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Frequentist hypothesis testing imperial College

- Warning: frequentist hypothesis testing (e.g., likelihood ratio test) cannot be
iInterpreted as a statement about the probability of the hypothesis!

- Example: to test the null hypothesis Ho: 8 = 0, draw n normally distributed points (with
known variance ¢?). The ¥? is distributed as a chi-square distribution with (n-7)
degrees of freedom (dof). Pick a significance level a (or p-value, e.g. a = 0.05). If P(x°
> ¥20ps) < @ reject the null hypothesis.

+ This is a statement about the likelihood of observing data as extreme or more extreme
than have been measured assuming the null hypothesis is correct.

- Itis not a statement about the probability of the null hypothesis itself and cannot
be interpreted as such! (or you’ll make gross mistakes)

« The use of p-values implies that a hypothesis that may be true can be rejected
because it has not predicted observable results that have not actually occurred.
(Jeffreys, 1961)
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The significance of significance imperial College

- Important: A 2-sigma result does not wrongly reject the null hypothesis 5% of the
time: at least 29% of 2-sigma results are wrong!

- Take an equal mixture of Ho, H1
- Simulate data, perform hypothesis testing for Ho

- Select results rejecting Ho at (or within a small range from) 1-a CL
(this is the prescription by Fisher)

- What fraction of those results did actually come from Ho ("true nulls", should not
have been rejected)?
p-value sigma fraction of true nulls lower bound

0.05 1.96 0.51 0.29
0.01 2.58 0.20 0.11
0.001 3.29 0.024 0.018

Recommended reading:
Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)
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BSayesian model comparison



Bayesian inference chain imperial College

« Select a model (parameters + priors)
- Compute observable quantities as a function of parameters
- Compare with available data

- derive parameters constraints: PARAMETER INFERENCE

- compute relative model probability: MODEL COMPARISON
- Go back and start again

Roberto Trotta
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The 3 levels of inference ohdon e

LEVEL 1 LEVEL 2 LEVEL 3
| have selected a model M Actually, there are several None of the models is clearly
and prior P(6|M) possible models: Mo, M+,... the best

P(9d, M) = Paleanrenn - gqqq — PMold) by S pag|a)p(o)d, M)

P(d|M) P(M1|d)
Parameter inference Model comparison Model averaging
(assumes M is the true What is the relative What is the inference on
model) plausibility of Mo, Ms,... the parameters
in light of the data? accounting for model

uncertainty?

ICIC!




Level 2: model comparison imperial College

P(0|d, M) = PM“M

Bayesian evidence or model likelihood

The evidence is the integral of the likelihood over the prior:
P(dIM) = [, dOP(d|6, M)P(0| M)
Bayes’ Theorem delivers the model’s posterior:

P(M|d) = P(d|M)P(M)

P(d)
When we are comparing two models: The Bayes factor:
P(Mo|d) _ P(d|Mo) P(Mo) Ba, = P(d|My)
P(M]d) — P(d|M) P(M) 01 = P(d[My)

Posterior odds = Bayes factor x prior odds
ICIC!
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Scale for the strength of evidence

Imperial College

- A (slightly modified) Jeffreys’ scale to assess the strength of evidence (Notice: this
is empirically calibrated!)

INB] relative odds fav%‘ﬁgesagﬁsel’s Interpretation
<1.0 < 3:1 < 0.750 Qg;t\ﬁ;:tnhg
<2.5 <12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate
> 5.0 > 150:1 > 0.993 strong

ICIC
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An automatic Occam’s razor Imperial College

- Bayes factor balances quality of fit vs extra model complexity.
* It rewards highly predictive models, penalizing “wasted” parameter space

P(d|M) = fd@L P(O| M)
Likelihood (0)66L(H)

Prior Occam’s factor

O
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The evidence as predictive probability imperial College

« The evidence can be understood as a function of d to give the predictive probability
under the model M:

P(d|M) 4

Simpler model Mo

More complex model M

Obs‘erved value dobs a
ICIC




Simple example: nested models

 This happens often in practice:
we have a more complex Likelihood
model, M1 with prior P(6|M»),
which reduces to a simpler
model (Mo) for a certain value of
the parameter,

e.g. 6 = 0" = 0 (nested models)

- Is the extra complexity of M

warranted by the data?

O

0*=0



Simple example: nested models

. . L é_e*
Define: )\ = 50 Likelihood

For “informative” data;

- AO \?

S

mismatch of

wasted parameter

prediction with
observed data
(favours more 6* = O
complex model)

space
(favours simpler model)

O



The rough guide to model comparison pena College

ICI

wider prior (fixed data)
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Information criteria imperial College

- Several information criteria exist for approximate model comparison
kK = number of fitted parameters
N = number of data points,
-2 In(Lmax) = best-fit chi-squared

- Akaike Information Criterium (AIC): AIC = —2In L ax + 2k
+ Bayesian Information Criterium (BIC): BIC = —2In L, ,.x + kIn N
* Deviance Information Criterium (DIC): DIC = -2 [51<\L + 2C

ICIC!
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Notes on information criteria imperial College

* The best model is the one which minimizes the AIC/BIC/DIC

- Warning: AIC and BIC penalize models differently as a function of the number of
data points N.

For N>7 BIC has a more strong penalty for models with a larger number of free
parameters K.

- BIC is an approximation to the full Bayesian evidence with a default Gaussian prior
equivalent to 1/N-th of the data in the large N limit.

- DIC takes into account whether parameters are measured or not (via the Bayesian
complexity, see later).

« When possible, computation of the Bayesian evidence is preferable (with explicit
prior specification).

ICIC
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COmpUtlﬂg 'the e\/|dence Imperial College

evidence: P(d|M) = [, d9P(d|6, M)P(0|M)

_ P(d|My)
Bo1 = B

Bayes factor:

 Usually computational demanding: multi-dimensional integral!

« Several techniques available:
- Brute force: thermodynamic integration

- Laplace approximation: approximate the likelihood to second order around
maximum gives Gaussian integrals (for normal prior). Can be inaccurate.

- Savage-Dickey density ratio: good for nested models, gives the Bayes factor

- Nested sampling: clever & efficient, can be used generally

I C I C Roberto Trotta



The Savage-Dickey density ratio topdon o

« This methods works for nested models and gives the Bayes factor analytically.

- Assumptions: nested models (M1 with parameters 8,W reduces to Mo for e.g. W =0)
and separable priors (i.e. the prior P(8,W|M1) is uncorrelated with P(6|Mo))

* Result:

- Advantages: By, = P(v=0|d,M;)

. analytical P(U=0|M) Marginal posterior
under Mj

- often accurate
- clarifies the role of prior

 does not rely on Gaussianity

ICIC!
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“Prior-free” evidence bounds ohdon _ege

- What if we do not know how to set the prior? For nested models, we can still choose a
prior that will maximise the support for the more complex model:

wider prior (fixed data)

>
larger sample (fixed prior and significance)

I (bits) 2! 24 o8
2 - Model O favored I I; 7 E
cn° 0 . | -
= : Model 1 favored : .
_2 - e avo \ I E
I TN T T T N TN T U N NN T\ ¥ M LN N A g
-2 -1 0 1 2 3

Information gain N(base 10)

maximum evidence for Model

Roberto Trotta



Maximum evidence for a detection imperial College

« The absolute upper bound: put all prior mass for the alternative onto the observed
maximum likelihood value. Then

B < exp(—x?/2)

« More reasonable class of priors: symmetric and unimodal around W=0, then
(a = significance level)

—1
B < exp(l)aln o

If the upper bound is small, no other choice of prior
will make the extra parameter significant.

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Roberto Trotta



How to interpret the “number of sigma’s”

Imperial College

: Absolute bound flzerlzlols
a sigma bound on InB
on InB (B)
(B)
2.0 0.9
0.05 2 (7:1) (3:1)
weak undecided
4.5 3.0
0.003 3 (90:1) (21:1)
moderate moderate
6.48 5.0
0.0003 3.6 (650:1) (150:1)
strong strong

ICIC!
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How to assess p-values

Rule of thumb:

Imperial College

interpret a n-sigma result as a (n-1)-sigma result

1.0
r — — P=V\/glue
0-9* - —=— P-Value
\ of (t~1)
. \ ‘\ Bound on B
0.7 \ \ for GUS
0.6} \
0.5 |\
oal \
0.3 \
\
0.2 \
0.l =
| | |
00 l | - 2 = 3 4

Sellke, Bayarri & Berger, The American Statistician, 55, 1 (2001)

Figure 4. Comparison of B(x, Gys) and P Values.
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| Imperial Coll

Nested sampling mperial College
- Perhaps the method to compute the ;
evidence 2

- At the same time, it delivers samples s ‘
from the posterior: it is a highly efficient =
sampler! (much better than MCMC in Lot~ / |
tricky situations) / S

G \_| / )

* Invented by John Skilling in 2005: the &\L /
gist is to convert a n-dimensional -~ /
integral in a 1D integral that can be I
done easily. F

Liddle et al (2006)

ICIC!



Nested sampling imperial College

10¢ 0
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5 In(X)

(animation courtesy of David Parkinson)

An algorithm originally aimed primarily at the Bayesian evidence computation
(Skilling, 2006):
X(A) = [15)52 P(6)d0

P(d) = / dOL(0)P(0) = / 1 L(X)dX
ICIC! :




The MultiNest algorithm ey ollege

« Feroz & Hobson (2007)

Target Reconstructed

Ports
Peak 1
Poak 2

Ukalhcea

> 2EEEE

O Trotta

Courtesy Mike Hobson



The egg-box example Phioriia

London

- MultiNest reconstruction of the egg-box posterior:

250
200
150 +
100

Roberto Trotta



=llipsoidal decomposition mperial College

Unimodal distribution  Multimodal distribution

Courtesy Mike Hobson

Roberto Trotta



Multinest: Efficiency imperial College

(Gaussian mixture model:

Cluster 1
Cluster 2
Log-Likaihcod(1 ) Custer 4 True evidence: log(k) = -5.27

Cluster 5

0
-20
40
-60
-80
100

Multinest:

Reconstruction: log(E) = -5.33 + 0.11
Likelihood evaluations ~ 10%
Thermodynamic integration:
Reconstruction: log(k) = -5.24 + 0.12
Likelihood evaluations ~ 10°

Paak |
Peak 2

Likathood

S e likes per
g D N efflCleﬂCy dimenzion
o 2 7000 70% 83
= 5 18000 51% 7
& 10 53000 34%
é 20 255000 15% 1.8

30 753000 8% 1.6

Roberto Trotta



Application: the spatial curvature

* |s the Universe spatially flat?
(Vardanyan, Trotta and Silk, 2009)

* A three-way model comparison:

Qk=0vs Qk<Ovs Qx>0

(with either the Astronomer’s prior or

Curvature scale prior)

+ Result: odds range from moderate evidence
(InB = 4) for flatness to undecided (InB = 0.4)
depending on the choice of prior

 Probability(infinite Universe) = 98%

(Astronomer’s prior)

Probability(infinite Universe) = 45%

(Curvature scale prior)

- Upper bound: odds of 49:1 at best for n # 1

(Gordon and Trotta 2007)

Imperial College

2 o‘ -&
e& é\o " i@
MOdel 00 &0 4 &0
. confusion g9 6'*9‘ &
region &
Correct
model
selection
, A A
-4 3 -2 1 0
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Imperial College

A “simple” example: how many sources? [P

Feroz and Hobson

(2007) Signal + Noise

200

150

y (pixels)
>
o

50

0 50 100 150 200
X (pixels)

Roberto Trotta



A “simple” example: how many sources? TP College

Feroz and Hobson

(2007) Signal: 8 sources

200

150

y (pixels)
o
o

50

0 S0 100 150 200
x (pixels)

Roberto Trotta



A “simple” example: how many sources? TP College

Feroz and Hobson

(2007) Sayesian reconstruction

7 out of 8 objects correctly identified.

200 Mistake happens because 2 objects very close.
Common Points
Object 1
Object 2
Object 3
(:)t:'u:::,E f
150 Log-Likelihcod (L) L).L:é: :_:
Object 7
0 248
o)
X 100
2
>
50

0 o0 100 150 200
x (pixels)

Roberto Trotta



Cluster detection from Sunyaev-Zeldovich
effect iIn cosmic microwave background maps

Background Background
+ 3 point radio sources + 3 point radio sources
+ cluster CIU Ster

~ 2 deg

Feroz et al 2009



Background Background

+ 3 point radio sources + 3 point radio sources
+ cluster

- ¢ e X ‘ ‘
i NN

Al "632', = .Q} .

: '5.53’ g 5%

~0002  -0005  -0001  —0.0005 0 0.0005 0.001 0.0015

Bayesian model comparison:
R = P(cluster | data)/P(no cluster | data)

R=0.35+0.05 R~ 10

Cluster parameters also recovered (position, temperature, profile, etc)



The cosmological concordance model

Imperial College

London
Competing model AN Ref Data Outcome
Initial conditions
Isocurvature modes
CDM isocurvature +1 —-7.6 58] WMAP3+, LSS Strong evidence for adiabaticity
+ arbitrary correlations 4 ~1.0 46 WMAPI1+, LSS, SN Ia  Undecided
Neutrino entropy +1 [-2.5,-6.5)" 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations +4 -1. 46 WMAPI1+4, LSS, SN Ia  Undecided
Neutrino velocity +1 (2.5, 65" 60 WMAP3+, LSS Moderate to strong evidence for adiabaticity
+ arbitrary correlations 44 ~1.0 46 WMAPIL+4, LSS, SN [a  Undecided
Primordial power spectrum
No tilt (ns =1) -1 +0.4 47 WMAP1+4, LSS Undecided
[~1.1,-0.6)" 51 WMAP1+, LSS Undecided
—0.7 58 WMAP1+, LSS Undecided
—~0.9 T WMAP14 Undecided
[-0.7,—1.7]p4 186] WMAP3+ ny = 1 weakly disfavoured
-2, 185] WMAP3+4, LSS ns = 1 weakly disfavoured
—-2.6 70 WMAP3+ n, = 1 moderately disfavoured
-29 58 WMAP34, LSS n. = 1 moderately disfavoured
< —3.9¢ 65 WMAP3+, LSS Moderate evidence at best against n, = 1
Running +1 [~0.6, L0} 4 186] WMAP3+, LSS No evidence for running
< 0.2¢ 166] WMAP3+ LSS Running not required
Running of running +2 < 0.4° 166] WNMAP34, LSS Not required
Large scales cut—off +2 [1.3,2.2)p4 186] WMAP3+, LSS Weak support for a cut—off
Matter—energy content
Non-flat Universe +1 -38 70 WMAP34, HST Flat Universe moderately favoured
—-3.4 $8| WMAP3+, LSS, HST Flat Universe moderately favoured
Coupled neutrinos +1 —~0.7 193] WMAP3+, LSS No evidence for non-SM neutrincs
Dark energy sector
w(z) = wew = ~1 +1 [-1.3,-2.7)® 157] SN Ia Weak to moderate support for A
—-3.0 50 SN Ia Moderate support for A
~1.1 51 WMAPIL+4, LSS, SN [a  Weak support for A
(-0.2, -1} 188] SN la, BAO, WMAP3  Undecided
ls‘q SN Ia, CRB Weak support for A
w(z) = ug + wy = +2 187 SN Ia Weak to moderate support for A
50] SN Ia Strong support for A
188] SN Ia, BAO, WMAP3  Weak support for A
w(z) = wo + wa(l — a) +2 188] SN la, BAO, WMAP3  Weak support for A
189] SN la, GRB Weak to moderate support for A
Reionization history
No reionization (v = 0) -1 70 WMAP34, HST T = 0 moderately favoured
No reionization and no tilt -2 70 WMAP3+, HST Strongly disfavoured
from Trotta (2008)
I C I C InB < O: favours ACDM
| Roberto Trotta



Bayesian model comparison of 193 models n(&/ Eni
Higgs inflation as reference model
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Imperial College

Model complexity

« "Number of free parameters" is a relative concept. The relevant scale is set by the
prior range

- How many parameters can the data support, regardless of whether their detection is
significant?

- Bayesian complexity or effective number of parameters:

Cp = x2(0) — x(0)
1
- XZ: 1+ (0;/%;)?

Kunz, RT & Parkinson, astro-ph/0602378, Phys. Rev. D 74, 023503 (2006)
Following Spiegelhalter et al (2002)
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Imperial College

Lonaon

Polynomial fitting

- Data generated from a model with n = 6:

GOOD DATA
Max supported complexity ~ 9

INSUFFICIENT DATA
Max supported complexity ~ 4
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How many parameters does the CMB
need?

Imperial College

WMAP3+HST (WMAPS qualitatively the same)
Q0 * T - T T

mb,+n_+T i > b4+n5+1:
measured &
favoured
10 =
o - ;
= b,+T ‘}
S & b,+n,
b Q+7 ]
§ L JTN 0 +T QK
kT measured &
> unnecessary
0.1 & b,+Q +7
by, P e
¢ ¢, b,+n,+Q, 7/ params measured
001 rl 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 I 6
. S ; only

complexity

sufficient
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Liddle et al (2007)

Bayesian Model-averaging

Imperial College
London

P(6|d) = ); P(6|d,M)P(Mi|d)

An application to dark energy:

Model averaged inferences

Model II Model 111
N N N N N In‘
A [\ \ [ [\ i BMA: all 5 models
| | [\ [
/' "'- \ "’ I'c |" |.'| | l.
\ \ / [
\ J \
0202503 068 07 072 -f 05 02 03 068 07 072 -2 -1
Q h a Q. h w
Model IV Model V
0.2 0.3 0.68 0.7 0.72
h
0.2 0.3 068 0.7 0.72 0.2 0.3 068 07 072
Q h Q h
m m
-1.2 -1 -0.8 -1 0 1
Wa
-2 -1 -1 0 1 -0.9 -0.7 04 0 04 08
Yo Wa Yo Ya
| I C I C Roberto Trotta



Imperial College

Key points

- Bayesian model comparison extends parameter inference to the space of models

- The Bayesian evidence (model likelihood) represents the change in the degree of
belief in the model after we have seen the data

- Models are rewarded for their predictivity (automatic Occam’s razor)

* Prior specification is for model comparison a key ingredient of the model building
step. If the prior cannot be meaningfully set, then the physics in the model is
probably not good enough.

- Bayesian model complexity can help (together with the Bayesian evidence) in
assessing model performance.

I C I C Roberto Trotta



