

Ir	Interpreting probabilities									
•	We have seen									
	probabilities assigned observed experimental outcomes (probability to observed 7 events under some hypothesis)									
	probabilities assigned to hypotheses (prior probability for hypothesis H _{sb} is 50%)									
	which are conceptually different.									
•	How to interpret probabilities – two schools									
	Bayesian probability = (subjective) degree of belief	P(theo data) P(data theo)								
	Frequentist probability = fraction of outcomes in future repeated identical ex	P(data theo) periments								
	"If you'd repeat this experiment identically many times, in a fraction P you will observe the same outcome"	Wouter Verkerke, NIKHEF								

Summary of the Classifiers and their Properties											
		Classifiers									
Criteria		Cuts	Likeli- hood	PDERS / k-NN	H-Matrix	Fisher	MLP	BDT	RuleFit	SVM	
Perfor- mance	no / linear correlations		\odot		æ	\odot	\odot	(C	0	
	nonlinear correlations	(8	\odot	8	8	\odot	\odot	÷	0	
Speed	Training	8	\odot	C	\odot	\odot	(8	æ	8	
	Response	C	\odot	8/9	\odot	\odot	0	(æ		
Robust -ness	Overtraining	C	æ	æ	\odot	()	8	8	e		
	Weak input variables	C	\odot	8	\odot	\odot	٢		e	(
Curse of dimensionality		8	\odot	8	٢	\odot		\odot	æ	(
Transparency		٢	٢		٢	٢	8	8	8	8	
The properties of the Function discriminant (FDA) depend on the chosen function											
A. Hoecker: Multivariate Analysis with TMVA											

- Main issue with event selection is usually, sensitivity of selection criteria to systematic uncertainties
- What you'd like to avoid is your BDT/NN that is trained to get a small statistical uncertainty has a large sensitivity to a systematic uncertainties
- No easy way to incorporate effect of systematic uncertainties in training process

 \rightarrow Can insert some knowledge of systematic uncertainties included in figure of merit when deciding where to cut in BDT/NN, but proper calculation usually requires much more information that signal and background event counts and is time consuming

• Use your physics intuition...

Wouter Verkerke, NIKHEF

