
1

Wouter Verkerke, UCSB

Data Analysis Exercises

Wouter Verkerke "
(NIKHEF)

Getting started

•  The input files (all very small) for the various exercises are located on the
web at

–  http://www.nikhef.nl/~verkerke/statcourse_2014/

–  NB: If you run linux, easiest way to download a file to the local directory is "

‘wget <url>’ (the file ‘course.tar’ contains all files if you find that easier)"
[If you don’t have wget you can also do ‘curl <url> > filename’

•  Very basic ROOT (for those who have never used it)

–  ROOT is the analysis environment used in High Energy Physics. The application consists

of a C++ interpreter (C++ is the command line language) and a large series of classes that
define the ROOT functionality (divided in several major topics such as IO, Graphics,
Histogramming, Fitting & Minimization etc...)

–  Starting root: Lunix/MacOS: ‘root –l’ (-l suppressing splash screen when opening),
Windows: click on ROOT icon from installations

–  The command line is interpreted C++

–  To quit ROOT type ‘.q’

–  To load a macro file (file with one ore more C++ functions) in the interpreter do "

‘.L filename.C’. Loading a macro does not execute any code

–  You can then execute any function defined in the file in it by simply calling the function

name on the command line

–  To load a macro and execute the function with the name identical to the macro type "

‘.x blah.C’ (will load macro and execute function blah(), if defined)

Wouter Verkerke, NIKHEF

2

Getting started

•  Very basic ROOT introduction (cont’d)

•  In addition to plain C++, many classes are defined that implement

ROOT functionality.

–  We will only use very few in this tutorial, and examples will be provided.

–  You can find the complete documentation for any class online at

root.cern.ch à Documentation à Reference Guide

–  Look at demo macro ex0.C which illustrates the use some of the very basic

ROOT classes that we need for this tutorial

–  Histogramming à class TH1
–  Random number generation à class TRandom
–  Math functions à class TMath
–  Vectors à class TVectorD
–  Matrices à class TMatrixD
–  Graphics windows à class TCanvas

Wouter Verkerke, NIKHEF

ROOT practicalities when running locally on laptop

•  Practical workflow:

–  Choose a directory where you put the downloaded input files and where you

will work on your exercises

–  Have one window with ROOT session in the directory where you have put the

input files

•  Linux/MacOS: just cd to the directory where you put these files prior to starting ROOT.

•  Windows: either change the startup location of ROOT (right-click on icon, select Properties, and

change the “Start in field”), or on your ROOT command line type gDirectory->cd(“C:\\your
\\directory\\name”) – please note that you need to use a double backslash here!

–  Have one editor open with the exercise file you are working on

–  Then iterate: edit your .C file, then run it by e.g. typing ‘.x ex1.C’

•  Annotations in exercises:

–  ‘CODE’ – means that you need to write some code

–  ‘EXEC’ – means that you need to run your code and interpret its output

•  Macros have been tested with ROOT 5.34/21

–  Problems? Please ask (I didn’t test everything on all platforms)

Wouter Verkerke, NIKHEF

3

Wouter Verkerke, NIKHEF

Day 1

Exercise 1 – The central limit theorem

•  In module 1 we saw that the Central Limit Theorem predicts that
the sum of N measurements has a Gaussian distribution in the
limit of N à ∞, independent of the distribution of each individual
measurement

–  In this exercise we will investigate how quickly this convergence happens as
function of N.

–  We start with a ‘fake’ measurement resulting in a value x with a uniform
distribution between [0,1] (i.e. this is very non-Gaussian)

–  Then we will look at the distribution of x1+x2, x1+x2+x3, etc and compare these
with the properties of a Gaussian distribution

•  Start with file ex1.C

–  This macro books a ROOT histogram, runs 10000 experiments and fills the

‘measured’ value of x in the histogram and plots the histogram and the end of
the run.

–  EXEC: Look at the macro and run it (‘root -l ex1.C’ from the OS
command line, or ‘.x ex1.C’ from the ROOT command line)

Wouter Verkerke, NIKHEF

4

Exercise 1 – The central limit theorem

•  Modify the loop so that instead of filling the result of a single
measurement in the histogram you store the result of Nsum
measurements

–  CODE: Allocate a variable xsum that it is initialized to zero

•  The variable Nsum is already defined in the macro as first argument to macro ex1(). Its default

value when unspecified is 1.

–  CODE: Make a loop from from j=1 to Nsum (inside the existing loop over i) and
in new inner the loop add the value ‘measurement’ as returned by the
‘gRandom...’ line to the value of xsum.

•  The histogram defined by the macro has its range already defined as [0,Nsum] so that the
summed measurement values always fit in the range of the histogram

–  EXEC: Run the macro again now passing value 2 as argument for Nsum "
‘.x ex1.C(2)’ (or root –l ‘ex1.C(2)’ from the OS command line.
Note that in this case the quotations are essential). Look at the distribution

–  EXEC: Repeat for Nsum=3,5,10,20 and 100.

Wouter Verkerke, NIKHEF

Exercise 1 – The central limit theorem

•  You will see that around Nsum=10 the distribution is already looks quite
Gaussian.

–  This is however mostly for the ‘core’ of the distribution. The convergence of the tails of
the distribution is much slower as we will see next in this exercise

•  To compare the distribution to a Gaussian we compare the fraction of
events in the range defined by 1,2,3,4,5 times the measured standard
deviation (=√Variance) to the fractions expected for a Gaussian

–  I.e. we expect for a true Gaussian that 68% of the events is in the ±1 sigma range.
Then we count which fraction of the xsum distribution is in that range

–  And we repeat for 2,3,4,5 sigma

•  To do so we need to calculate (on paper) the expected standard
deviation of the sum of N measurements with a uniform distribution.

–  Calculate first (on a piece of paper) the variance of a uniform distribution in the range
[0,1]."

–  To do so, use the formulas"
"
"
where F(x) is the distribution you are averaging over "
(For this case F(x) is a uniform distribution in range [0,1])

22)(xxxV −=≡σ
x = x ⋅F(x)dx∫ , x2 = x2 ⋅F(x)dx∫

5

Exercise 1 – The central limit theorem

•  Then once you have variance for a single measurement of x,
determine what the variance is for the sum of N identical
measurements

–  If you need help, look at the slides on Central Limit Theorem of module one (p46)

•  Update the code to add this additional information

–  CODE: At the beginning allocate a variable Nsigma1 and initialize it to zero. This

will hold the number of events in the ‘one-sigma’ range.

–  CODE: In the ‘experiment loop’, once you have calculated Xsum, determine if the

answer is inside or outside the ‘one-sigma range’, i.e. it is outside the range
[-1*sigma,+1,sigma].

–  CODE: At the end of the loop print the fraction of events Nsigma1/Ntot, which is
the fraction of events outside the one-sigma range of the distribution.

–  Compare it the fraction expected for a Gaussian distribution."
Tip: You can get the exact fraction of events outside a n-sigma Gaussian
distribution from the following ROOT expression:

double gaussfrac = 1-TMath::Erfc(n/sqrt(2)) "
"
 where ‘n’ is the number of sigmas (i.e. 1 will give you 100%-68%≈32%)

Wouter Verkerke, NIKHEF

Exercise 1 – The central limit theorem

•  Note that there is a statistical uncertainty on the measurement of "
Nsigma1/Ntot which is (to good approximation)
sqrt(Nsigma1)/Ntot

–  Compare Nsigma1, the stat. unc on Nsigma1, and the expected value of Nsigma1
for a Gaussian distribution on one line

–  EXEC: Do this for Nsum=2,5,10,20,100

–  You will see that 10000 experiments provides plenty precision to see that the one-

sigma range of the distribution of Xsum converges rapidly to that expected for a
Gaussian distribution.

•  Now repeat the exercise for 2,3 sigma range.

–  CODE: To do so, add variables Nsigma2, Nsigma3, fill them in the event loop with

the corresponding ranges and compare them (with their errors) to the matching
fractions for a true Gaussian distribution.

–  EXEC: Do this for Nsum=2,5,10,20,100

–  Do you have enough statistics to measure the convergence for 2 and 3 sigma? If

not, increase the number of experiments by e.g. a factory of 10

•  Finally add the 4,5 sigma range

–  CODE & EXEC: How many experiments do you need to verify 5-sigma

convergence?"
(Feel free to stop this exercise if runs start to take too long)

Wouter Verkerke, NIKHEF

6

Exercise 1 – The central limit theorem

•  What does it mean?

–  If you have done your exercise correctly you’ll see the following results for the

Nsum=20 run with Nexp=1.000.000 for 1,2,3,4,5 sigma"

n = 3198780 frac = 0.319879 +/- 0.00017 Gauss = 0.317311 rel. = 0.008

n = 450384 frac = 0.0450384 +/- 6.7e-05 Gauss = 0.0455003 rel. = -0.010

n = 22954 frac = 0.0022954 +/- 1.5e-05 Gauss = 0.0026998 rel. = -0.149

n = 329 frac = 3.29e-05 +/- 1.8e-06 Gauss = 6.33425e-05 rel. = 0.480

n = 0 frac = 0 +/- 0 Gauss = 5.73303e-07

–  While the 2,3 sigma fractions are fairly close to Gaussian (rel=frac-Gauss/
Gauss) the 4-sigma number is 50% off

–  E.g. your interpretation of how often a result 4 times the sqrt(variance) away
from the central value happens is 50% off w.r.t the Gaussian distribution

–  Verifying 5 sigma results is a very time consuming business (even when a
simulation of your measurement is as trivial as throwing a single random
number)

•  Conclusion: interpretation of large deviations expressed as ‘N
standard deviations’ in terms of probabilities is difficult due to slow
convergence of tails à To quantify a >3 sigma deviation, an
explicit calculation is often needed

Wouter Verkerke, NIKHEF

Exercise 2 – Toy event generation

•  This exercise demonstrates the principle of toy event generation
through sampling (see slides module 1 p82-89)

–  Copy input file ex2.C and look at it. The input file defines a nearly empty main
function and a function ‘double func(double x)’ is defined to return a
Gaussian distribution in x.

–  The first step of this exercise is to sample func() to make a toy dataset. To
do toy MC sampling we first need to know the maximum of the function. For
now, we assume that we know that func(x) is a Gaussian and can
determine the maximum by evaluating the function at x=0. Store the function
value at x=0 into a double named fmax.

–  Now write a loop that runs 1000 times. In the loop, you generate two random
numbers: a double x in the range [-10,10] and a double y in the range
[0,fmax]. The value of x is a potential element of the toy dataset you are
generating. If you accept it, depends on the value of y. Think about what the
acceptance criterium should be (consult the slides p80-87 if necessary) and if
it passes, store the value of x in the histogram.

Wouter Verkerke, NIKHEF

7

Exercise 2 – Toy event generation

–  Allocate an integer counter to keep track of the number of accepted events.
At the end of the macro draw the histogram and print the efficiency of the
generation cycle, as calculated from the number of accepted events divided
by the number of trial events

–  Now change the code such that instead of doing 10000 trials, the loop will
only stop after 10000 accepted events. Modify the code such that you can still
calculate the efficiency after this change.

–  Change the width of the Gaussian from 3.0 to 1.0. Run again and look at the
generation efficiency. Now change it to 0.1 and observe the generation
efficiency.

•  Now we modify the toy generation macro so that it is usable on
any function.

–  This means we can no longer rely on the assumption that the maximum of the
function is at x=0.

–  The most common way to estimate the maximum of an unknown function is
through random sampling. To that effect, add some code before the
generation loop that samples the function at 100 random positions in x and
saves the highest value found as fmax.

Wouter Verkerke, NIKHEF

Exercise 2 – Toy event generation

–  Change the width of the Gaussian back to 3.0 and run modified macro. Compare
the fmax that was found through random sampling with the fmax obtained using
the knowledge that the function was Gaussian (i.e fmax=func(0)).

–  Now change the func(x) from the Gaussian function to the following expression:"
"
 (1+0.9*sin(sqrt(x*x)))/(fabs(x)+0.1)

and verify that toy data generation still works fine.

•  Finally we explore the limitations of sampling algorithms.

–  One runs generally into trouble if the empirical maximum finding algorithm does not

find the true maximum. This is most likely to happen if you don’t take enough
samples or if the function is strongly peaked.

–  Choose the following func(x) "
"

TMath::Gaus(x,0,0.1,kTRUE)+0.1 ;"
"
i.e. a narrow Gaussian plus a flat background and rerun the exercise

–  Now lower the number of trial samples for maximum finding to 10 and see what
happens

Wouter Verkerke, NIKHEF

