'Event selection'

Roadmap for this course

- Start with basics, gradually build up to complexity of

Probabilities vs conditional probabilities

- Note that probability models strictly give conditional probabilities (with the condition being that the underlying hypothesis is true)

- Suppose we measure $\mathrm{N}=7$ then can calculate

$$
L\left(N=7 \mid \mathrm{H}_{\text {bkg }}\right)=2.2 \% \quad \mathrm{~L}\left(\mathrm{~N}=7 \mid \mathrm{H}_{\text {sig }+ \text { bkg }}\right)=14.9 \%
$$

- Data is more likely under sig+bkg hypothesis than bkg-only hypo
- Is this what we want to know? Or do we want to know $L\left(H_{s+b} \mid N=7\right)$?

Interpreting probabilities

- We have seen
probabilities assigned observed experimental outcomes
(probability to observed 7 events under some hypothesis)
probabilities assigned to hypotheses
(prior probability for hypothesis H_{sb} is 50%)
which are conceptually different.
- How to interpret probabilities - two schools

Bayesian probability = (subjective) degree of belief
P(theo|data)
P(data|theo)
P(data|theo)
future repeated identical experiments
"If you'd repeat this experiment identically many times,
in a fraction P you will observe the same outcome"
Wouter Verkerke, NIK-EE

How a theory becomes text-book physics

P-values for counting experiments

- Now make a measurement $N=N_{\text {obs }}$ (example $\left.N_{\text {obs }}=7\right)$
- Definition: p-value:
probability to obtain the observed data, or more extreme in future repeated identical experiments
- Example: p-value for background-only hypothesis

Ordering distributions by ‘signal-likeness’ aka 'extremity’

- How to define 'extremity' if observed data is a distribution

Which histogram is more 'extreme'?

Likelihoods for distributions - summary

- Bayesian inference unchanged
\rightarrow simply insert L of distribution to calculate $\mathrm{P}(\mathrm{H} \mid$ data)

$$
P\left(H_{s+b} \mid \vec{N}\right)=\frac{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)}{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)+L\left(\vec{N} \mid H_{b}\right) P\left(H_{b}\right)}
$$

- Frequentist inference procedure modified
\rightarrow Pure P (data|hypo) not useful for non-counting data
\rightarrow Order all possible data with a (LR) test statistic in 'extremity'
\rightarrow Quote p(data|hypo) as 'p-value' for hypothesis
Probability to obtain observed data, or more extreme, is X\%
'Probability to obtain 13 or more 4-lepton events under the no-Higgs hypothesis is 10^{-7},
'Probability to obtain 13 or more 4-lepton events under the SM Higgs hypothesis is 50\%'

The Likelihood Ratio test statistic as tool for event selection

- Note that hypothesis testing with two simple hypotheses for observable distributions, exactly describes 'event selection' problem
- In fact we have already 'solved' the optimal event selection problem! Given two hypothesis $\mathrm{H}_{\mathrm{s}+\mathrm{b}}$ and H_{b} that predict an complex multivariate distribution of observables, you can always classify all events in terms of 'signal-likeness' (a.k.a 'extremity') with a likelihood ratio

$$
\lambda(\vec{x}, \vec{y}, \vec{z}, \ldots)=\frac{L\left(\vec{x}, \vec{y}, \vec{z}, \ldots \mid H_{s+b}\right)}{L\left(\vec{x}, \vec{y}, \vec{z}, \ldots \mid H_{b}\right)}
$$

- So far we have exploited λ to calculate a frequentist p-value tomorrow now explore properties 'cut on λ ' as basis of (optimal) event selection

Event selection

- The event selection problem:
- Input: Two classes of events "signal" and "background"
- Output: Two categories of events "selected" and "rejected"
- Goal: select as many signal events as possible,
reject as many background events as possible
- Note that optimization goal as stated is ambiguous.
- But can choose a well-defined by optimization goal by e.g. fixing desired background acceptance rate, and then choose procedure that has highest signal acceptance.
- Relates to "classical hypothesis testing"
- Two competing hypothesis (traditionally named 'null' and 'alternate')
- Here null $=$ background, alternate $=$ signal

Terminology of classical hypothesis testing

- Definition of terms
- Rate of type-I error $=\alpha$
- Rate of type-II error $=\beta$
- Power of test is $1-\beta$
- Treat hypotheses
 asymmetrically
- Null hypo is usually special \rightarrow Fix rate of type-l error
- Criminal convictions: Fix rate of unjust convictions
- Higgs discovery: Fix rate of false discovery
- Event selection: Fix rate of background that is accepted
- Now can define a well stated goal for optimal testing
- Maximize the power of test (minimized rate of type-II error) for given α
- Event selection: Maximize fraction of signal accepted

The Neyman-Pearson lemma

- In 1932-1938 Neyman and Pearson developed a theory in which one must consider competing hypotheses
- Null hypothesis $\left(\mathrm{H}_{0}\right)=$ Background only
- Alternate hypotheses $\left(H_{1}\right)=$ e.g. Signal + Background
and proved that
- The region W that minimizes the rate of the type-II error (not reporting true discovery) is a contour of the Likelihood Ratio

$$
\frac{P\left(x \mid H_{1}\right)}{P\left(x \mid H_{0}\right)}>k_{\alpha}
$$

- Any other region of the same size will have less power

The Neyman-Pearson lemma

- Example of application of NP-lemma with two observables

- Cut-off value c controls type-I error rate ('size’ = bkg rate) Neyman-Pearson: LR cut gives best possible 'power' = signal eff.
- So why don't we always do this? (instead of training neural networks, boosted decision trees etc)

Why Neyman-Pearson doesn't always help

- The problem is that we usually don't have explicit formulae for the pdfs $f(\vec{x} \mid \mathrm{s}), f(\vec{x} \mid \mathrm{b})$.
- Instead we may have Monte Carlo samples for signal and background processes
- Difficult to reconstruct analytical distributions of pdfs from MC samples, especially if number of dimensions is large
- If physics problem has only few observables can still estimate estimate pdfs with histograms or kernel estimation,
- But in such cases one can also forego event selection and go straight to hypothesis testing / paramater estimation with all events

Hypothesis testing with a large number of observables

- When number of observables is large follow different strategy
- Instead of aiming at approximating p.d.f.s $f(x \mid s)$ and $f(x \mid b)$ aim to approximate decision boundary with an empirical parametric form
$A_{\alpha}(\vec{x})=\left[\frac{f(\vec{x} \mid s)}{f(\vec{x} \mid s+b)}>\alpha\right] \Rightarrow A_{\alpha}(\vec{x})=c(\vec{x}, \vec{\theta})$

Wouter Verkerke, N|A-EEF

Empirical parametric forms of decision boundaries

- Can in principle choose any type of Ansatz parametric shape

$t(x)=\theta\left(x_{j}-c_{j}\right) \theta\left(x_{i}-c_{i}\right)$

$t(x)=a_{j} \cdot x_{j}+a_{i} \cdot x_{i}$

$t(x)=\vec{a} \cdot \vec{x}+\vec{x} A \vec{x}+\ldots$
- Goal of Ansatz form is estimate of a 'signal probability' for every event in the observable space \times (just like the LR)
- Choice of desired type-I error rate (selected background rate), can be set later by choosing appropriate cut on Ansatz test statistic.

The simplest Ansatz - A linear disciminant

- A linear discriminant constructs $\mathrm{t}(\mathrm{x})$ from a linear combination of the variables x_{i}

$$
t(\vec{x})=\sum_{i=1}^{N} a_{i} x_{i}=\vec{a} \cdot \vec{x}
$$

- A cut on $t(x)$ results in a linear decision plane in x-space
- What is optimal choice of direction vector a?
- Solution provided by the Fisher - The Fisher discriminant

$$
\boldsymbol{F}(\overrightarrow{\mathcal{x}})=\overbrace{\substack{\text { Mean values in } \\ \text { xi for sig,bkg }}}^{\substack{\text { Inverse of variance matrix } \\ \text { of signal/background } \\ \text { (assumed to be the same) }}}
$$

The simplest Ansatz - A linear disciminant

- Operation advantage of Fisher discrimant is that test statistic parameters can be calculated (no iterative estimation is required)

- Fisher discriminant is optimal test statistic (i.e. maps to Neyman Pearson Likelihood Ratio) for case where both hypotheses are multivariate Gaussian distributions with the same variance, but diffferent means

$$
\left.\begin{array}{l}
f(x \mid s)=\operatorname{Gauss}\left(\vec{x}-\vec{\mu}_{s}, V\right) \\
f(x \mid b)=\operatorname{Gauss}\left(\vec{x}-\vec{\mu}_{b}, V\right)
\end{array}\right\} \begin{aligned}
& \text { Multivariate Gaussian distributions } \\
& \text { with different means but same width } \\
& \text { for signal and background }
\end{aligned}
$$

Wouter Verkerke, NIKHEF

The simplest Ansatz - A linear disciminant

- How the Fisher discriminant follows from the LR test statistic

$$
\begin{aligned}
-\log \left(\frac{f(x \mid s)}{f(x \mid b)}\right) & =0.5\left(\frac{x-\mu_{s}}{\sigma^{2}}\right)^{2}-0.5\left(\frac{x-\mu_{b}}{\sigma^{2}}\right)^{2}+C \\
& =0.5 \frac{x^{2}-2 x \mu_{s}+\mu_{s}^{2}-x^{2}+2 x \mu_{b}-\mu_{b}^{2}}{\sigma^{2}}+C \\
\longrightarrow & =\frac{x\left(\mu_{s}-\mu_{b}\right)}{\sigma^{2}}+C^{\prime}
\end{aligned}
$$

- Generalization for multidimensional Gaussian distributions

$$
\log \lambda(x)=\frac{x\left(\mu_{s}-\mu_{b}\right)}{\sigma^{2}}+C^{\prime} \xrightarrow{\sigma^{2} \rightarrow V} \lambda(x)=\vec{x}\left(\vec{\mu}_{s}-\vec{\mu}_{b}\right) V^{-1}+C^{\prime}
$$

- Note that since we took -log of $\lambda, F(x)$ is not signal probability, but we can trivially recover this
"Logistic sigmoid function"

$$
P_{s}(F)=\frac{1}{1+e^{-F}}
$$

If $\lambda=1, x$ is equally likely under s, b Then $F=-\log (\lambda)=0 \rightarrow P=50 \%$

Example of Fisher discriminant use in HEP

- The "CLEO" Fisher discriminant
- Goal: distinguish between $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{Y} 4 \mathrm{~s} \rightarrow \overline{\mathrm{bb}}$ and $\overline{\mathrm{uu}}, \mathrm{da}, \overline{\mathrm{ss}}, \overline{\mathrm{cc}}$
- Method: Measure energy flow in 9 concentric cones around direction of B candidate

Energy flow in bb

Energy flow in u,d,s,c

Non-linear test statistics

- In most real-life HEP applications signal and background are not multi-variate Gaussian distributions with different means
- Will need more complex Ansatz shapes than Fisher discriminant
- Loose ability analytically calculate parameters of Ansatz model from Likelihood Ratio test statistic (as was done for Fisher)
- Choose an Ansatz shapes with tunable parameters
- Artificial Neural Networks
- Decision Trees

- Support Vector Machines
- Rule Ensembles
- Need numeric procedure to estimate Ansatz parameters \rightarrow Machine learning or Bayesian Learning

Machine Learning - General Principles

- Given a Ansatz parametric test statistic $T(x \mid \theta)$, quantify 'risk' due 'loss of performance' due to misclassifications by T as follows

Loss function (~ log of Gaussian Likelihood)

- Practical issue: since $f(x \mid s, b)$ not analytically available, cannot evaluate risk function. Solution \rightarrow Substitute risk with 'empirical risk' which substitutes integral with Monte Carlo approximation

Machine Learning - General Principles

- Minimization of empirical risk $E(\theta)$ can be performed with numerical methods (many tools are available, e.g. TMVA)
- But approximation of empirical risk w.r.t analytical risk introduces possibility for 'overtraining':

If MC samples for signal and background are small, and number of parameters θ, one can always reduce empirical risk to zero ('perfect selection')
(Conceptually similar to X^{2} fit : if you fit a $10^{\text {th }}$ order polynomial to 10 points - you will always perfectly describe the data. You will however not perfectly describe an independent dataset sampled from the same parent distribution)

- Even if empirical risk is not reduced to zero by training, it may still be smaller than true risk \rightarrow Control effect by evaluating empirical risk also on independent validation sample during minimization. If ER on samples start to diverge, stop minimization

Bayesian Learning - General principles

- Can also applied Bayesian methodology to learning process of decision boundaries
- Given a dataset $D(x, y)$ and a Ansatz model with parameters w, aim is to estimate parameters w

Bayesian Learning - General principles

- Inserting a binomial likelihood function to model classification the classification problem
- The parameters w are thus estimated from the Bayesian posteriors densities

- No iterative minimization, but Note that integrals over 'w-space' can usually only be performed numerically and if w contains many parameters, this is computationally challenging
- If class of function $T(x, w)$ is large enough it will contain a function $T\left(x, w^{*}\right)$ that represents the true minimum in $E(w)$
- I.e. $T\left(x, w^{*}\right)$ is the Bayesian equivalent of of Frequentist TS that is NP L ratio
- In that case the test statistic is

$$
L(y \mid x, w)=\prod T\left(x_{i}, w\right)^{y}\left[1-T\left(x_{i}, w\right)\right]^{1-y}
$$

$$
\begin{aligned}
T\left(x, w^{*}\right) & =\int y L(y \mid x) d y \\
& =L(y=1 \mid x)=\frac{L(x \mid y=1) P(y=1)}{L(x \mid y=0) P(y=0)+L(x \mid y=1) P(y=1)}
\end{aligned}
$$

Machine/Bayesian learning - Non-linear Ansatz functions

- Artificial Neural Network is one of the most popular non-linear ansatz forms. In it simplest incarnation the classifier function is

$$
N(\vec{x})=S\left(a_{0}+\sum_{i} a_{i} x_{i}\right) \quad \begin{aligned}
& \text { stti) is the aativation function, } \\
& \text { usually a logistic sigmoid }
\end{aligned} \quad s(t)=\frac{1}{1+e^{-t}}
$$

- This formula corresponds to the 'single layer perceptron'
- Visualization of single layer network topology

Since the activation function $s(t)$ is monotonic, a single layer $N(x)$ is equivalent to the Fisher discriminant $F(x)$

Neural networks - general structure

- The single layer model and easily be generalized to a multilayer perceptron

$$
\begin{aligned}
& N(\vec{x})=s\left(a_{0}+\sum_{i=1,}^{m} a_{i} h_{i}(\vec{x})\right) \\
& \text { with } h_{i}(\vec{x})=s\left(w_{i 0}+\sum_{j=1}^{n} w_{i j} x_{j}\right)
\end{aligned}
$$

with a_{i} and $w_{i j}$ weights (connection strengths)

- Easy to generalize to arbitrary number of layers
- Feed-forward net: values of a node depend only on earlier layers (usually only on preceding layer) 'the network architecture'
- More nodes bring $N(x)$ allow it to be closer to optimal (Neyman Pearson / Bayesian posterior) but with much more parameters to be determined

Neural networks - training example

Practical aspects of machine learning

- Choose input variables sensibly
- Don't include badly understood observables (such as \#tracks/evt), variables that are not expected carry useful information
- Generally: "Garbage in = Garbage out"
- Traditional Machine learning provides no guidance of useful complexity of test statistic (e.g. NN topology, layers)
- Usually better to start simple and gradually increase complexity and see how that pays off
- Bayesian learning can (in principle) provide guidance on model complexity through Bayesian model selection
- Bayes factors automatically includes a penalty for including too much model structure.

$$
K=\frac{P\left(D \mid H_{1}\right)}{P\left(D \mid H_{2}\right)}=\frac{\int L\left(D \mid \theta_{1}, H_{1}\right) P\left(\theta_{2} \mid H_{1}\right) d \theta_{2}}{\int L\left(D \mid \theta_{2}, H_{2}\right) P\left(\theta_{2} \mid H_{2}\right) d \theta_{2}}
$$

- But availability of Bayesian model selection depends in practice on the software that you use.

Practical aspects of machine learning

- Don't make the learning problem unnecessarily difficult for the machine
- E.g. remove strong correlation with explicit decorrelation before learning step
- Can use Principle Component Analysis
- Or Cholesky decomposition (rotate with square-root of covariance matrix)

- Also: remember that for 2-class problem (sig/bkg) that each have multivariate Gaussian distributions with different means, the optimal discriminant is known analytically
- Fisher discriminant is analytical solution. NN solution reduces to single-layer perceptron
- Thus, you can help your machine by transforming your inputs in a form as close as possible to the Gaussian form by transforming your input observables

Gaussianization of input observables

- You can transform any distribution in a Gaussian distribution in two steps
- 1 - Probability integral transform
"...seems likely to be one of the most fruitful conceptions introduced into statistical theory in the last few years" -Egon Pearson (1938)

$$
y(x)=\int_{-\infty}^{x} f\left(x^{\prime} \mid H\right) d x^{\prime}
$$

turns any distribution $f(x)$ into a flat distribution in $y(x)$

- 2 - Inverse error function

$$
x^{\text {Gauss }}=\sqrt{2} \cdot \operatorname{erf}^{-1}\left(2 x^{\text {flat }}-1\right) \quad \operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

turns flat distribution into a Gaussian distribution

- Note that you can make either signal or background Gaussian, but usually not both

A very different type of Ansatz - Decision Trees

- A Decision Tree encodes sequential rectangular cuts
- But with a lot of underlying theory on training and optimization
- Machine-learning technique, widely used in social sciences
- L. Breiman et al., "Classification and Regression Trees" (1984)
- Basic principle
- Extend cut-based selection
- Try not to rule out events failing a particular criterion
- Keep events rejected by one criterion
 and see whether other criteria could help classify them properly

Building a tree - splitting the data

- Essential operation :
splitting the data in 2 groups using a single cut, e.g. $\mathrm{H}_{\mathrm{T}}<242$

- Goal: find 'best cut' as quantified through best separation of signal and background (requires some metric to quantify this)
- Procedure:

1) Find cut value with best separation for each observable
2) Apply only cut on observable that results in best separation

Building a tree - recursive splitting

- Repeat splitting procedure on sub-samples of previous split

- Output of decision tree:
- 'signal' or 'background' (0/1) or
- probability based on expected purity of leaf (s/s+b)

Parameters in the construction of a decision tree

- Normalization of signal and background before training
- Usually same total weight for signal and background events
- In the selection of splits
- list of questions ($\mathrm{var}_{i}<\mathrm{cut}_{i}$) to consider
- Separation metric (quantifies how good the split is)
- Decision to stop splitting (declare a node terminal)
- Minimum leaf size (e.g. 100 events)
- Insufficient improvement from splitting
- Perfect classification (all events in leaf belong to same class)
- Assignment of terminal node to a class
- Usually: purity $>0.5=$ signal, purity<0.5 = background

Machine learning with Decision Trees

- Instead of '(Empirical) Risk' minimize 'Impurity Function' of leaves
- Impurity function $i(t)$ quantifies (im)purity of a sample, but is not uniquely defined
- Simplest option: $i(t)=$ misclassification rate

- For a proposed split s on a node t, decrease of impurity is

$$
\Delta i(s, t)=i(t)-p_{L} \cdot i\left(t_{L}\right)-p_{R} \cdot i\left(t_{R}\right)
$$

- Take split that results in largest Δi

Machine learning with Decision Trees

- Stop splitting when
- not enough improvement (introduce a cutoff Δi)
- not enough statistics in sample, or node is pure (signal or background)
- Example decision tree from learning process

Machine learning with Decision Trees

- Given that analytical pdfs $f(x \mid s)$ and $f(x \mid b)$ are usually not available, splitting decisions are based on 'empirical impurity' rather than true 'impurity' \rightarrow risk of overtraining exists

- Expected error pruning (prune weak splits that are consistent with original leaf within statistical error of training sample)
- Cost/Complexity pruning (generally strategy to trade tree complexity against performance)

Boosted Decision trees

- Decision trees largely used with 'boosting strategy'
- Boosting = strategy to combine multiple weaker classifiers into a single strong classifier
- First provable boosting algorithm by Shapire (1990)
- Train classifier T1 on N events
- Train T2 on new N-sample, half of which misclassified by T1
- Build T3 on events where T1 and T2 disagree
- Boosted classifier: MajorityVote(T1,T2,T3)
- Most used: AdaBoost = Adaptive Boosting (Freund \& Shapire '96)
- Learning procedure adjusts to training data to classify it better
- Many variations on the same theme for actual implementation

AdaBoost

- Schematic view of iterative algorithm
- Train Decision Tree on (weighted) signal and background training samples
- Calculate misclassification rate for Tree K (initial tree has k=1)

$$
\epsilon_{k}=\frac{\sum_{i=1}^{N} w_{i}^{k} \times \text { isMisclassified }_{k}(i)}{\sum_{i=1}^{N} w_{i}^{k}} \begin{gathered}
\text { "Weighted average } \\
\text { of isMisclassified over } \\
\text { all training events" }
\end{gathered}
$$

- Calculate weight of tree \mathbf{K} in 'forest decision $\alpha_{k}=\beta \times \ln \left(\left(1-\epsilon_{k}\right) / \epsilon_{k}\right)$
- Increase weight of misclassified events in Sample(k) to create Sample($k+1$)

$$
w_{i}^{k} \rightarrow w_{i}^{k+1}=w_{i}^{k} \times e^{\alpha_{k}}
$$

- Boosted classifier is result is performance-weighted 'forest'

$$
T(i)=\sum_{k=1}^{N_{\text {tree }}} \alpha_{k} T_{k}(i) \quad \text { "Weighted average } \quad \text { of Trees by their performance" }
$$

AdaBoost by example

- So-so classifier (Error rate $=40 \%) \quad \alpha=\ln \frac{1-0.4}{0.4}=0.4$
- Misclassified events get their weight multiplied by $\exp (0.4)=1.5$
- Next tree will have to work a bit harder on these events
- Good classifier (Error rate $=5 \%) \quad \alpha=\ln \frac{1-0.05}{0.05}=2.9$
- Misclassified events get their weight multiplied by $\exp (2.9)=19$ (!!)
- Being failed by a good classifier means a big penalty: must be a difficult case
- Next tree will have to pay much more attention to this event and try to get it right
- Note that boosting usually results in (strong) overtraining
- Since with misclassification rate will ultimately go to zero

Support Vector Machines

- Find hyperplane that best separates signal from background
- Best separation: maximum distance (margin) between closest events (support) to hyperplane
- Linear decision boundary is defined by solution of a Langrangian

- Solution of Lagrangian only depends on inner product of support vectors
- For non-separable data add misclassification cost
- add misclassification cost parameter $C \cdot \Sigma_{i j}$ to minimization function

Support Vector Machines

- Non-linear cases
- Transform variables into higher dimensional feature space
$(x, y) \rightarrow(x, y, z=\phi(x, y))$
where again a linear boundary (hyperplane) can separate the data

Explicit basis functions not required: use Kernel Functions to approximate scalar products between transformed vectors in the higher dimensional feature space

- Choose Kernel and use the hyperplane using the linear techniques developed above

Wouter Verkerke, N|1H-EF

Characterizing and comparing performance

- Performance of a test statistic characterized by ε (sig) vs ε (bkg) curve
- Curve for theoretical maximum performance can be added if true $S(x)$ and $B(x)$ are known
- Position on curve determines tradeoff between type-I and type-II errors

What is TMVA

■ ROOT: is the analysis framework used by most (HEP)-physicists
■ Idea: rather than just implementing new MVA techniques and making them available in ROOT (i.e., like TMultiLayerPercetron does):

- Have one common platform / interface for all MVA classifiers
* Have common data pre-processing capabilities
- Train and test all classifiers on same data sample and evaluate consistently
- Provide common analysis (ROOT scripts) and application framework
- Provide access with and without ROOT, through macros, C++ executables

Limitations of TMVA

- Development started beginning of 2006 - a mature but not a final package
- Known limitations / missing features
\Rightarrow Performs classification only, and only in binary mode: signal versus background
\Rightarrow Supervised learning only (no unsupervised "bump hunting")
\Rightarrow Relatively stiff design - not easy to mix methods, not easy to setup categories
\Rightarrow Cross-validation not yet generalised for use by all classifiers
\Rightarrow Optimisation of classifier architectures still requires tuning "by hand"
- Work ongoing in most of these areas \rightarrow see later in this talk

TMVAContent

- Currently implemented classifiers
- Rectangular cut optimisation
- Projective and multidimensional likelihood estimator
- k-Nearest Neighbor algorithm
- Fisher and H-Matrix discriminants
- Function discriminant
- Artificial neural networks (3 multilayer perceptron impls)
- Boosted/bagged decision trees
- RuleFit
- Support Vector Machine
- Currently implemented data preprocessing stages:
- Decorrelation
- Principal Value Decomposition
- Transformation to uniform and Gaussian distributions

sing TMVA

A typical TMVA analysis consists of two main steps:

1. Training phase: training, testing and evaluation of classifiers using data samples with known signal and background composition
2. Application phase: using selected trained classifiers to classify unknown data

- Illustration of these steps with toy data samples

A Toy Example (idealized)

■ Use data set with 4 linearly correlated Gaussian distributed variables:

Preprocessing the Input Variables

- Decorrelation of variables before training is useful for this

Evaluating the Classifier Training (II)

- Check for overtraining: classifier output for test and training samples ...

Evaluating the Classifier Training (V)

- Optimal cut for each classifiers ...

Determine the optimal cut (working point) on a classifier output

Signal events
1000 -

Background even
1000
$-\mid$

Close Draw

Receiver Operating Characteristics (ROC) Curve

- Smooth background rejection versus signal efficiency curve: (from cut on classifier output)

Example: Circular Correlation

- Illustrate the behavior of linear and nonlinear classifiers

Circular correlations
(same for signal and background)

The "Schachbrett" Toy

- Performance achieved without parameter tuning: PDERS and BDT best "out of the box" classifiers
- After specific tuning, also SVM und MLP perform well

Choosing the optimal cut on the test statistic

- But reality is usually more complex:
- Test statistics are usually not optimal,
- Ingredients to test statistics, i.e. the event selection, are usually not perfectly known (systematic uncertainties)
- In the subsequent statistical test phase we can account for (systematic) uncertainties in signal and background models in a detailed way. In the event selection phase we cannot
- Pragmatically considerations in design of event selection criteria: Ability to estimate level of background from the selected data \& Small sensitivity of signal acceptance to selection criteria used
- Result is that Likelihood Ratio used for event selection and final hypothesis test are different $\left(\lambda_{\text {selection }} \neq \lambda_{\text {hypotest }}\right)$ $\boldsymbol{\rightarrow}$ Cut on $\lambda_{\text {selection }}$ will influence statistical test with $\lambda_{\text {hypootest }}$
- To be able decide on optimal cut on $\lambda_{\text {selection }}$ you need a figure merit that approximates behavior of statistical test using $\lambda_{\text {hypootest }}$

Traditional approximate Figures of Merit

- Traditional choices for Figure of Merit optimum depends on

$$
F(\alpha)=\frac{S(\alpha)}{\sqrt{B(\alpha)}} \quad F(\alpha)=\frac{S(\alpha)}{\substack{\text { 'discovery' }}} \begin{aligned}
& \sqrt{S(\alpha)+B(\alpha)} \\
& \text { 'measurement' }
\end{aligned}
$$ signal cross section

- Choice of FOM for cut optimization requires assumption on subsequent statistical analysis strategy. These traditional FOMs quantify signal significance for a counting experiment with an known level of expected background, and not e.g. 'strongest upper limit’, no accounting for systematic uncertainties

Validity of approximations in Figures of Merit

- Note that approximations made in 'traditional' figure of merit are not always good (even for a counting experiment!)
- E.g. for 'discovery FOM' s/Jb
illustration of approximation for $s=2,5,10$ and b in range [0.01-100]
shows significant deviations of $\mathrm{s} / \sqrt{ } \mathrm{b}$ from actual significance at low b

Improved discovery F.O.M
("Asimov Z") suggested for
situations where $s \ll b$ is not true

$$
\begin{aligned}
\sqrt{q_{0, \mathrm{~A}}} & =\sqrt{2((s+b) \ln (1+s / b)-s)} . \\
& =\frac{s}{\sqrt{b}}(1+\mathcal{O}(s / b)) .
\end{aligned}
$$

Final comments on event selection

- Main issue with event selection is usually, sensitivity of selection criteria to systematic uncertainties
- What you'd like to avoid is your BDT/NN that is trained to get a small statistical uncertainty has a large sensitivity to a systematic uncertainties
- No easy way to incorporate effect of systematic uncertainties in training process
\rightarrow Can insert some knowledge of systematic uncertainties included in figure of merit when deciding where to cut in BDT/NN, but proper calculation usually requires much more information that signal and background event counts and is time consuming
- Use your physics intuition...

Alternatives to Machine Learning, back to NP optimal discrimant...

- Machine learning or Bayesian learning approach doesn't use detailed physics knowledge of signal and background processes that is available inside simulation to achieve separation
- Only through final distribution $S(x)$ and $B(x)$ that is implicitly provided through MC simulation samples
- Another approach is to exploit full information of physics simulation process better to construct $\mathrm{S}(\mathrm{x})$ and $\mathrm{B}(\mathrm{x})$ and construct (optimal) NP discriminant from these \rightarrow Matrix Element Methods
- Idea is to inject knowledge of the hard physics processes as encoded in physics simulation directly into discriminant and approximate effects of detector reconstruction through so-called 'transfer functions'
- At level of hard physics simulation, calculation of probability model for truthlevel quantities still tractable (although still relatively expensive)
- Add effects of parton showers and detector resolution a posteriori with transfer functions

The Matrix Element Method

Inverse Problem: Final state measured
('phase space point chosen')

Higgs couplings Turin
Michael Spannowsky 02.10.2014

The Matrix Element Method
Give final state radiation distinctive meaning in terms of hypothesis

The Matrix Element Method

Give final state radiation distinctive meaning in terms of hypothesis


```
Challenges in Face of LHC-14 Madrid M Michael Spannowsky Wouter 19.09.2014, NIMHEF
```


The Matrix Element Method

Ideally one would like to use all radiation related to

The Matrix Element Method

The matrix element method in a nutshell:
$Y=$ parton-level final state
$X=$ reconstruction-level final state

Given a theoretical assumption α, attach a weight $P(\mathbf{x}, \alpha)$ to each experimental event \mathbf{x} quantifying the validity of the theoretical assumption α for this event.

$$
\begin{array}{ll}
P(\mathbf{x}, \alpha)=\frac{1}{\sigma} \int d \phi(\mathbf{y})\left|M_{\alpha}\right|^{2}(\mathbf{y}) W(\mathbf{x}, \mathbf{y}) \quad \begin{array}{r}
\mathrm{P}(\mathrm{x}, \mathrm{a})=\mathrm{L}\left(\mathrm{x} \mid \mathrm{H}_{\mathrm{a}}\right) \\
\mathrm{a}=\mathrm{S}, \mathrm{~B}
\end{array} \\
\left|M_{\alpha}\right|^{2} & \text { is squared matrix element } \quad=\underset{\text { S }(\mathrm{y}) \text { or } \mathrm{B}(\mathrm{y}) \text { from theory }}{(=\text { calculable! })} \\
W(\mathbf{x}, \mathbf{y}) & \text { is the resolution or transfer function } \\
d \phi(\mathbf{y}) & \text { is the parton-level phase-space measure }
\end{array}
$$

The value of the weight $P(\mathbf{x}, \alpha)$ is the probability to observe the experimental event \mathbf{x} in the theoretical frame α

$$
\lambda_{\text {MEM }}=P(x, S) / p(x, B)
$$

$\begin{array}{lllll}\text { Higgs couplings } & \text { Turin } & 11 & \text { Michael Spannowsky } & 02.10 .2014\end{array}$

The Matrix Element Method

Purpose of the transfer function is to match jets to partons

Probability density function: $\quad \int d \mathbf{y} W(\mathbf{x}, \mathbf{y})=1$

The Matrix Element Method

$W(x \mid y)=p . d . f$ for observable quantities x, given parton-level theory observables y

The form of the transfer function:
resolution in
$W(\mathbf{x}, \mathbf{y}) \approx \Pi_{i} \frac{1}{\sqrt{2 \pi} \sigma_{E, i}} e^{-\frac{\left(E_{i}^{r e c}-E_{i}^{g e n}\right)^{2}}{2 \sigma_{E, i}^{2}}}$
Energy
$\times \frac{1}{\sqrt{2 \pi} \sigma_{\phi, i}} e^{-\frac{\left(\phi_{i}^{r e c}-\phi_{i}^{g e n}\right)^{2}}{2 \sigma_{\phi, i}^{2}}}$
azimuthal angle
$\times \frac{1}{\sqrt{2 \pi} \sigma_{y, i}} e^{-\frac{\left(y_{i}^{r e c}-y_{i}^{g e n}\right)^{2}}{2 \sigma_{y, i}^{2}}}$
rapidity

Complex, high-dimensional gaussian distribution! Transfer function introduces new peaks on top of propagators

Higgs couplings	Turin	13	Michael Spannowsky	02.10 .2014

An overview of HEP data analysis procedures

The Matrix Element Method

Subtleties of the convolution $|M(y)|^{2} \times W(y, x)$

1) $|M(y)|^{2}$

- Can be calculated at different order in pert. series (LO, NLO)
- Final state multiplicity fixed (exclusive process)
- Some kinematic configurations induce large logs (need resummation)

2) $W(y, x)$

- Number of final state objects limited to exclusive process
- Integration very time consuming \rightarrow limits final state multiplicity
- Transfer function fit dependent (input from experiment)

Higgs couplings	Turin	14	Michael Spannowsky	02.10 .2014

The Matrix Element Method

Higgs reconstructed, but no transfer function for jets:

The Matrix Element Method

Remove limitation of final state objects on $|M(y)|^{2}$
Shower approximation for matrix element, i.e. shower deconstruction:

partons from the hard interaction emit other partons (gluons and quarks)

These emissions are enhanced if they are collinear and/or soft with respect to the emitting parton

Probability enhanced in soft and collinear region due to $\sim 1 /\left(p_{1}+p_{2}\right)^{2}$

$$
\begin{aligned}
& \text { - If } p_{1} \rightarrow 0 \text {, then } \\
& \text { - If } p_{2} \rightarrow 0 \text {, then } \\
& \text { - } 1 /\left(p_{1}+p_{2}\right)^{2} \rightarrow \infty \\
& \text { - If } p_{2} \rightarrow \lambda p_{1} \text {, then } \\
& \text { Turin } \\
& \text { Tu })^{2} \rightarrow \infty \\
& \text { Michael Spannowsky }
\end{aligned}
$$

The Matrix Element Method

Factorization of emissions in soft/collinear limit
and Sudakov factors allow semiclassical approximation of quantum process:

Can calculate weight for shower history iteratively
Can use smaller objects and more objects (more information)

Higgs couplings

Turin

21
Michael Spannowsky 02.10.2014

The Matrix Element Method

imperfect b-tagging ($60 \%, 2 \%$) no b-tag required

Higgs couplings	Turin	26	Michael Spannowsky	02.10 .2014

Ex 1 - Demonstration of Central Limit Theorem

$\leftarrow 5000$ numbers taken at random from a uniform distribution between $[0,1]$.

- Mean $=1 / 2$, Variance $=1 / 12$
$\leftarrow 5000$ numbers, each the sum of 2 random numbers, i.e. $X=x_{1}+X_{2}$.
- Triangular shape
\leftarrow Same for 3 numbers,
$X=x_{1}+x_{2}+x_{3}$
\leftarrow Same for 12 numbers, overlaid curve is exact Gaussian distribution

Important: tails of distribution converge very slowly CLT often not applicable for ' 5 sigma' discoveries

Ex 1 - Implications of non-Gaussian tails in distributions

- If (tails of) distributions are not Gaussian, familiar mapping between 'standard deviations' and probabilities does not apply
- If you have done your exercise correctly you'll see the following results for the Nsum=20 run with Nexp=10.000.000 for 1,2,3,4,5 sigma
$\mathrm{n}=3198780$ frac $=0.319879+/-0.00017$ Gauss $=0.317311$
$\mathrm{n}=450384$ frac $=0.0450384+/-6.7 \mathrm{e}-05$ Gauss $=0.0455003$
$\mathrm{n}=22954$ frac $=0.0022954+/-1.5 \mathrm{e}-05$ Gauss $=0.0026998$
$\mathrm{n}=329$ frac $=3.29 \mathrm{e}-05+/-1.8 \mathrm{e}-06$ Gauss $=6.33425 \mathrm{e}-05$
- Non-Gaussian tails can lead to significant deviations in probabilistic interpretation when Gaussian distribution is erroneously assumed
- Probability '4 Gaussian sigma' fluctuation $=6.3$ 10-5
- Probability '4 standard deviation' fluctuation $=3.3$ 10-5 (=3.8 Gaussian sigma)
- For large significances, explicit calculation using actual distribution is need (more on this in the afternoon)

Exercises

- If you have not finished the exercises of yesterday (Ex1, Ex2), please leave them for now [solutions are now also provided for your convenience ex1sol.C ex2sol.C at www.nikhef.nl]
- Now: Practice machine-learned test statistics with TMVA (Ex 4)

Circular correlations

- Easy-to-use setup (to generate toy samples for S, B, and to run TMVA training provided
- Note: Last-minute bug discovered in ROOT 5.34.21 for MacOS!
- If your TMVA session on Mac crashes, please apply provided fix (see exercises for details). Recompilation time less than 30 seconds...

Wouter Verkerke, NIM-HEF

