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‘Event selection’


Wouter Verkerke, NIKHEF
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Roadmap for this course


•  Start with basics, gradually build up to complexity of !



Statistical tests with simple hypotheses for counting data 


Statistical tests with simple hypotheses for distributions 


Hypothesis testing as basis for event selection


Composite hypotheses (with parameters) for distributions 


“What do we mean!
with probabilities”


“p-values”


“Optimal event selection & !
machine learning”


“Confidence intervals, !
Maximum Likelihood”


“Fitting the background”
Statistical inference with nuisance parameters


“Sideband fits and !
systematic uncertainties”
Response functions and subsidiary measurements
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Probabilities vs conditional probabilities


•  Note that probability models strictly give conditional probabilities!
(with the condition being that the underlying hypothesis is true)


!


•  Suppose we measure N=7 then can calculate!

!
              L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%


•  Data is more likely under sig+bkg hypothesis than bkg-only hypo

•  Is this what we want to know? Or do we want to know L(Hs+b|N=7)?


Wouter Verkerke, NIKHEF


P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: !
P(data|hypo) is called !

the likelihood 

Interpreting probabilities


•  We have seen !
!
probabilities assigned observed experimental outcomes!
(probability to observed 7 events under some hypothesis)!
!
probabilities assigned to hypotheses!
(prior probability for hypothesis Hsb is 50%)!
!
which are conceptually different.!



•  How to interpret probabilities – two schools!
!
Bayesian probability = (subjective) degree of belief !
!
Frequentist probability = fraction of outcomes in !
                                      future repeated identical experiments!
  


Wouter Verkerke, NIKHEF

“If you’d repeat this experiment identically many times, !
 in a fraction P you will observe the same outcome”


P(theo|data)

P(data|theo)


P(data|theo)
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How a theory becomes text-book physics


P(data|Hb)=10-7!
P(data|Hsb)=0.5
 P(data|Hb)=10-7


P(data|Hsb)=0.5


A: P(Hsb|data)=0.9999998

B: P(Hsb|data) = 83% 


Press release, accept as new 
‘text book physics’!

or!
Wait for more data


A: P(Hsb)=50%!
!

B: P(Hsb)=0.000001%


A: declare discovery at 3σ

B: declare discovery at 5σ


Information from experiment
 Information from experiment


Posterior from expt and prior!
following Bayesian paradigm


P-value threshold from “prior”!
(judgment call – no formal theory!)


Cost(FalseDiscovery)!
= EternalRidicule/Fired!



Cost(UnclaimedDiscovery)


= MissedNobelPrize


Press release, accept as new 
‘text book physics’!

OR

Wait for more data


Prior belief in theory!
(can be hard to quantify)


Cost of wrong decision!
(can be hard to quantify)


Recent judgements!
on of 5σ effects:

Higgs – text book

ν(β>1) – rejected


Frequentist! Bayesian!
Potentially fuzzy!

information


•  Now make a measurement N=Nobs (example Nobs=7)

•  Definition: p-value: !

probability to obtain the observed data, or more extreme!
in future repeated identical experiments!

–  Example: p-value for background-only hypothesis


 


P-values for counting experiments


)23.0()0;( =+= ∫
∞

obsN
b dNbNPoissonp

s=0 

s=5 
s=10 

s=15 
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Ordering distributions by ‘signal-likeness’ aka ‘extremity’


•  How to define ‘extremity’ if observed data is a distribution

Counting
 Histogram


Observation


Median expected!
by hypothesis


Predicted distribution!
of observables


Nobs=7


Nexp(s=0) = 5

Nexp(s=5) = 10


Which histogram is more ‘extreme’?!

Likelihoods for distributions - summary


•  Bayesian inference unchanged!
 !
à simply insert L of distribution to calculate P(H|data)




•  Frequentist inference procedure modified!

!
à Pure P(data|hypo) not useful for non-counting data!
à Order all possible data with a (LR) test statistic in ‘extremity’!
à Quote p(data|hypo) as ‘p-value’ for hypothesis!
    Probability to obtain observed data, or more extreme, is X%   
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P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

‘Probability to obtain 13 or more 4-lepton events!
under the no-Higgs hypothesis is 10-7’!


‘Probability to obtain 13 or more 4-lepton events!
under the SM Higgs hypothesis is 50%’
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HEP workflow versus statistical concepts


MC Simulated 
Events (sig,bkg)


All available !
“real data”


Event 
selection 
(cuts, NN, 

BDT)


Final Event 
Selection (data)


Final Event 
Selection (MC)


Helps!
to define!
selection


Statistical!
Inference


L(x |Hi ) xobs

λ(x) ≡ L(x |Hs+b )
L(x |Hb )

>α

p0 (x |Hi ) = f (λ |Hi )
λobs

∞

∫

P(Hs+b | x) =
L(x |Hs+b )P(Hs+b )

L(x |Hs+b )P(Hs+b )+ L(x |Hb )P(Hb )

“Likelihood”


“Likelihood Ratio”


“p-value from Likelihood Ratio test statistic”


“Bayesian posterior probability”


The Likelihood Ratio test statistic as tool for event selection


•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem


•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value!
tomorrow now explore properties ‘cut on λ’ as basis of (optimal) 
event selection! Wouter Verkerke, NIKHEF


λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )
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Event selection


•  The event selection problem:

–  Input: Two classes of events “signal” and “background”

–  Output: Two categories of events “selected” and “rejected”


•  Goal: select as many signal events as possible,!
         reject as many background events as possible!



•  Note that optimization goal as stated is ambiguous. 

–  But can choose a well-defined by optimization goal by e.g. fixing desired 

background acceptance rate, and then choose procedure that has highest 
signal acceptance.!



•  Relates to “classical hypothesis testing”

–  Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)

–  Here null = background, alternate = signal


Wouter Verkerke, NIKHEF


Terminology of classical hypothesis testing


•  Definition of terms

–  Rate of type-I error = α	


–  Rate of type-II error = β	


–  Power of test is 1-β 

 
	



	



•  Treat hypotheses !
asymmetrically 


–  Null hypo is usually special à Fix rate of type-I error

–  Criminal convictions: Fix rate of unjust convictions 

–  Higgs discovery: Fix rate of false discovery

–  Event selection: Fix rate of background that is accepted


•  Now can define a well stated goal for optimal testing

–  Maximize the power of test (minimized rate of type-II error) for given α	


–  Event selection: Maximize fraction of signal accepted


Wouter Verkerke, NIKHEF
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The Neyman-Pearson lemma


•  In 1932-1938 Neyman and Pearson developed a !
theory in which one must consider competing hypotheses


–  Null hypothesis (H0) = Background only

–  Alternate hypotheses (H1) = e.g. Signal + Background


    and proved that

•  The region W that minimizes the rate of the type-II error (not 

reporting true discovery) is a contour of the Likelihood Ratio


•  Any other region of the same size will have less power


Wouter Verkerke, NIKHEF


The Neyman-Pearson lemma


•  Example of application of NP-lemma with two observables!





•  Cut-off value c controls type-I error rate (‘size’ = bkg rate)!

Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff. 

•  So why don’t we always do this? (instead of training neural 

networks, boosted decision trees etc)


Wouter Verkerke, NIKHEF


x

y
 y


x


f(x,y|Hs)
 f(x,y|Hb)

f(x,y|Hs)!

f(x,y|Hs+b)!





>c
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Why Neyman-Pearson doesn’t always help


•  The problem is that we usually don’t have explicit formulae for the 
pdfs


•  Instead we may have Monte Carlo samples for signal and  
background processes


–  Difficult to reconstruct analytical distributions of pdfs from MC samples, 
especially if number of dimensions is large


•  If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,


–  But in such cases one can also forego event selection and go straight to 
hypothesis testing / paramater estimation with all events


Wouter Verkerke, NIKHEF


Approximation of true f(x|s)


Approximation of true f(x|b)


Hypothesis testing with a large number of observables


•  When number of observables is large follow different strategy

•  Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 

approximate decision boundary with an empirical parametric form 


Wouter Verkerke, NIKHEF


Aα (
!x) = f (!x | s)

f (!x | s+ b)
>α

!

"
#

$

%
& ⇒ Aα (

!x) = c(!x,
!
θ )

f(x,y|Hs)
 f(x,y|Hb)

f(x,y|Hs)!

f(x,y|Hs+b)!





>c


c(x,θ)
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Empirical parametric forms of decision boundaries


•  Can in principle choose any type of Ansatz parametric shape!
!
!
!
!
!
!
  
 
 
	



•  Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)


•  Choice of desired type-I error rate (selected background rate), can 
be set later by choosing appropriate cut on Ansatz test statistic.


accept 
H0 

H1 

accept 
H0 

H1 

accept 
H0 

H1 

Rectangular cut Linear cut Non-linear cut 

)()()( iijj cxcxxt −−= θθ iijj xaxaxt ⋅+⋅=)( ...)( ++⋅= xAxxaxt !!!!

Wouter Verkerke, UCSB


The simplest Ansatz – A linear disciminant


•  A linear discriminant constructs t(x) !
from a  linear combination of the variables xi


–  A cut on t(x) results in a linear decision plane in x-space!



•  What is optimal choice of direction vector a?

•  Solution provided by the Fisher – The Fisher discriminant


!



t(!x) = aixi
i=1

N

∑ =
!a ⋅ !x

R.A. Fisher 
Ann. Eugen. 7(1936) 179. ( ) xVxF T

BS
!!!! 1)( −−= µµ

Mean values in !
xi for sig,bkg


Inverse of variance matrix!
of signal/background!
(assumed to be the same)


a!

accept 
H0 

H1 
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The simplest Ansatz – A linear disciminant


•  Operation advantage of Fisher discrimant is that test statistic 
parameters can be calculated (no iterative estimation is required)!



•  Fisher discriminant is optimal test statistic (i.e. maps to Neyman 
Pearson Likelihood Ratio) for case where both hypotheses are 
multivariate Gaussian distributions with the same variance, but 
diffferent means


Wouter Verkerke, NIKHEF


Wouter Verkerke, UCSB


R.A. Fisher 
Ann. Eugen. 7(1936) 179. ( ) xVxF T

BS
!!!! 1)( −−= µµ

Mean values in !
xi for sig,bkg


Inverse of variance matrix!
of signal/background!
(assumed to be the same)


a!

f (x | s) =Gauss(!x − !µs,V )
f (x | b) =Gauss(!x − !µb,V )

Multivariate Gaussian distributions  
with different means but same width  
for signal and background 

The simplest Ansatz – A linear disciminant


•  How the Fisher discriminant follows from the LR test statistic




•  Generalization for multidimensional Gaussian distributions


•  Note that since we took -log of λ, F(x) is not signal probability,!
but we can trivially recover this


Wouter Verkerke, NIKHEF


− log f (x | s)
f (x | b)

"

#
$

%

&
'= 0.5

x −µs

σ 2

"

#
$

%

&
'
2

− 0.5 x −µb

σ 2

"

#
$

%

&
'
2

+C

= 0.5 x
2 − 2xµs +µs

2 − x2 + 2xµb −µb
2

σ 2 +C

=
x(µs −µb )

σ 2 +C '

logλ(x) = x(µs −µb )
σ 2 +C ' σ 2→V# →## λ(x) = !x( !µs −

!
µb )V

−1 +C '

Ps (F) =
1

1+ e−F
If λ=1, x is equally likely under s,b!
Then F = -log(λ)=0 à P = 50%


“Logistic sigmoid function”
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Example of Fisher discriminant use in HEP


•  The “CLEO” Fisher discriminant

–  Goal: distinguish between !

e+e- à Y4s à bb and uu,dd,ss,cc


–  Method: Measure energy flow!
in 9 concentric cones around !
direction of B candidate!
!



F(x)


Energy flow !
in bb


Energy flow !
in u,d,s,c


1

2

3


4

5


6
7
8
9


Cone!
Energy!
flows


1
 2
 3


4
 5
 6


7
 8
 9


Non-linear test statistics


•  In most real-life HEP applications signal and background are not 
multi-variate Gaussian distributions with different means


•  Will need more complex Ansatz shapes than Fisher discriminant

•  Loose ability analytically calculate !

parameters of Ansatz model from !
Likelihood Ratio test statistic !
(as was done for Fisher)


•  Choose an Ansatz shapes with !
tunable parameters


–  Artificial Neural Networks

–  Decision Trees

–  Support Vector Machines

–  Rule Ensembles


•  Need numeric procedure to estimate Ansatz parameters à 
Machine learning or Bayesian Learning


Wouter Verkerke, NIKHEF


accept 

H0 

H1 
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Machine Learning – General Principles


•  Given a Ansatz parametric test statistic T(x|θ), quantify ‘risk’ due 
‘loss of performance’ due to misclassifications by T as follows




•  Practical issue: since f(x|s,b) not analytically available, cannot 

evaluate risk function. Solution à Substitute risk with ‘empirical 
risk’ which substitutes integral with Monte Carlo approximation





R(θ ) = T (!x |θ )− 0( )2 f (
!x | b)d!x∫ + T (!x |θ )−1( )2 f (

!x | s)d!x∫
Target value of T for !
background classification


Target value  of T!
for signal classification


Loss function (~ log of Gaussian Likelihood) 


Risk function 


E(θ ) = 1
Nb

T (!xi |θ )− 0( )2
D(x|b)
∑ +

1
Ns

T (!xi |θ )−1( )2
D(x|s)
∑

xi is a set of points !
sampled from f(x|b)


xi is a set of points !
sampled from f(x|s)


Empirical Risk !
function 


Machine Learning – General Principles


•  Minimization of empirical risk E(θ) can be performed with 
numerical methods (many tools are available, e.g. TMVA)


•  But approximation of empirical risk w.r.t analytical risk!
introduces possibility for ‘overtraining’: !
!
If MC samples for signal and background are small, !
and number of parameters θ, one can always reduce empirical 
risk to zero (‘perfect selection’)!
!
(Conceptually similar to χ2 fit : if you fit a 10th order polynomial to 
10 points – you will always perfectly describe the data. You will 
however not perfectly describe an independent dataset sampled 
from the same parent distribution)


•  Even if empirical risk is not reduced to zero by training, it may still 
be smaller than true risk à Control effect by evaluating empirical 
risk also on independent validation sample during minimization.!
If ER on samples start to diverge, stop minimization


Wouter Verkerke, NIKHEF
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Bayesian Learning – General principles


•  Can also applied Bayesian methodology to learning process of 
decision boundaries


•  Given a dataset D(x,y) and a Ansatz model with parameters w,!
aim is to estimate parameters w


Wouter Verkerke, NIKHEF


P(w) = posterior density on parameters of discriminant


Training data!
x: inputs!
y: class label  !
(S/B) typically


P(w | !x, y) = L(
!x, y |w)P(w)
P(!x, y)

=
L(y |w, !x)L(x |w)P(w)

L(y |w, !x)dwL(!x)∫

=
L(y |w, !x)P(w)
L(y |w, !x)dwL(!x)∫

Likelihood of the data under hypothesis w


L(a,b)=L(a|b)L(b)


L(x|w)=1 since!
input observables!
independent of model


Bayesian Learning – General principles


•  Inserting a binomial likelihood !
function to model classification!
the classification problem


•  The parameters w are thus!
estimated  from the Bayesian !
posteriors densities


–  No iterative minimization, but Note that integrals over ‘w-space’ can usually 
only be performed numerically and if w contains many parameters, this is 
computationally challenging


•  If class of function T(x,w) is large enough it will contain a!
function T(x,w*) that represents the true minimum in E(w)


–  I.e. T(x,w*) is the Bayesian equivalent of of Frequentist TS that is NP L ratio

–  In that case the test statistic is


P(w | !x, y) = L(y |w, !x)P(w)
L(y |w, !x)dwL(!x)∫

L(y | x,w) = T (xi,w)
i
∏

y
1−T (xi,w)[ ]1−y

T (x,w*) = yL(y | x)dy∫

= L(y =1| x) = L(x | y =1)P(y =1)
L(x | y = 0)P(y = 0)+ L(x | y =1)P(y =1)

L(y | x,w) = T (xi,w)
i
∏

y
1−T (xi,w)[ ]1−y

With y=0,1 only
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Wouter Verkerke, UCSB


Machine/Bayesian learning – Non-linear Ansatz functions


•  Artificial Neural Network is one of the most popular non-linear 
ansatz forms. In it simplest incarnation the classifier function is




•  This formula corresponds to the ‘single layer perceptron’

–  Visualization of single layer network topology


⎟
⎠

⎞
⎜
⎝

⎛
+= ∑

i
ii xaasxN 0)( !

s(t) is the activation function,

usually a logistic sigmoid


te
ts −+
=
1
1)(

x1


xN


N(x)

Since the activation function s(t) is monotonic, !

a single layer N(x) is equivalent !
to the Fisher discriminant F(x)


Neural networks – general structure


•  The single layer model and easily be generalized !
to a multilayer perceptron!
!
!
!
!
!
!
!
!
!
!
!



–  Easy to generalize to arbitrary number of layers

–  Feed-forward net: values of a node depend only on earlier layers (usually only 

on preceding layer) ‘the network architecture’

–  More nodes bring N(x) allow it to be closer to optimal (Neyman Pearson / 

Bayesian posterior) but with much more parameters to be determined


x1


xN


N(x)


))(()(
,1

0 ∑
=

+=
m

i
ii xhaasxN !!

with
 ∑
=

+=
n

j
jijii xwwsxh

1
0 )()( !

with ai and wij weights !
(connection strengths)


hidden!
layer
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Neural networks – training example


N(x) 

Signal MC Output 

Background MC Output 

cosΘH
B cosΘ*B cosΘthr 

cosΘH
D Fisher Qhemi

Diff 

ln|DOCAK| QBΣQob
K m(Kl) 

Signal 

Signal 

Signal 

Background 

Background 

Background 

Input Variables (9) Output Variables (1) 

Practical aspects of machine learning


•  Choose input variables sensibly

–  Don’t include badly understood observables (such as #tracks/evt),!

variables that are not expected carry useful information

–  Generally: “Garbage in = Garbage out”


•  Traditional Machine learning provides no guidance of useful 
complexity of test statistic (e.g. NN topology, layers)


–  Usually better to start simple and gradually increase complexity and see how 
that pays off


•  Bayesian learning can (in principle) provide guidance on model 
complexity through Bayesian model selection


–  Bayes factors automatically includes a penalty for including too much model 
structure.


–  But availability of Bayesian model selection depends in practice on the 
software that you use.


Wouter Verkerke, NIKHEF


K =
P(D |H1)
P(D |H2 )

=
L(D |θ1,H1)P(θ2 |H1)dθ2∫
L(D |θ2,H2 )P(θ2 |H2 )dθ2∫



16 

Practical aspects of machine learning


•  Don’t make the learning problem !
unnecessarily difficult for the machine


•  E.g. remove strong correlation with !
explicit decorrelation before learning step


–  Can use Principle Component Analysis

–  Or Cholesky decomposition!

(rotate with square-root of covariance matrix) !



•  Also: remember that for 2-class problem (sig/bkg) that each have!
multivariate Gaussian distributions with different means,!
the optimal discriminant is known analytically


–  Fisher discriminant is analytical solution. NN solution reduces to single-layer 
perceptron


•  Thus, you can help your machine by transforming your inputs in a 
form as close as possible to the Gaussian form by transforming 
your input observables


Wouter Verkerke, NIKHEF


u1 

u2 

Gaussianization of input observables


•  You can transform any distribution in a Gaussian distribution in 
two steps


•  1 – Probability integral transform!
!
!
!
!
      turns any distribution f(x) into a flat distribution in y(x)


•  2 – Inverse error function!
!
!
!
!
      turns flat distribution into a Gaussian distribution


•  Note that you can make either signal or background Gaussian,!
but usually not both


Wouter Verkerke, NIKHEF


y(x) = f (x ' |H )
−∞

x

∫ dx '

“…seems likely to be one of the most 
fruitful conceptions introduced into 
statistical theory in the last few years” 
−Egon Pearson (1938)  

erf x( ) = 2
π

e−t
2

dt
0

x

∫xGauss  = 2 ⋅erf−1 2x flat −1( )  
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A very different type of Ansatz - Decision Trees


•  A Decision Tree encodes sequential rectangular cuts

–  But with a lot of underlying theory on training and optimization

–  Machine-learning technique, widely used in social sciences

–  L. Breiman et al., “Classification and Regression Trees” (1984)!

!
!
!
!



•  Basic principle

–  Extend cut-based selection

–  Try not to rule out events failing!

a particular criterion

–  Keep events rejected by one criterion !

and see whether other criteria could !
help classify them properly!



Wouter Verkerke, NIKHEF


Building a tree – splitting the data


•  Essential operation : !
splitting the data in 2 groups using a single cut, e.g. HT<242!
!
!
!
!
!
!
!
!



•  Goal: find ‘best cut’ as quantified through best separation of 
signal and background (requires some metric to quantify this)


•  Procedure: !
1) Find cut value with best separation for each observable!
2) Apply only cut on observable that results in best separation
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Building a tree – recursive splitting


•  Repeat splitting procedure on sub-samples of previous split!
!
!
!
!



•  Output of decision tree: 

–  ‘signal’ or ‘background’ (0/1) or 

–  probability based on expected purity of leaf  (s/s+b)


Parameters in the construction of a decision tree


•  Normalization of signal and background before training

–  Usually same total weight for signal and background events!




•  In the selection of splits

–  list of questions (vari < cuti) to consider

–  Separation metric (quantifies how good the split is)!




•  Decision to stop splitting (declare a node terminal)

–  Minimum leaf size (e.g. 100 events)

–  Insufficient improvement from splitting

–  Perfect classification (all events in leaf belong to same class)!




•  Assignment of terminal node to a class

–  Usually: purity>0.5 = signal, purity<0.5 = background


Wouter Verkerke, NIKHEF
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Machine learning with Decision Trees 


•  Instead of ‘(Empirical) Risk’ minimize ‘Impurity Function’ of leaves 

–  Impurity function i(t) quantifies (im)purity of a sample, but is not uniquely defined

–  Simplest option: i(t) = misclassification rate!







•  For a proposed split s on a node t, decrease of impurity is!



•  Take split that results in largest Δi 


Signal purity


Im
pu

rit
y 

fu
nc

tio
n


Impurity!
of sample!

before split


Impurity!
of ‘left’!
sample


Impurity!
of ‘right’!
sample


Machine learning with Decision Trees 


•  Stop splitting when

–  not enough improvement (introduce a cutoff Δi)

–  not enough statistics in sample, or node is pure (signal or background)


•  Example decision tree from learning process


Wouter Verkerke, NIKHEF
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Machine learning with Decision Trees 


•  Given that analytical pdfs f(x|s) and f(x|b) are usually not available,!
splitting decisions are based on ‘empirical impurity’ rather than!
true ‘impurity’ à risk of overtraining exists!





•  Can mitigate effects of overtraining by ‘pruning’ tree a posteriori


–  Expected error pruning (prune weak splits that are consistent with original leaf 
within statistical error of training sample)


–  Cost/Complexity pruning (generally strategy to trade tree complexity against 
performance)


Wouter Verkerke, NIKHEF


Pruning


Concrete example of a trained Decision Tree


Wouter Verkerke, NIKHEF


Signal 

Background 

1 

2 

3 

1 

2 

1 3 2 

1 
2 
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Boosted Decision trees


•  Decision trees largely used with ‘boosting strategy’

•  Boosting = strategy to combine multiple weaker classifiers into a 

single strong classifier!



•  First provable boosting algorithm by Shapire (1990)

–  Train classifier T1 on N events

–  Train T2 on new N-sample, !

half of which misclassified by T1

–  Build T3 on events where T1 and T2 disagree

–  Boosted classifier: MajorityVote(T1,T2,T3)!




•  Most used: AdaBoost = Adaptive Boosting (Freund & Shapire ‘96)

–  Learning procedure adjusts to training data to classify it better

–  Many variations on the same theme for actual implementation!




Wouter Verkerke, NIKHEF


AdaBoost


•  Schematic view of iterative algorithm

–  Train Decision Tree on (weighted) signal and background training samples

–  Calculate misclassification rate for Tree K (initial tree has k=1)!

!
 !
!
!



–  Calculate weight of tree K in ‘forest decision’

–  Increase weight of misclassified events in Sample(k) to create Sample(k+1)!

!
!



•  Boosted classifier is result is performance-weighted ‘forest’


Wouter Verkerke, NIKHEF


“Weighted average!
of isMisclassified over !

all training events”


“Weighted average!
of Trees by their performance”
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AdaBoost by example


•  So-so classifier (Error rate  = 40%)!



–  Misclassified events get their weight multiplied by exp(0.4)=1.5 

–  Next tree will have to work a bit harder on these events!




•  Good classifier (Error rate  = 5%)!



–  Misclassified events get their weight multiplied by exp(2.9)=19 (!!) 

–  Being failed by a good classifier means a big penalty: must be a difficult case

–  Next tree will have to pay much more attention to this event and try to get it 

right!
!



•  Note that boosting usually results in (strong) overtraining

–  Since with misclassification rate will ultimately go to zero


Wouter Verkerke, NIKHEF


Example of Boosting 


Wouter Verkerke, NIKHEF
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Support Vector Machines


•  Find hyperplane that best separates !
signal from background 


–  Best separation: !
maximum distance (margin) between !
closest events (support) to hyperplane


–  Linear decision boundary is defined!
by solution of a Langrangian


–  Solution of Lagrangian only !
depends on  inner product of !
support vectors!



•  For non-separable data add!
misclassification cost


–  add misclassification cost parameter !
C·Σiξi to minimization function


Wouter Verkerke, NIKHEF
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Support Vector Machines


•  Non-linear cases

–  Transform variables into higher !

dimensional feature space !
!
(x,y) à (x,y,z=φ(x,y))!
!
where again a linear boundary !
(hyperplane)  can separate the data


–  Explicit basis functions not required: !
use Kernel Functions to approximate !
scalar products between transformed !
vectors in the higher dimensional !
feature space


–  Choose Kernel and use the hyperplane !
using the linear techniques developed !
above


Wouter Verkerke, NIKHEF
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Characterizing and comparing performance


•  Performance of a test statistic characterized !
by ε(sig) vs ε(bkg) curve


–  Curve for theoretical maximum performance can be added if true S(x) and B(x) 
are known


–  Position on curve determines tradeoff !
between type-I and type-II errors


Good Performance 

Bad Performance 

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


What is TMVA 

"   ROOT: is the analysis framework used by most (HEP)-physicists 

"   Idea: rather than just implementing new MVA techniques and 
making them available in ROOT (i.e., like TMultiLayerPercetron 
does): 
"   Have one common platform / interface for all MVA classifiers 

"   Have common data pre-processing capabilities 

"   Train and test all classifiers on same data sample and evaluate consistently  

"   Provide common analysis (ROOT scripts) and application framework 

"   Provide access with and without ROOT, through macros, C++ executables 
or python  
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


Limitations of TMVA 

"   Development started beginning of 2006 – a mature but not a 
final package 

"   Known limitations / missing features 
"   Performs classification only, and only in binary mode: signal versus background 

"   Supervised learning only (no unsupervised “bump hunting”) 

"   Relatively stiff design – not easy to mix methods, not easy to setup categories 

"   Cross-validation not yet generalised for use by all classifiers  

" Optimisation of classifier architectures still requires tuning “by hand” 

"   Work ongoing in most of these areas à see later in this talk 

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


T M V A   C o n t e n t  
"    Currently implemented classifiers  
 

"     Rectangular cut optimisation 
"     Projective and multidimensional likelihood estimator 
"     k-Nearest Neighbor algorithm 
"     Fisher and H-Matrix discriminants 
"     Function discriminant 
"     Artificial neural networks (3 multilayer perceptron impls)                
"     Boosted/bagged decision trees 
"     RuleFit 
"     Support Vector Machine 

"    Currently implemented data preprocessing stages: 
 

"     Decorrelation 
"     Principal Value Decomposition 
"     Transformation to uniform and Gaussian distributions 
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


U s i n g   T M V A 
A typical TMVA analysis consists of two main steps: 

1.  Training phase: training, testing and evaluation of classifiers using data 
samples with known signal and background composition  

2.  Application phase: using selected trained classifiers to classify unknown data 
samples 

"   Illustration of these steps with toy data samples 

à T MVA tutorial 

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


A Toy Example (idealized) 

"   Use data set with 4 linearly correlated Gaussian distributed 
variables: 

----------------------------------------  
Rank : Variable   : Separation  
----------------------------------------  
          1 : var4          : 0.606            2 : var1+var2 : 0.182           3 : var3          : 0.173             4 : var1-var2  : 0.014 
  

---------------------------------------- 
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


Preprocessing the Input Variables 

"   Decorrelation of variables before training is useful for this 
example 

"   Note that in cases with non-Gaussian distributions and/or nonlinear 
correlations decorrelation may do more harm than any good 

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


             Evaluating the Classifier Training (II)        

"   Check for overtraining: classifier output for test and training 
samples … 
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


             Evaluating the Classifier Training (V)        

"   Optimal cut for each classifiers … 
Determine the optimal cut (working 
point) on a classifier output  

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


Receiver Operating Characteristics (ROC) Curve 

"   Smooth background rejection versus signal 
efficiency curve: (from cut on classifier output) 
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


Example: Circular Correlation 

•  Illustrate the behavior of linear and nonlinear classifiers  

Circular correlations 
(same for signal and background) 

Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


The “Schachbrett” Toy 

•  Performance achieved without parameter tuning: 
PDERS and BDT best “out of the box” classifiers 

•  After specific tuning, also SVM und MLP perform 
well 

Theoretical maximum 
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Top Workshop, LPSC, Oct 18–20, 2007 

A. Hoecker: Multivariate Analysis with TMVA 


Summary of the Classifiers and their Properties 

Criteria  

Classifiers 

Cuts Likeli-
hood 

PDERS
/ k-NN H-Matrix Fisher MLP BDT RuleFit SVM 

Perfor-
mance 

no / linear 
correlations K J J K J J K J J 
nonlinear 

correlations K L J L L J J K J 

Speed 
Training L J J J J K L K L 

Response J J L/K J J J K K K 
Robust
-ness 

Overtraining  J K K J J L L K K 
Weak input 
variables J J L J J K K K K 

Curse of 
dimensionality L J L J J K J K K 
Transparency J J K J J L L L L 

The properties of the Function discriminant (FDA) depend on the chosen function  

HEP workflow versus statistical concepts


MC Simulated 
Events (sig,bkg)


All available !
“real data”


Event 
selection 
(cuts, NN, 

BDT)


Final Event 
Selection (data)


Final Event 
Selection (MC)


Helps!
to define!
selection


Statistical!
Inference


L(x |Hi ) xobs

λ(x) ≡ L(x |Hs+b )
L(x |Hb )

>α

“Likelihood”


“Likelihood Ratio”


Or approximation of optimal!
test statistic with a parametric!
form from machine learning!

Remaining question:!
What value of α represents!

‘optimal cut’? !
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Choosing the optimal cut on the test statistic


MC Simulated 
Events (sig,bkg)


All available !
“real data”


Event 
selection 
(cuts, NN, 

BDT)


Final Event 
Selection (data)


Final Event 
Selection (MC)


Helps!
to define!
selection


Statistical!
Inference


L(x |Hi ) xobs

λ(x) ≡ L(x |Hs+b )
L(x |Hb )

>α

p0 (x |Hi ) = f (λ |Hi )
λobs

∞

∫

“Likelihood”


“Likelihood Ratio”


“p-value from Likelihood Ratio test statistic”


Note that in the limit of an optimal !
test statistic, and when subsequent 
using LR hypothesis test, !
the cut on α has no influence on the 
statistical inference!



à Purely operational decision !
   (ntuple-sizes etc…)   !
!



Choosing the optimal cut on the test statistic


•  But reality is usually more complex: 

–  Test statistics are usually not optimal, 

–  Ingredients to test statistics, i.e. the event selection, !

are usually not perfectly known (systematic uncertainties)


•  In the subsequent statistical test phase we can account for 
(systematic) uncertainties in signal and background models in a 
detailed way. In the event selection phase we cannot


–  Pragmatically considerations in design of event selection criteria:!
Ability to estimate level of background from the selected data & !
Small sensitivity of signal acceptance to selection criteria used


•  Result is that Likelihood Ratio used for event selection !
and final hypothesis test are different (λselection ≠ λhypotest) !
è Cut on λselection will influence statistical test with λhypotest


•  To be able decide on optimal cut on λselection you need a figure 
merit that approximates behavior of statistical test using λhypotest 


Wouter Verkerke, NIKHEF
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Traditional approximate Figures of Merit


•  Traditional choices for Figure of Merit!
!
!
!



–  Choice of FOM for cut optimization requires assumption on subsequent 
statistical analysis strategy. These traditional FOMs quantify signal significance 
for a counting experiment with an known level of expected background, and 
not e.g. ‘strongest upper limit’, no accounting for systematic uncertainties !
!
!
!



)()(
)()(
αα

α
α

BS
SF
+

=
)(
)()(
α
α

α
B
SF =

‘measurement’
‘discovery’


Note that position of !
optimum depends on 

a priori knowledge of !
signal cross section


Make !
cut |x|<C


C


C
X


X


Large Bkg Scenario


Small Bkg Scenario

Make !

cut |x|<C


S/
sq

rt(
S+

B)



S/
sq

rt(
S+

B)



Strongly!
peaked optimum


Shallow!
optimum


Validity of approximations in Figures of Merit


•  Note that approximations made in ‘traditional’ figure of merit are not 
always good (even for a counting experiment!)


•  E.g. for ‘discovery FOM’ s/√b !
illustration of approximation for s=2,5,10 and b in range [0.01-100]!
shows significant deviations of s/√b from actual significance at low b !
!



Wouter Verkerke, NIKHEF


Improved discovery F.O.M !
(“Asimov Z”) suggested for!
situations where s<<b is not true!
!
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Final comments on event selection


•  Main issue with event selection is usually, sensitivity of selection 
criteria to systematic uncertainties


•  What you’d like to avoid is your BDT/NN that is trained to get a 
small statistical uncertainty has a large sensitivity to a systematic 
uncertainties


•  No easy way to incorporate effect of systematic uncertainties in 
training process!
!
à Can insert some knowledge of systematic uncertainties 
included in figure of merit when deciding where to cut in BDT/NN, 
but proper calculation usually requires much more information that 
signal and background event counts and is time consuming


•  Use your physics intuition…


Wouter Verkerke, NIKHEF


Alternatives to Machine Learning, back to NP optimal discrimant…


•  Machine learning or Bayesian learning approach doesn’t use 
detailed physics knowledge of signal and background processes 
that is available inside simulation to achieve separation


–  Only through final distribution S(x) and B(x) that is implicitly provided through 
MC simulation samples


•  Another approach is to exploit full information of physics 
simulation process better to construct S(x) and B(x) and construct 
(optimal) NP discriminant from these à Matrix Element Methods!

•  Idea is to inject knowledge of the hard physics processes as 
encoded in physics simulation directly into discriminant and 
approximate effects of detector reconstruction through so-called 
‘transfer functions’


–  At level of hard physics simulation, calculation of probability model for truth-
level quantities still tractable (although still relatively expensive)


–  Add effects of parton showers and detector resolution a posteriori with 
transfer functions


Wouter Verkerke, NIKHEF
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The Matrix Element Method


Wouter Verkerke, NIKHEF


The Matrix Element Method


Wouter Verkerke, NIKHEF
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The Matrix Element Method


Wouter Verkerke, NIKHEF


The Matrix Element Method


Wouter Verkerke, NIKHEF
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The Matrix Element Method


Wouter Verkerke, NIKHEF


P(x,α) = L(x|Hα) !
       α=S,B !

Y = parton-level final state

X = reconstruction-level final state


= S(y) or B(y) from theory 
   (=calculable!) 
 

λMEM=P(x,S)/p(x,B) 

The Matrix Element Method


Wouter Verkerke, NIKHEF


‘y’! ‘x’!
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The Matrix Element Method


Wouter Verkerke, NIKHEF


W(x|y) = p.d.f for observable quantities x, !
given parton-level theory observables y!

An overview of HEP data analysis procedures


Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector


Reconstruction !
of ATLAS detector


LHC data


An
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nt
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prob(data|SM)


P(m4l|SM[mH])


Observed m4l

‘Matrix Element’


‘Transfer function’
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The Matrix Element Method


Wouter Verkerke, NIKHEF


The Matrix Element Method


Wouter Verkerke, NIKHEF
Likelihood-Ratio based on Matrix Elements!

‘background’
 ‘signal’
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An overview of HEP data analysis procedures


Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector


Reconstruction !
of ATLAS detector


LHC data
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prob(data|SM)


P(m4l|SM[mH])


Observed m4l

‘Matrix Element’


‘Transfer function’


An overview of HEP data analysis procedures


Simulation of high-energy!
physics process


Simulation of ‘soft physics’!
physics process


Simulation of ATLAS!
detector
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‘Matrix Element 
+Parton Shower’


‘Transfer function’
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The Matrix Element Method


Wouter Verkerke, NIKHEF


The Matrix Element Method


Wouter Verkerke, NIKHEF
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The Matrix Element Method


Wouter Verkerke, NIKHEF


Likelihood-Ratio based on !
Matrix Elements with Parton !

Shower deconstruction!

Ex 1 - Demonstration of Central Limit Theorem


←  5000 numbers taken at random from a uniform 
distribution between [0,1].


–  Mean = 1/2, Variance = 1/12!



←  5000 numbers, each the sum of 2 random 
numbers, i.e. X = x1+x2.


–  Triangular shape




←  Same for 3 numbers, !
X = x1 + x2 + x3!
!
!
!



←  Same for 12 numbers, overlaid curve is exact 
Gaussian distribution


N=1!

N=2!

N=3!

Important: tails of distribution converge very slowly CLT 
often not applicable for ‘5 sigma’ discoveries!N=12!
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Ex 1 - Implications of non-Gaussian tails in distributions


•  If (tails of) distributions are not Gaussian, familiar mapping between 
‘standard deviations’ and probabilities does not apply


–  If you have done your exercise correctly you’ll see the following results for the 
Nsum=20 run with Nexp=10.000.000 for 1,2,3,4,5 sigma

n = 3198780 frac = 0.319879  +/- 0.00017 Gauss = 0.317311 

n = 450384  frac = 0.0450384 +/- 6.7e-05 Gauss = 0.0455003 

n = 22954   frac = 0.0022954 +/- 1.5e-05 Gauss = 0.0026998 

n = 329     frac = 3.29e-05 +/- 1.8e-06  Gauss = 6.33425e-05


•  Non-Gaussian tails can lead to significant deviations in probabilistic 
interpretation when Gaussian distribution is erroneously assumed


–  Probability ‘4 Gaussian sigma’ fluctuation = 6.3 10-5


–  Probability ‘4 standard deviation’ fluctuation = 3.3 10-5 (=3.8 Gaussian sigma)


•  For large significances, explicit calculation using actual distribution is 
need (more on this in the afternoon)


Wouter Verkerke, NIKHEF


Exercises


•  If you have not finished the exercises of yesterday (Ex1, Ex2), 
please leave them for now [ solutions are now also provided for 
your convenience ex1sol.C ex2sol.C at www.nikhef.nl ]


•  Now: Practice machine-learned test statistics with TMVA (Ex 4)


•  Easy-to-use setup (to generate toy samples for S, B, and to run 
TMVA training provided


•  Note: Last-minute bug discovered in ROOT 5.34.21 for MacOS!

–  If your TMVA session on Mac crashes, please apply provided fix (see exercises 

for details). Recompilation time less than 30 seconds…
 Wouter Verkerke, NIKHEF



