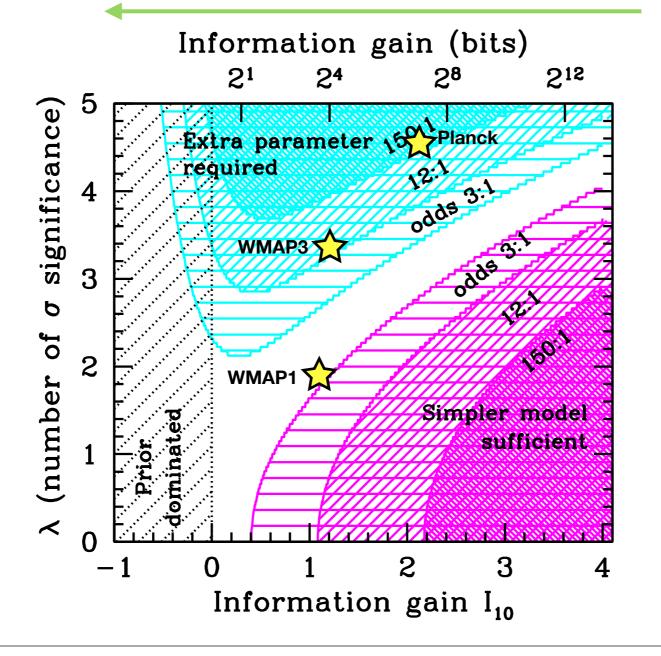
wasted parameter space (favours simpler model) mismatch of prediction with observed data (favours more complex model)



The rough guide to model comparison

Trotta (2008)

larger sample (fixed prior and significance)



 $\Delta\theta$ = Prior width $\delta\theta$ = Likelihood width

$$I_{10} \equiv \log_{10} \frac{\Delta \theta}{\delta \theta}$$

Information criteria

- Several information criteria exist for approximate model comparison
 k = number of fitted parameters
 N = number of data points,
 - $-2 \ln(L_{max}) = best-fit chi-squared$
- Akaike Information Criterium (AIC): $AIC \equiv -2 \ln \mathcal{L}_{\max} + 2k$
- Bayesian Information Criterium (BIC): BIC $\equiv -2 \ln \mathcal{L}_{\max} + k \ln N$
- Deviance Information Criterium (DIC): $\mathrm{DIC} \equiv -2\widehat{D_{\mathrm{KL}}} + 2\mathcal{C}_b$

Notes on information criteria

- The best model is the one which minimizes the AIC/BIC/DIC
- Warning: AIC and BIC penalize models differently as a function of the number of data points N.
 - For N>7 BIC has a more strong penalty for models with a larger number of free parameters k.
- BIC is an approximation to the full Bayesian evidence with a default Gaussian prior equivalent to 1/N-th of the data in the large N limit.
- DIC takes into account whether parameters are measured or not (via the Bayesian complexity, see later).
- When possible, computation of the Bayesian evidence is preferable (with explicit prior specification).

Computing the evidence

evidence:
$$P(d|M) = \int_{\Omega} d\theta P(d|\theta, M) P(\theta|M)$$

Bayes factor:
$$B_{01}\equiv rac{P(d|M_0)}{P(d|M_1)}$$

- Usually computational demanding: multi-dimensional integral!
- Several techniques available:
 - Brute force: thermodynamic integration
 - Laplace approximation: approximate the likelihood to second order around maximum gives Gaussian integrals (for normal prior). Can be inaccurate.
 - Savage-Dickey density ratio: good for nested models, gives the Bayes factor
 - Nested sampling: clever & efficient, can be used generally

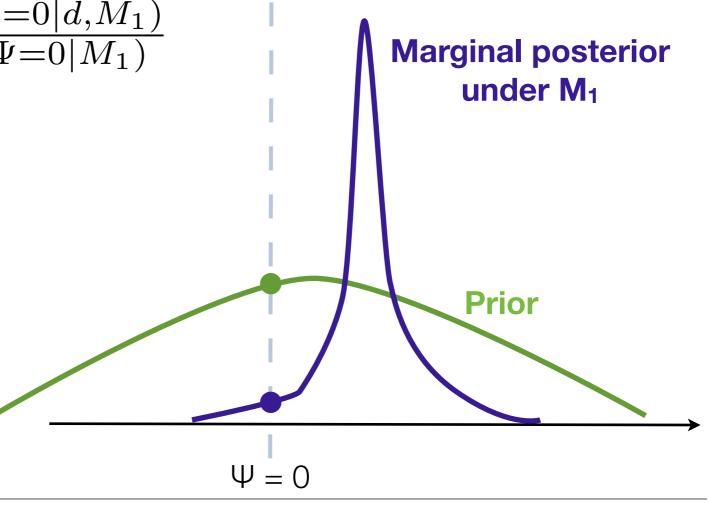
The Savage-Dickey density ratio

- This methods works for nested models and gives the Bayes factor analytically.
- Assumptions: nested models (M_1 with parameters θ , Ψ reduces to M_0 for e.g. Ψ =0) and separable priors (i.e. the prior $P(\theta,\Psi|M_1)$ is uncorrelated with $P(\theta|M_0)$)
- Result:

Advantages:

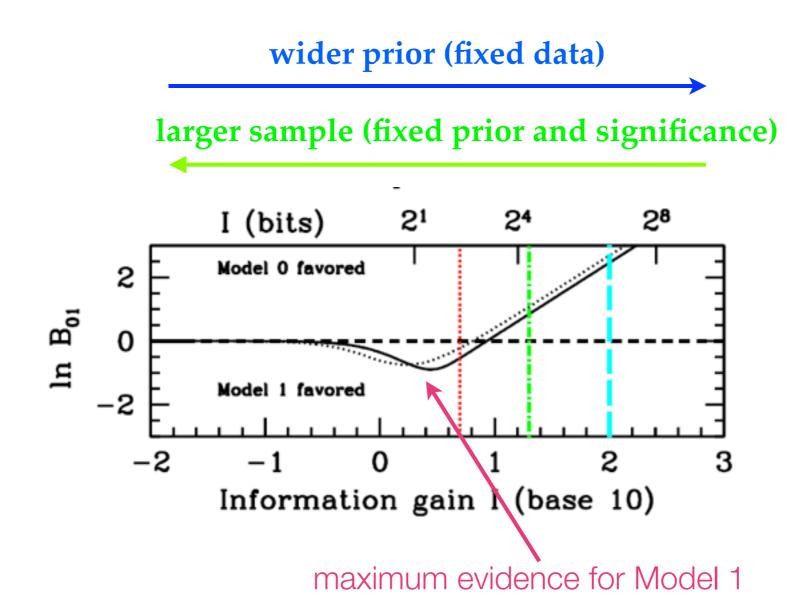
$$B_{01} = \frac{P(\Psi=0|d, M_1)}{P(\Psi=0|M_1)}$$

- analytical
- often accurate
- clarifies the role of prior
- does not rely on Gaussianity



"Prior-free" evidence bounds

• What if we do not know how to set the prior? For nested models, we can still choose a prior that will maximise the support for the more complex model:



Maximum evidence for a detection

 The absolute upper bound: put all prior mass for the alternative onto the observed maximum likelihood value. Then

$$B < \exp(-\chi^2/2)$$

• More reasonable class of priors: symmetric and unimodal around $\Psi=0$, then $(\alpha = \text{significance level})$

$$B < \frac{-1}{\exp(1)\alpha \ln \alpha}$$

If the upper bound is small, no other choice of prior will make the extra parameter significant.

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

How to interpret the "number of sigma's"

α	sigma	Absolute bound on InB (B)	"Reasonable" bound on InB (B)
0.05	2	2.0 (7:1) weak	0.9 (3:1) undecided
0.003	3	4.5 (90:1) moderate	3.0 (21:1) moderate
0.0003	3.6	6.48 (650:1) strong	5.0 (150:1) strong

Rule of thumb: interpret a n-sigma result as a (n-1)-sigma result

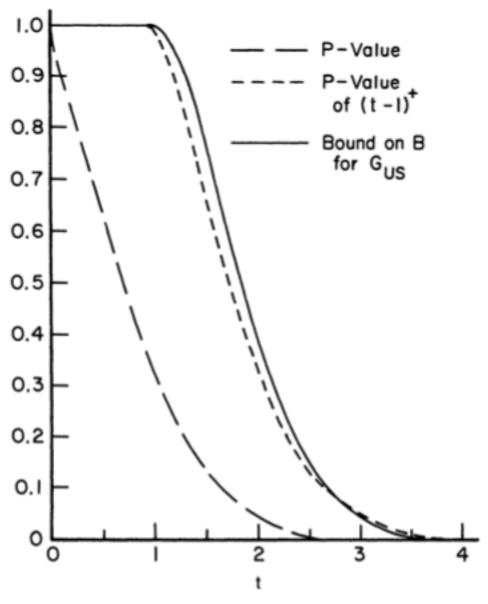
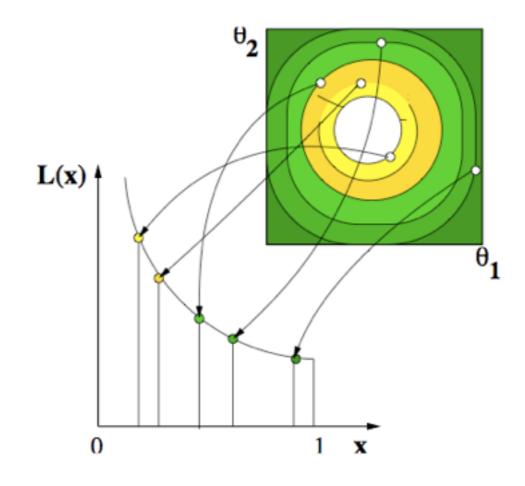


Figure 4. Comparison of B(x, Gus) and P Values.

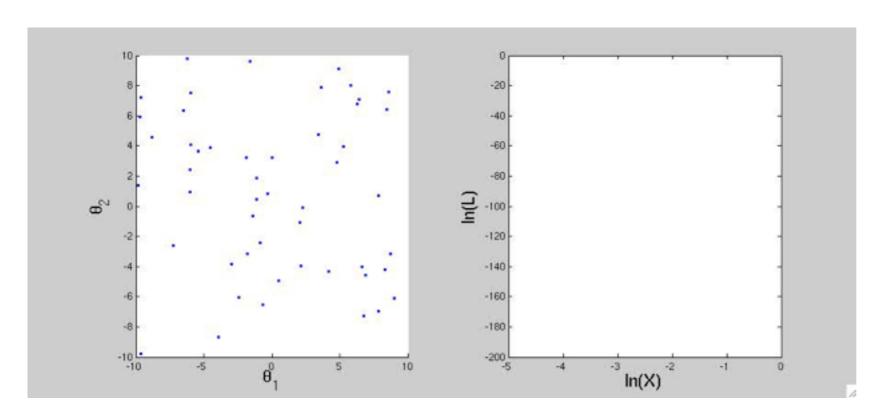
Nested sampling

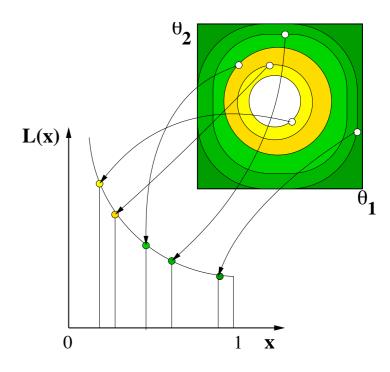
- Perhaps the method to compute the evidence
- At the same time, it delivers samples from the posterior: it is a highly efficient sampler! (much better than MCMC in tricky situations)
- Invented by John Skilling in 2005: the gist is to convert a n-dimensional integral in a 1D integral that can be done easily.



Liddle et al (2006)

Nested sampling





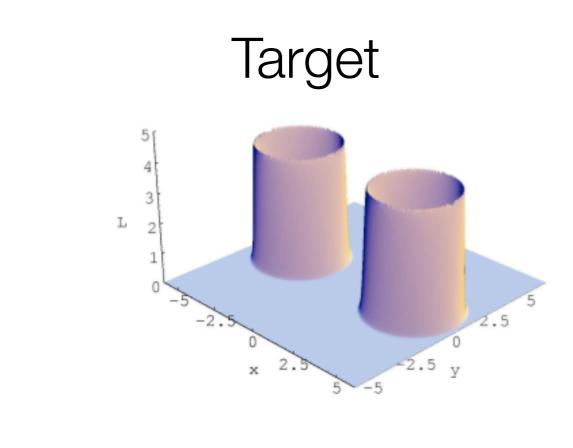
(animation courtesy of David Parkinson)

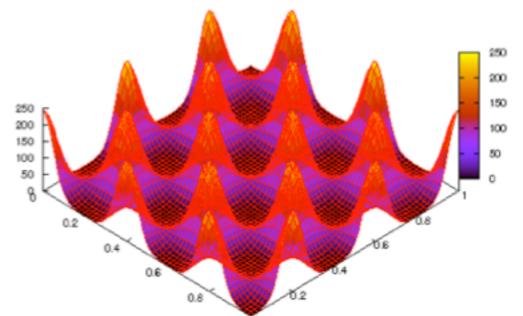
An algorithm originally aimed primarily at the Bayesian evidence computation (Skilling, 2006):

$$X(\lambda) = \int_{\mathcal{L}(\theta) > \lambda} P(\theta) d\theta$$
$$P(d) = \int_{0}^{1} d\theta L(\theta) P(\theta) = \int_{0}^{1} L(X) dX$$

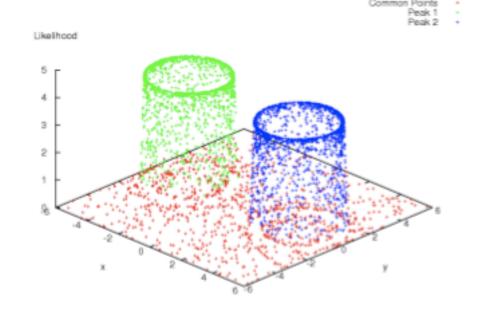
The MultiNest algorithm

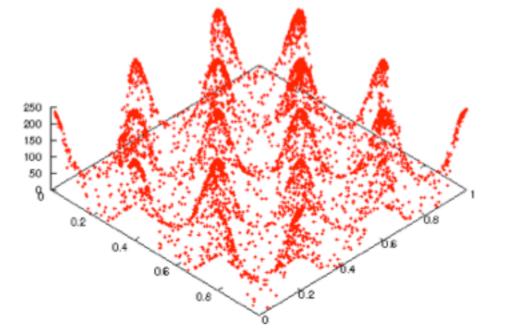
Feroz & Hobson (2007)





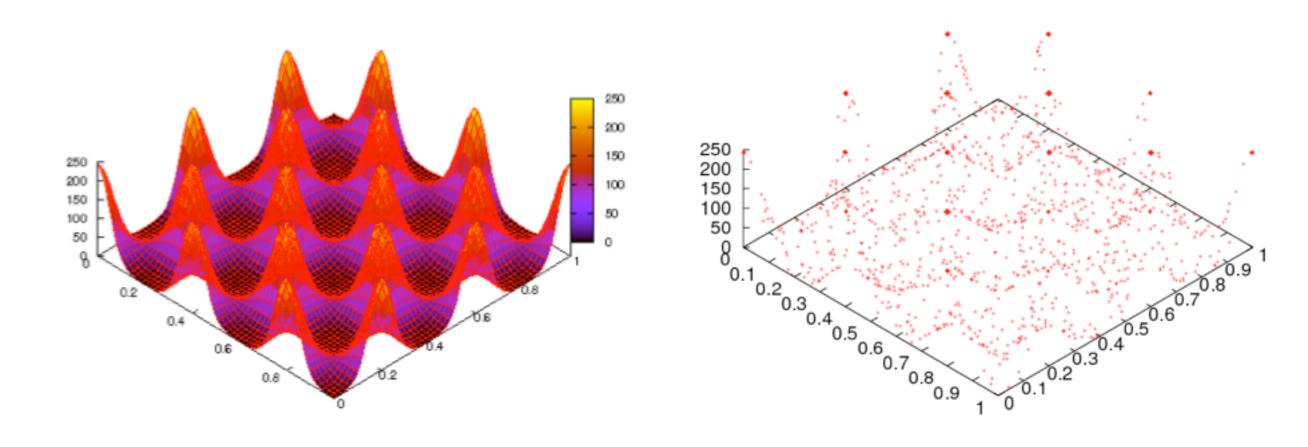
Reconstructed





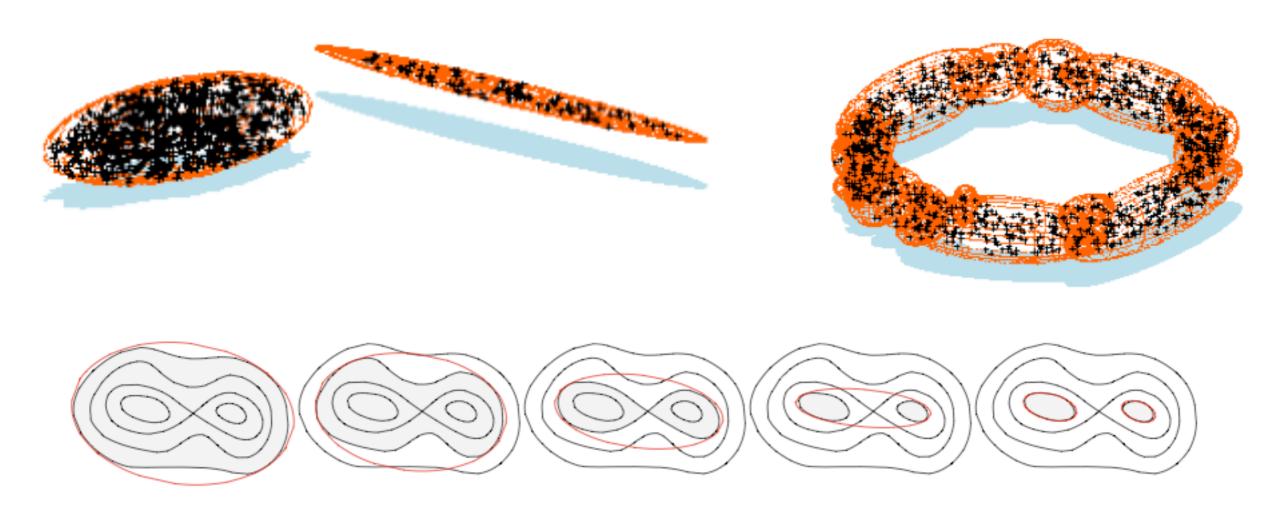
The egg-box example

MultiNest reconstruction of the egg-box posterior:



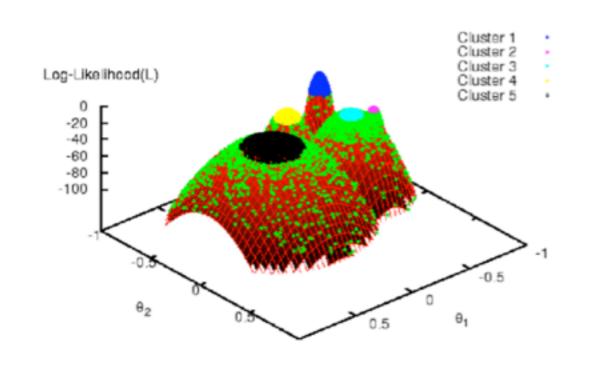
Ellipsoidal decomposition

Unimodal distribution Multimodal distribution



Courtesy Mike Hobson

Multinest: Efficiency



Gaussian mixture model:

True evidence: log(E) = -5.27

Multinest:

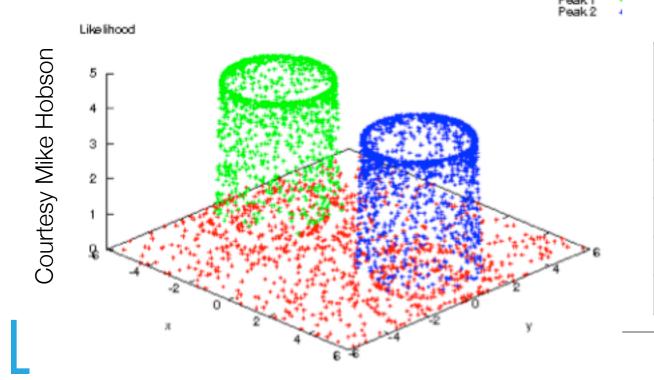
Reconstruction: $log(E) = -5.33 \pm 0.11$

Likelihood evaluations ~ 10⁴

Thermodynamic integration:

Reconstruction: $log(E) = -5.24 \pm 0.12$

Likelihood evaluations ~ 10⁶



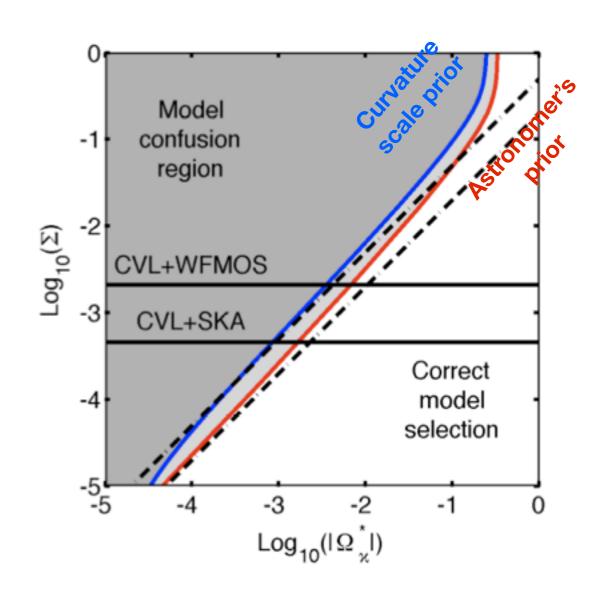
D	Ν	efficiency	likes per dimension
2	7000	70%	83
5	18000	51%	7
10	53000	34%	3
20	255000	15%	1.8
30	753000	8%	1.6

Application: the spatial curvature

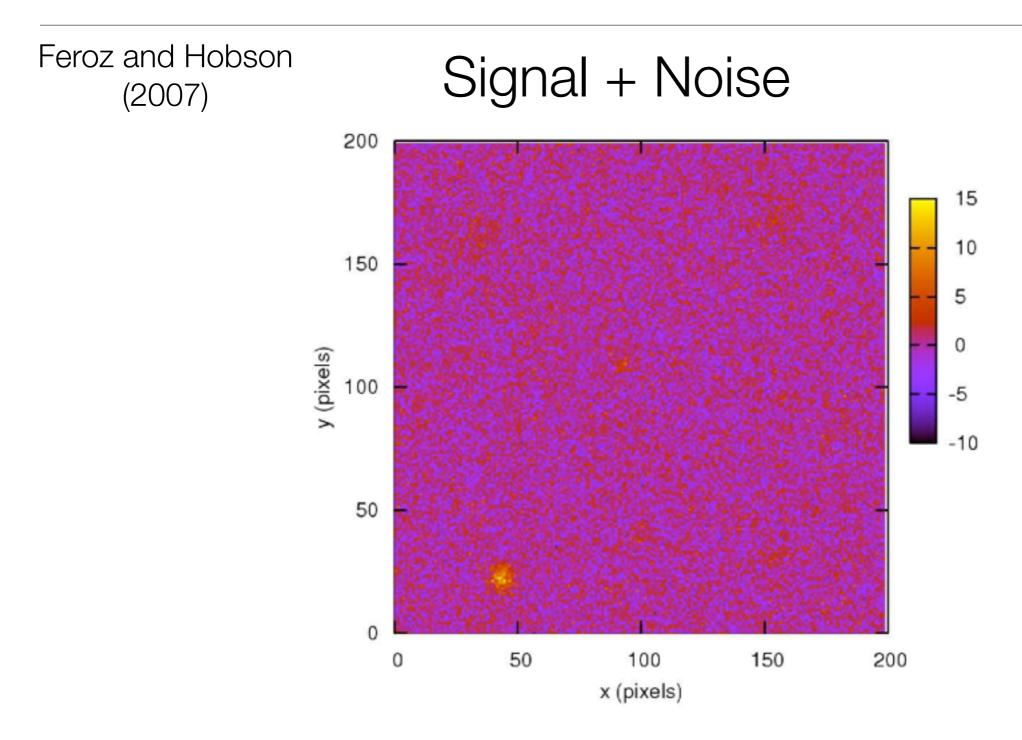
- Is the Universe spatially flat? (Vardanyan, Trotta and Silk, 2009)
- A three-way model comparison: $\Omega_k = 0 \text{ vs } \Omega_k < 0 \text{ vs } \Omega_k > 0$ (with either the Astronomer's prior or

(with either the Astronomer's prior or Curvature scale prior)

- Result: odds range from moderate evidence (lnB = 4) for flatness to undecided (lnB = 0.4) depending on the choice of prior
- Probability(infinite Universe) = 98%
 (Astronomer's prior)
 Probability(infinite Universe) = 45%
 (Curvature scale prior)
- Upper bound: odds of 49:1 at best for n ≠ 1 (Gordon and Trotta 2007)



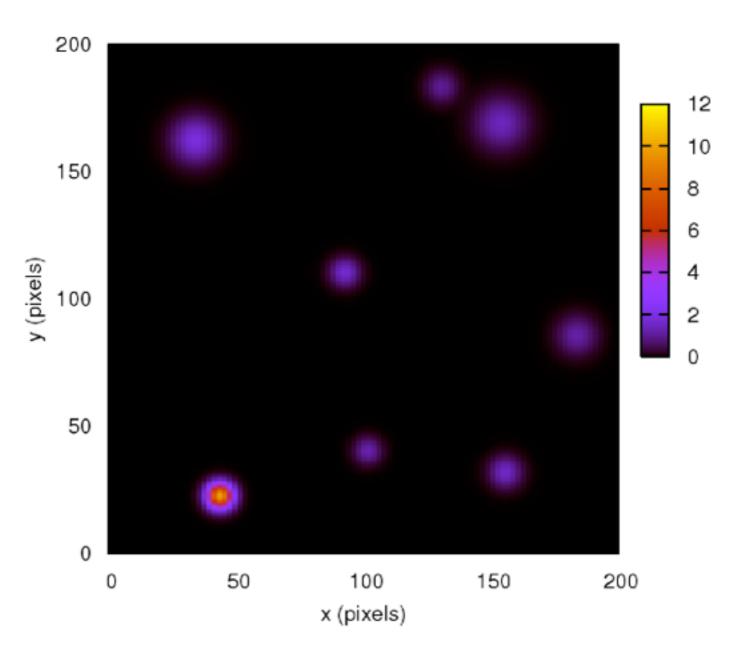
A "simple" example: how many sources?



A "simple" example: how many sources?

Feroz and Hobson (2007)

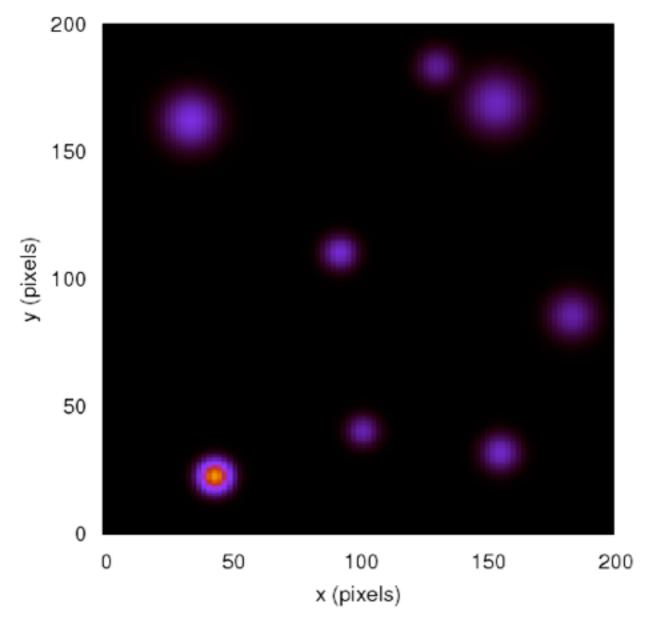
Signal: 8 sources



A "simple" example: how many sources?

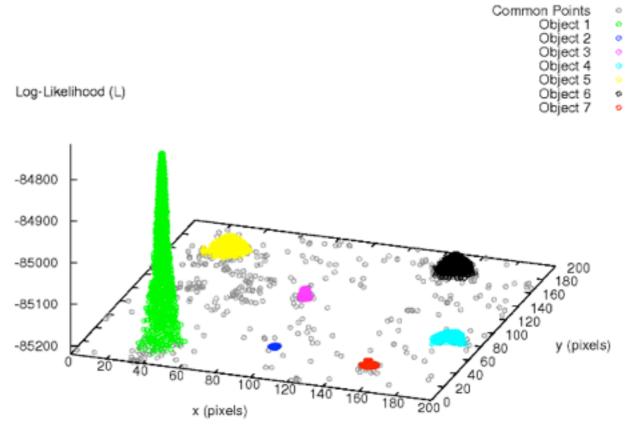
Imperial College London

Feroz and Hobson (2007)

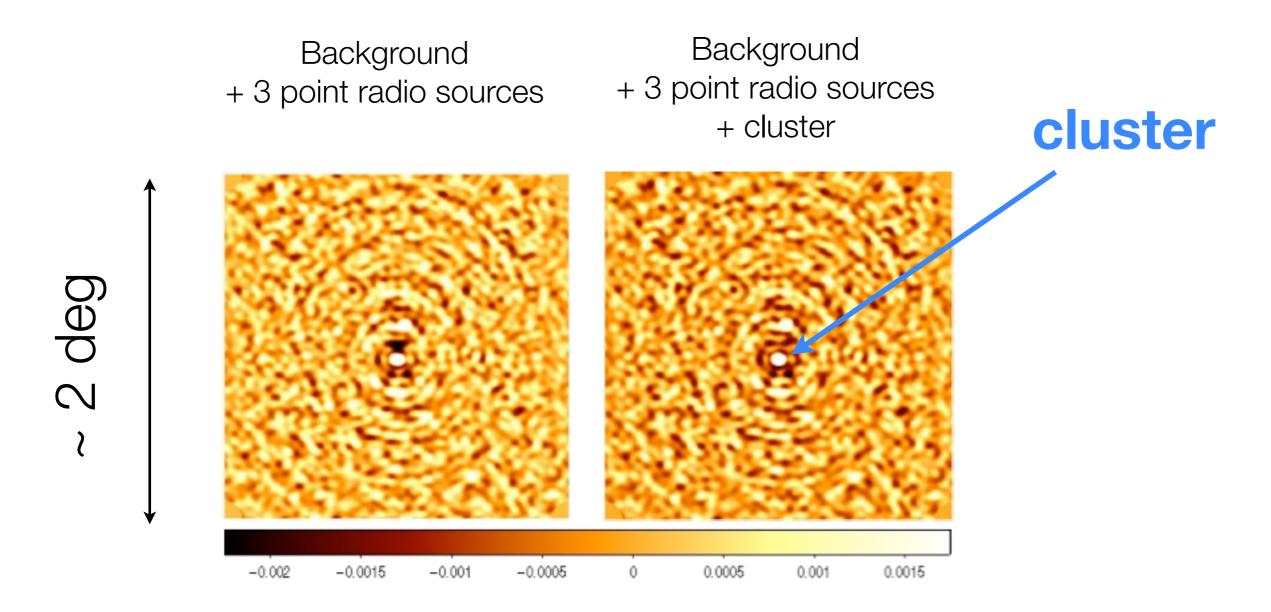


Bayesian reconstruction

7 out of 8 objects correctly identified. Mistake happens because 2 objects very close.



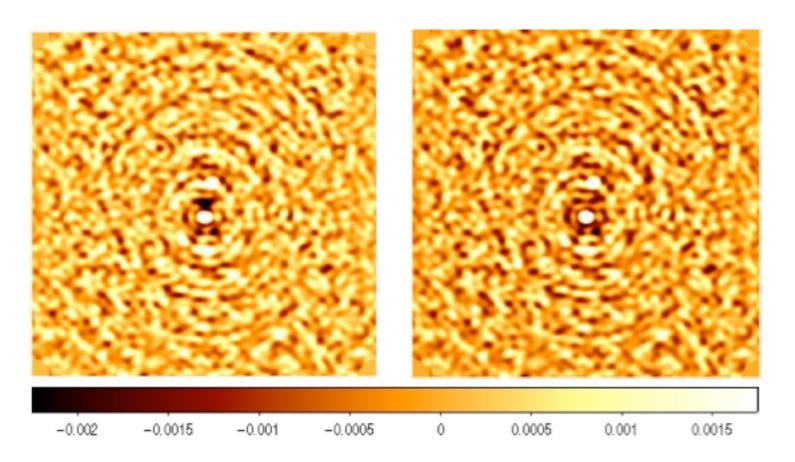
Cluster detection from Sunyaev-Zeldovich effect in cosmic microwave background maps



Feroz et al 2009

Background + 3 point radio sources

Background + 3 point radio sources + cluster



Bayesian model comparison:

R = P(cluster | data)/P(no cluster | data)

$$R = 0.35 \pm 0.05$$

$$R \sim 10^{33}$$

Cluster parameters also recovered (position, temperature, profile, etc)

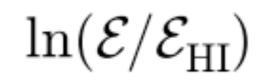
The cosmological concordance model

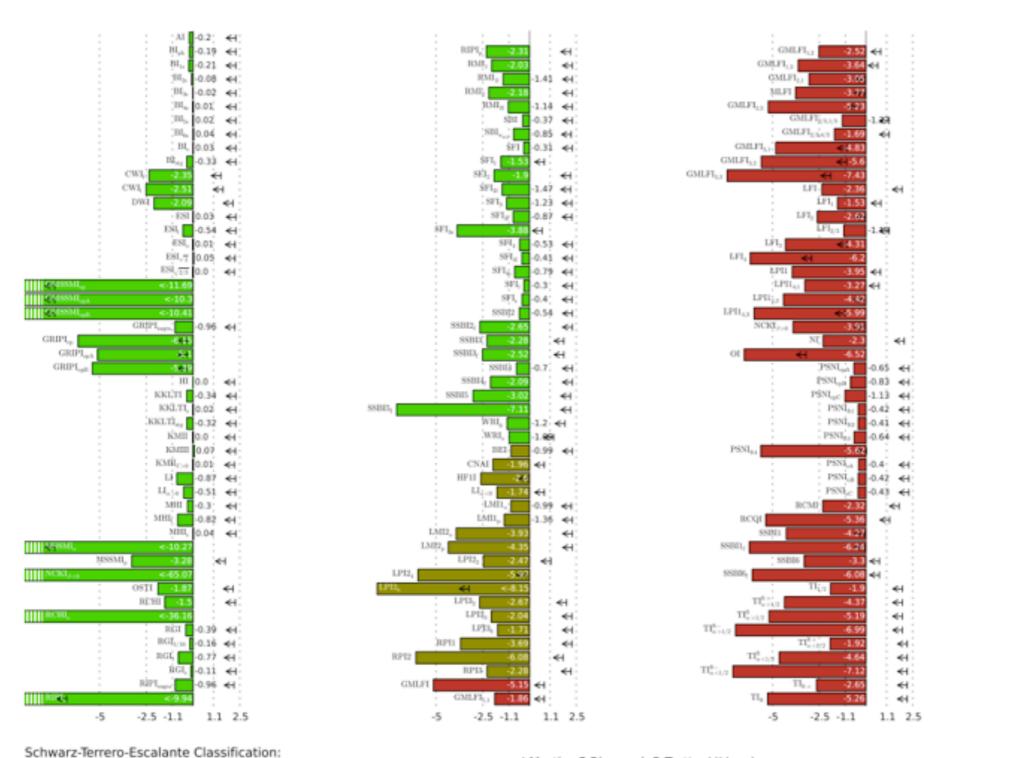
Competing model	ΔN_p	$r = \ln B$	Ref	Data	Outcome
Initial conditions Isocurvature modes					
CDM isocurvature + arbitrary correlations Neutrino entropy + arbitrary correlations Neutrino velocity + arbitrary correlations	+1 +4 +1 +4 +1 +4	-7.6 -1.0 $[-2.5, -6.5]^p$ -1.0 $[-2.5, -6.5]^p$ -1.0	[58] [46] [60] [46] [60] [46]	WMAP3+, LSS WMAP1+, LSS, SN Ia WMAP3+, LSS WMAP1+, LSS, SN Ia WMAP3+, LSS WMAP1+, LSS, SN Ia	Strong evidence for adiabaticity Undecided Moderate to strong evidence for adiabaticity Undecided Moderate to strong evidence for adiabaticity Undecided
Primordial power spectr No tilt $(n_s = 1)$	rum -1	$+0.4$ $[-1.1, -0.6]^p$ -0.7 -0.9 $[-0.7, -1.7]^{p,d}$ -2.0 -2.6 -2.9 $< -3.9^c$	[47] [51] [58] [70] [186] [185] [70] [58] [65]	WMAP1+, LSS WMAP1+, LSS WMAP1+, LSS WMAP1+ WMAP3+ WMAP3+, LSS WMAP3+, LSS WMAP3+, LSS WMAP3+, LSS	Undecided Undecided Undecided Undecided Undecided $n_s = 1$ weakly disfavoured $n_s = 1$ weakly disfavoured $n_s = 1$ moderately disfavoured $n_s = 1$ moderately disfavoured Moderate evidence at best against $n_s \neq 1$
Running Running of running	+1 +2	$[-0.6, 1.0]^{p,d}$ $< 0.2^c$ $< 0.4^c$	[186] [166] [166]	WMAP3+, LSS WMAP3+, LSS WMAP3+, LSS	No evidence for running Running not required Not required
Large scales cut-off	+2	$[1.3, 2.2]^{p,d}$	[186]	WMAP3+, LSS	Weak support for a cut-off
Matter-energy content Non-flat Universe	+1	-3.8 -3.4	[70] [58]	WMAP3+, HST WMAP3+, LSS, HST	Flat Universe moderately favoured Flat Universe moderately favoured
Coupled neutrinos	+1	-0.7	[193]	WMAP3+, LSS	No evidence for non-SM neutrinos
Dark energy sector $w(z) = w_{\text{eff}} \neq -1$	+1	$[-1.3, -2.7]^p$ -3.0 -1.1 $[-0.2, -1]^p$ $[-1.6, -2.3]^d$	[187] [50] [51] [188] [189]	SN Ia SN Ia WMAP1+, LSS, SN Ia SN Ia, BAO, WMAP3 SN Ia, GRB	Weak to moderate support for Λ Moderate support for Λ Weak support for Λ Undecided Weak support for Λ
$w(z) = w_0 + w_1 z$	+2	$[-1.5, -3.4]^p$ -6.0 -1.8	[187] [50] [188]	SN Ia SN Ia SN Ia, BAO, WMAP3	Weak to moderate support for Λ Strong support for Λ Weak support for Λ
$w(z) = w_0 + w_a(1 - a)$	+2	-1.1 [-1.2, -2.6] ^d	[188] [189]	SN Ia, BAO, WMAP3 SN Ia, GRB	Weak support for Λ Weak to moderate support for Λ
Reionization history No reionization ($\tau = 0$) No reionization and no tilt	-1 -2	-2.6 -10.3	[70] [70]	WMAP3+, HST WMAP3+, HST	$\tau \neq 0$ moderately favoured Strongly disfavoured
)O)					

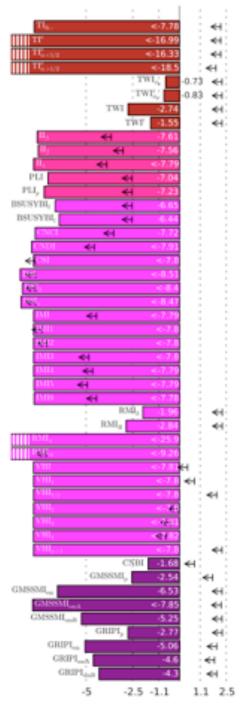
from Trotta (2008)

InB < 0: favours ΛCDM

Bayesian model comparison of 193 models Higgs inflation as reference model







Model complexity

- "Number of free parameters" is a relative concept. The relevant scale is set by the prior range
- How many parameters can the data support, regardless of whether their detection is significant?
- Bayesian complexity or effective number of parameters:

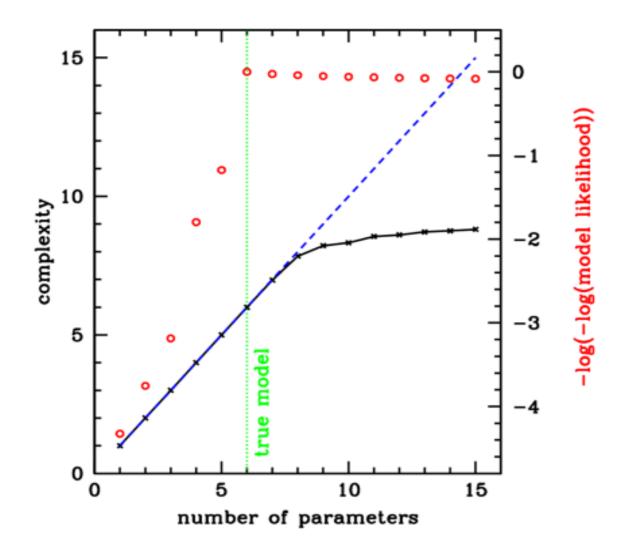
$$C_b = \overline{\chi^2(\theta)} - \chi^2(\widehat{\theta})$$
$$= \sum_i \frac{1}{1 + (\sigma_i/\Sigma_i)^2}$$

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006) Following Spiegelhalter et al (2002)

Data generated from a model with n = 6:

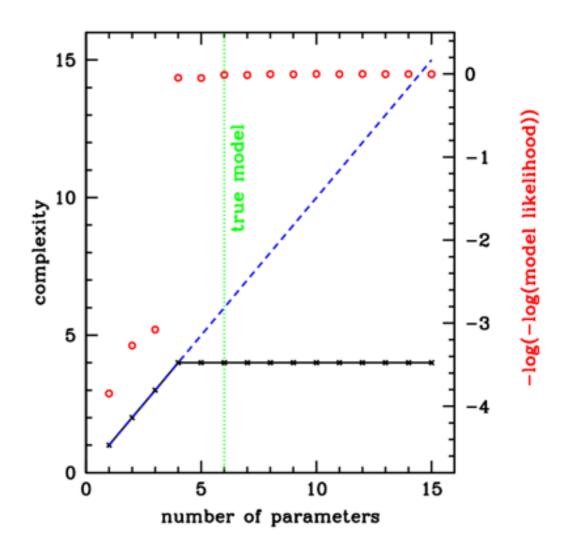
GOOD DATA

Max supported complexity ~ 9

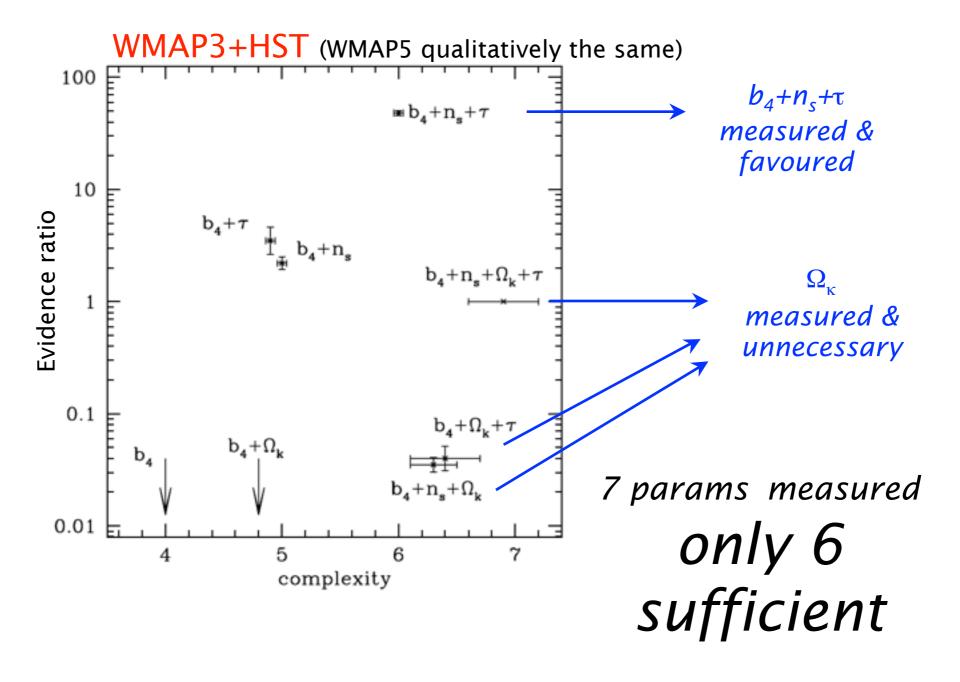


INSUFFICIENT DATA

Max supported complexity ~ 4



How many parameters does the CMB need?



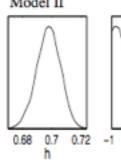
Liddle et al (2007)

Bayesian Model-averaging

$P(\theta|d) = \sum_{i} P(\theta|d,M_i)P(M_i|d)$

An application to dark energy:

0.2 _Ω 0.3

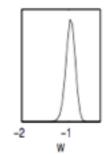


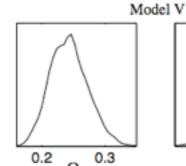
Model IV

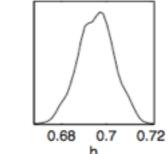
0.68 0.7 0.72

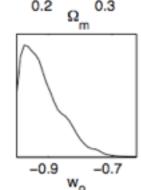
0

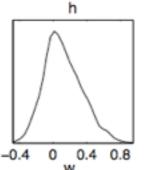
-1





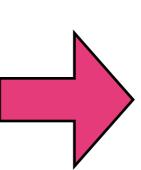


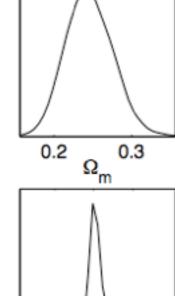




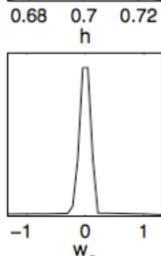
Model averaged inferences







-1.2 -1 -0.8



Key points

- Bayesian model comparison extends parameter inference to the space of models
- The Bayesian evidence (model likelihood) represents the change in the degree of belief in the model after we have seen the data
- Models are rewarded for their predictivity (automatic Occam's razor)
- Prior specification is for model comparison a key ingredient of the model building step. If the prior cannot be meaningfully set, then the physics in the model is probably not good enough.
- Bayesian model complexity can help (together with the Bayesian evidence) in assessing model performance.

