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Bayesian methods on the rise
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Bayes Theorem

• Bayes' Theorem follows from the basic laws of probability: For two propositions A, B 
(not necessarily random variables!)

P(A|B) P(B) = P(A,B) = P(B|A)P(B)

P(A|B) = P(B|A)P(B) / P(A)

• Bayes' Theorem is simply a rule to invert the order of conditioning of 
propositions. This has PROFOUND consequences! 
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P (�|d, I) = P (d|�,I)P (�|I)
P (d|I)

For parameter inference it is sufficient to 
consider

P (�|d, I) � P (d|�, I)P (�|I)
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A → θ: parameters 
B → d: data 
I: any other external information, 
or the assumed model

Bayes’ theorem P(A|B) = P(B|A)P(A) / P(B)
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The matter with priors 

• In parameter inference, prior dependence will in principle vanish for strongly 
constraining data.  
A sensitivity analysis is mandatory for all Bayesian methods! 

Priors 

Likelihood (1 datum) 

Posterior after 1 datum Posterior after 100 data 
points 

Prior 

Likelihood 

Posterior 

Data 
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Inference in many dimensions

Marginal posterior:
P (�1|D) =

�
L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

Usually our parameter space is multi-dimensional: how 
should we report inferences for one parameter at the 
time?

FREQUENTISTBAYESIAN
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Confidence intervals: 
Frequentist approach
• Likelihood-based methods: determine the best fit parameters by finding the 

minimum of -2Log(Likelihood) = chi-squared 


• Analytical for Gaussian likelihoods 


• Generally numerical 


• Steepest descent, MCMC, ...  


!
• Determine approximate confidence intervals:  

Local Δ(chi-squared) method

θ

�2

��2 = 1

≈ 68% CL
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Credible regions: 
Bayesian approach
• Use the prior to define a metric on parameter space. 


• Bayesian methods: the best-fit has no special status. Focus on region of large 
posterior probability mass instead. 


• Markov Chain Monte Carlo (MCMC) 


• Nested sampling


• Hamiltonian MC 


• Determine posterior credible regions:  
e.g. symmetric interval around the  
mean containing 68% of samples 
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Marginalization vs Profiling
• Marginalisation of the posterior pdf (Bayesian) and profiling of the likelihood 

(frequentist) give exactly identical results for the linear Gaussian case. 

• But: THIS IS NOT GENERICALLY TRUE!

• Sometimes, it might be useful and informative to look at both.
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Marginalization vs profiling (maximising) 
Marginal posterior:

P (�1|D) =
�

L(�1, �2)p(�1, �2)d�2

Profile likelihood: 

L(�1) = max�2L(�1, �2)

θ2

θ1

Best-fit  
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile  
likelihood

Best-fit Posterior  
mean

Marginal posterior

} Volume effect
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Marginalization vs profiling (maximising) 

θ2

θ1

Best-fit  
(smallest chi-squared)

(2D plot depicts likelihood contours - prior assumed flat over wide range)

⊗Profile  
likelihood

Best-fit Posterior  
mean

Marginal posterior

} Volume effect

Physical analogy:  (thanks to Tom Loredo) 

P �
�

p(�)L(�)d�

Q =
�

cV (x)T (x)dVHeat: 

Posterior: Likelihood  = hottest hypothesis 
Posterior = hypothesis with most heat
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson):  
E.g., estimation of the mean μ of a Gaussian distribution from a list of observed 
samples x1, x2, x3... 
The sample mean is the Maximum Likelihood estimator for μ: 
 
μML = Xav = (x1 + x2  + x3 + ... xN)/N


• Key point: 
in P(Xav), Xav is a random variable, i.e. one that takes on different values across an 
ensemble of infinite (imaginary) identical experiments.  Xav is distributed according to 
Xav ~ N(μ, σ2/N) for a fixed true μ 
The distribution applies to imaginary replications of data.

P (x) = 1⇥
2⇥⇤

exp
�
� 1

2
(x�µ)2

⇤2

⇥

Notation : x � N(µ, ⇥2)
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What does x=1.00±0.01 mean?

• Frequentist statistics (Fisher, Neymann, Pearson):  
The final result for the confidence interval for the mean 
 
P(μML - σ/N1/2 < μ < μML + σ/N1/2) = 0.683


• This means:  
If we were to repeat this measurements many times, and obtain a 1-sigma distribution 
for the mean, the true value μ would lie inside the so-obtained intervals 68.3% of the 
time


• This is not the same as saying: “The probability of μ to lie within a given interval is 
68.3%”. This statement only follows from using Bayes theorem.
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What does x=1.00±0.01 mean?
• Bayesian statistics (Laplace, Gauss, Bayes, Bernouilli, Jaynes):  
 
After applying Bayes therorem P(μ |Xav) describes the distribution of our degree of 
belief about the value of μ given the information at hand, i.e. the observed data. 


• Inference is conditional only on the observed values of the data. 

• There is no concept of repetition of the experiment. 



Markov Chain Monte Carlo 
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Exploration with “random scans”

• Points accepted/rejected in a in/out 
fashion (e.g., 2-sigma cuts)


• No statistical measure attached to 
density of points: no probabilistic 
interpretation of results possible, 
although the temptation cannot be 
resisted...


• Inefficient in high dimensional 
parameters spaces (D>5) 


• HIDDEN PROBLEM: Random scan 
explore only a very limited portion of 
the parameter space! 

One recent example:  
Berger et al (0812.0980) 

pMSSM scans  
(20 dimensions)
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Random scans explore only a small fraction of the 
parameter space

• “Random scans” of a high-
dimensional parameter space only 
probe a very limited sub-volume: 
this is the concentration of 
measure phenomenon.


• Statistical fact: the norm of D 
draws from U[0,1] concentrates 
around (D/3)1/2 with constant 
variance 

1

1
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Geometry in high-D spaces

• Geometrical fact: in D dimensions, most of the volume is near the boundary. The 
volume inside the spherical core of D-dimensional cube is negligible. 

Volume of cube

Volume of sphere

Ratio Sphere/Cube

1

1

Together, these two facts mean that random scan only explore a very small 
fraction of the available parameter space in high-dimesional models.
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Key advantages of the Bayesian approach
• Efficiency: computational effort scales ~ N rather than kN as in grid-scanning 

methods. Orders of magnitude improvement over grid-scanning.

• Marginalisation: integration over hidden dimensions comes for free.  

• Inclusion of nuisance parameters: simply include them in the scan and 

marginalise over them.  
• Pdf’s for derived quantities: probabilities distributions can be derived for any 

function of the input variables
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The general solution

• Once the RHS is defined, how do we evaluate the LHS?

• Analytical solutions exist only for the simplest cases (e.g. Gaussian linear model)

• Cheap computing power means that numerical solutions are often just a few clicks 

away! 

• Workhorse of Bayesian inference: Markov Chain Monte Carlo (MCMC) methods. A 

procedure to generate a list of samples from the posterior. 

P (�|d, I) � P (d|�, I)P (�|I)
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MCMC estimation

• A Markov Chain is a list of samples θ1, θ2, θ3,... whose density reflects the 
(unnormalized) value of the posterior 


•  A MC is a sequence of random variables whose (n+1)-th elements only depends on 
the value of the n-th element 


• Crucial property: a Markov Chain converges to a stationary distribution, i.e. one that 
does not change with time. In our case, the posterior. 


• From the chain, expectation values wrt the posterior are obtained very simply: 

P (�|d, I) � P (d|�, I)P (�|I)

⇥�⇤ =
⇥

d�P (�|d)� � 1
N

�
i �i

⇥f(�)⇤ =
⇥

d�P (�|d)f(�) � 1
N

�
i f(�i)
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Reporting inferences

• Once P(θ|d, I) found, we can report inference by: 


• Summary statistics (best fit point, average, mode)


• Credible regions (e.g. shortest interval containing 68% of the posterior probability 
for θ). Warning: this has not the same meaning as a frequentist confidence interval! 
(Although the 2 might be formally identical)


• Plots of the marginalised distribution, integrating out nuisance parameters (i.e. 
parameters we are not interested in). This generalizes the propagation of errors: 

P (�|d, I) =
�

d⇥P (�, ⇥|d, I)
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Gaussian case



Roberto Trotta 

MCMC estimation

• Marginalisation becomes trivial: create bins along the dimension of interest and 
simply count samples falling within each bins ignoring all other coordinates 


• Examples (from superbayes.org) : 

2D distribution of samples  
from joint posterior
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Non-Gaussian example

Bayesian posterior 
(“flat priors”)

Bayesian posterior 
(“log priors”)

Profile likelihood

Constrained Minimal Supersymmetric Standard Model (4 parameters)  
Strege, RT et al (2013)
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Fancier stuff 

SuperBayeS
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The simplest MCMC algorithm

• Several (sophisticated) algorithms to build a MC are available: e.g. Metropolis-
Hastings, Hamiltonian sampling, Gibbs sampling, rejection sampling, mixture 
sampling, slice sampling and more... 


• Arguably the simplest algorithm is the Metropolis (1954) algorithm:  

• pick a starting location θ0 in parameter space, compute P0 = p(θ0|d)


• pick a candidate new location θc according to a proposal density q(θ0, θ1)


• evaluate Pc = p(θc|d) and accept θc with probability


• if the candidate is accepted, add it to the chain and move there; otherwise stay 
at θ0 and count this point once more.

� = min
�

Pc
P0

, 1
⇥
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Practicalities 
• Except for simple problems, achieving good MCMC convergence (i.e., sampling 

from the target) and mixing (i.e., all chains are seeing the whole of parameter space) 
can be tricky


• There are several diagnostics criteria around but none is fail-safe. Successful 
MCMC remains a bit of a black art! 


• Things to watch out for:


• Burn in time


• Mixing 


• Samples auto-correlation 
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MCMC diagnostics 

Burn in Mixing Power spectrum

10−3 10−2 10−1 100
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100

k
m1/2 (GeV)

P(
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(see astro-ph/0405462 for details)
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Bayesian hierarchical models

“True” values of 
observables

Population parameters 

Prior

Parameters of 
interest

Prior

INTRINSIC VARIABILITY

NOISE, SELECTION EFFECTS

Nuisance  
parameters

Latent variables

Data Observed values Calibration data
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At the heart of the method... 

• ... lies the fundamental problem of linear regression in the presence of 
measurement errors on both the dependent and independent variable and intrinsic 
scatter in the relationship (e.g., Gull 1989, Gelman et al 2004, Kelly 2007):  
 

yi = b+ axi

x

i

⇠ p(x| ) = N
xi(x?

, R

x

) POPULATION 
DISTRIBUTION

yi|xi ⇠ Nyi(b+ axi,�
2) INTRINSIC VARIABILITY

x̂

i

, ŷ

i

|x
i

, y

i

⇠ N
x̂i,ŷi([xi

, y

i

],⌃2) MEASUREMENT ERROR
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observed x

latent  
distrib’on

PD
F• Modeling the latent distribution of the 

independent variable accounts for “Malmquist 
bias”


• An observed x value far from the origin is more 
probable to arise from up-scattering (due to noise) 
of a lower latent x value than down-scattering of a 
higher (less probable) x value 



The key parameter is noise/population variance 
σxσy/Rx

σxσy/Rx small

Bayesian marginal posterior 
identical to profile likelihood

tru
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σxσy/Rx large

Bayesian marginal posterior 
broader but less biased than 

profile likelihood M
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Slope reconstruction
Rx = σx2/Var(x): ratio of the covariate measurement variance to observed variance  

Kelly, Astr. J., 665, 1489-1506 (2007)
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SNIa cosmology example

• Comparing Bayesian Hierarchical approach to usual Chi-Square

Size of errorbars Bias

March, RT et al, MNRAS 418(4),2308-2329 (2011)
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Supernovae Type Ia Cosmology example
• Coverage of Bayesian 1D marginal posterior CR and of 1D Chi2 profile likelihood CI 

computed from 100 realizations


• Bias and mean squared error (MSE) defined as 
 
   is the posterior mean (Bayesian) or the  
   maximum likelihood value (Chi2).
✓̂

Co
ve

ra
ge

Red: Chi2 Blue: Bayesian Results: 
!
Coverage: generally improved 
(but still some undercoverage 
observed)

!
Bias: reduced by a factor ~ 2-3 
for most parameters

!
MSE: reduced by a factor 1.5-3.0 
for all parameters
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Adding object-by-object classification
• “Events” come from two different populations (with different intrinsic scatter around 

the same linear model), but we ignore which is which: 

LATENT OBSERVED
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Reconstruction (N=400)
Parameters of interest

Classification of objects Population-level properties



Prediction and optimization



Roberto Trotta 

The Bayesian perspective
• In the Bayesian framework, we can use present-day knowledge to produce 

probabilistic forecasts for the outcome of a future measurement

• This is not limited to assuming a model/parameter value to be true and to determine 

future errors

• Many questions of interest today are of model comparison: e.g.


• is dark energy Lambda or modified gravity?


• is dark energy evolving with time? 


• Is the Universe flat or not? 


• Is the spectrum of perturbations scale invariant or not? 



Predictions for future observations

• Toy model: the linear Gaussian 
model (see Exercices 7-9) 
 
y = θ0 + xθ1 
y - Fx = ε


• Gaussian noise on ε


• True values: (θ0, θ1) = (0,1) 



The predictive distribution 

• Use present knowledge (and 
uncertainty!) to predict what a future 
measurement will find (with 
corresponding probability)


• True values: (θ0, θ1) = (0,1) 


• Present-day data: d 


• Future data: D 

Predictive probability = future likelihood weighted by 
present posterior 

P (D|d) =
�

d�P (D|�)P (�|d)



Predictive distribution

range of 
present-day 

data
Possible locations of 
future measurements
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Extending the power of forecasts
• Thanks to predictive probabilities we can increase the scope and power of 

forecasts: 

• Level 0: assume a model M and a fiducial value for the parameters, θ* 

produce a forecast for the errors that a future experiment will find if M and θ* are the 
correct choices 

• Level 1: average over current parameter uncertainty within M

• Level 2: average over current model uncertainty: replace M by M1, M2,...



Predictive posterior odds distribution

Model uncertainty 
P(ns=1|WMAP3+) = 0.05

!
ns=1 vs 0.8<ns<1.2

P(lnB < -5) = 0.93 
P(-5<lnB<0) = 0.01 

P(lnB > 0) = 0.06

Trotta (2008), Parkinson et al 
(2006), Pahud et al (2006)

Bayes factor forecast for Planck



Experiment design  
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Utility and optimization 

• The optimization problem is fully specified once we define a utility function U 
depending on the outcome e of a future observation (e.g., scientific return). We write 
for the utility U(e, o, θ), where o is the current experiment and θ are the true values of 
the parameters of interest


• We can then evaluate the expected utility:  

E [U |e, o] =
�

d�U(�, e, o)P (�|o)
Example: an astronomer measures y = θ x (with Gaussian noise) at a few 

points 0 < x < 1. She then has a choice between building 2 equally 
expensive instruments to perform a new measurement:  

1. Instrument (e) is as accurate as today’s experiments but extends to 
much larger values of x (to a maximum xmax) 

2. Instrument (a) is much more accurate but it is built in such a way as 
has to have a “sweet spot” at a certain value of y, call it y*, and much less 

accurate elsewhere   
Which instrument should she go for?  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Answer 
• The answer depends on how good her current knowledge is - i.e. is the current 

uncertainty on θ* small enough to allow her to target accurately enough x=x* so that 
she can get to the “sweet spot” y*= θ*x*?  
(try it out for yourself! Hint: use for the utility the inverse variance of the future posterior 
on  θ and assume for the noise levels of experiment (a) the toy model: 
 
 
where y* is the location of the sweet spot and Δ is the width of the sweet spot)

�2
a = �2

⇥ exp
�

(y�y�)2

2�2

⇥

Small uncertainty Large uncertainty
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Making predictions: Dark Energy

Fisher Matrix 
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Bayesian evidence

A model comparison question: is dark energy Lambda, i.e. (w0, wa) = (-1, 0)? 
How well will the future probe SNAP be able to answer this? 

Simulates from LCDM 
Assumes LCDM is true 

Ellipse not invariant when  
changing model assumptios

Simulate from all DE models 
Assess “model confusion” 

Allows to discriminate against LCDM
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Key points
• Predictive distributions incorporate present uncertainty in forecasts for the future 

scientific return of an experiment 

• Experiment optimization requires the specification of an utility function. The “best” 

experiment is the one that maximises the expected utility. 


