'Brief introduction

 to particle physics'W. Verkerke (NIKHEF)

Particle physics

Study nature at distance scales $<10^{-15} \mathrm{~m}$

Looking at the smallest constituents of matter \rightarrow Building a consistent theory that describe matter and elementary forces

High Energy Physics - the Standard Model

- Working model: 'the Standard Model' (a Quantum Field Theory)
- Describes constituents of matter, 3 out of 4 fundamental forces
- Forces described by exchange of messenger particles
- 'Gauge theory' - Structure of forces derives from symmetry U(1)xSU(2)XSU(3) the standard model

High Energy Physics - QFT formulation

- How can we obtain predictions from the Standard Model (a Quantum Field Theory), for observable processes.
- Formulation of the theory is a Lagrangian that describes the equation of motion of all particles/fields that are stipulated to exist

High Energy Physics - Feynman rules \& diagrams

- The 'Feynman rules' map elements in the Lagrangian to construction rules for Feynman diagrams
- Propagators (particles traveling through space)
- Interactions between particles (vertices \rightarrow decay, production, scattering)

High Energy Physics - Feynman diagrams

- A Feynman diagram represents an QM amplitude for a transition process.

'Feynman diagram is a graphical representation of an integral'

$$
A(p, q, \ldots)
$$

Feynman rules prescribe how to construct integral from diagram

- Probability of transition is coherent sum of all possible amplitudes squared

$$
P(A \rightarrow B)=\left|A_{1}+A_{2}+\ldots A_{n}\right|^{2}
$$

High Energy Physics - Feynman diagrams

- In principle, infinite number of diagrams contribute to each transition probability.
- But for most process can rank diagrams a priori by counting vertices that carry (often) a numerically small coupling constant \rightarrow Perturbation theory

'Leading Order' only includes diagrams with smallest possible number of vertices
$P(A \rightarrow B)_{L O}=\left|A_{1}\right|^{2}$
'Next to Leading Order' also includes diagrams with one more vertex

$$
P(A \rightarrow B)_{N L O}=\left|A_{1}+\ldots+A_{n}\right|^{2}
$$

High Energy Physics - Factorization

- Perturbation theory greatly simplifies calculability of theory predictions but critically relies on coupling constant (numeric weight associated with each vertex) to be small
- \rightarrow PT Not universally applicable. In particular for strong nuclear interaction, coupling constant depends on local energy scale and is large at low energy scales \rightarrow Low-energy processes are not calculable
- Solution: Factorize calculation of full process (proton + proton \rightarrow Higgs + lots of stuff) in
- 'perturbative part' (that can be calculated and are predictive from the fundamental theory) and
- non-perturbative part (that can be described with effective models, that are not predictive can are largely based on measurements

High Energy Physics - Factorization

- Non-perturbative parts (not described by fundamental theory) are usually content of the proton, showering particle decays at energies below 1 GeV

[^0]The standard model has many open issues (this one is solved...)

A most basic question is why particles (and matter) have masses (and so different masses)

The mass mystery could be solved with the 'Higgs mechanism' which predicts the existence of a new elementary particle, the 'Higgs' particle (theory 1964, P. Higgs, R. Brout and F. Englert)

Unsolved issues - what is particle content of Dark Matter?

Temperature fluctuations in Cosmic Microwave Background

Rotation Curves

Gravitational Lensing
 dark matter?

Particle Physic today - Large Machines

Detail of Large Hadron Collider

And large experiments underground

One of the 4 LHC experiments - ATLAS

ATLAS Detector 45 m

ATLAS superimposed to
Muon Detectors Colorimeter

Analyzing the data - The goal

What we see in the detector

Fundamental physics picture

Extremely difficult
(and not possible on an event-by-event basis anyway due to QM)

To find (e.g.) the Higgs boson- you need something that stands out

Wouter Verkerke, NIKHEF

To find (e.g.) the Higgs boson- you need something that stands out

To find (e.g.) the Higgs boson- you need something that stands out

Wouter Verkerke, NIKHEF

Quantify what we observe and what we expect to see

- Methods and details are important - for certain physics we only expect a handful of events after years of data taking

Tools for data analysis in HEP

- Nearly all HEP data analysis happens in a single platform
- ROOT (1995-now)
- And before that PAW (1985-1995)
- Large project with many developers, contributors, workshops

Choice of working environment R vs. ROOT

- ROOT has become de facto HEP standard analysis environment
- Available and actively used for analyses in running experiments (Tevatron, B factories etc..)
- ROOT is integrated LHC experimental software releases
- Data format of LHC experiments is (indirectly) based on ROOT \rightarrow Several experiments have/are working on summary data format directly usable in ROOT
- Ability to handle very large amounts of data
- ROOT brings together a lot of the ingredients needed for (statistical) data analysis
- C++ command line, publication quality graphics
- Many standard mathematics, physics classes: Vectors, Matrices, Lorentz Vectors Physics constants...
- Line between 'ROOT' and 'external' software not very sharp
- Lot of software developed elsewhere, distributed with ROOT (TMVA, RooFit)
- Or thin interface layer provided to be able to work with external library (GSL, FFTW)
- Still not quite as nice \& automated as ' R ' package concept

'Basic concepts'

What do we want to know?

- Physics questions we have...
- Does the (SM) Higgs boson exist?
- What is its production cross-section?
- What is its boson mass?
- Statistical tests construct probabilistic statements: p (theo|data), or p(data|theo)
- Hypothesis testing (discovery)
- (Confidence) intervals Measurements \& uncertainties
- Result: Decision based on tests
"As a layman I would now say: I think we have it"

How do we do this?

- All experimental results start with formulation of a (physics) theory
- Examples of HEP physics models being tested

The Standard Model

The SM without a Higgs boson

- Next, you design a measurement to be able to test model
- Via chain of physics simulation, showering MC, detector simulation and analysis software, a physics model is reduced to a statistical model

An overview of HEP data analysis procedures

From physics theory to statistical model

- HEP "Data Analysis" is for large part the reduction of a physics theory to a statistical model

Physics Theory: Standard Model with 125 GeV Higgs boson

Statistical Model: Given a measurement x (e.g. an event count) what is the probability to observe each possible value of x, under the hypothesis that the physics theory is true.
Once you have a statistical model, all physics knowledge has been abstracted into the model, and further steps in statistical inference are 'procedural' (no physics knowledge is required in principle)

From statistical model to a result

- The next step of the analysis is to confront your model with the data, and summarize the result in a probabilistic statement of some form

'Confidence/Credible Interval'
$\sigma /\left.\sigma_{S M}(H \rightarrow Z Z)\right|_{m H=150}<0.3 @ 95 \%$ C.L.
'p-value'
"Probability to observed this signal or more extreme, under the hypothesis of background-only is $1 \times 10^{9 "}$
'Measurement with variance estimate'
$\sigma /\left.\sigma_{S M}(H \rightarrow Z Z)\right|_{m H=126}=1.4 \pm 0.3$
- The last step, usually not in a (first) paper, that you, or your collaboration, decides if your theory is valid

Roadmap for this course

- Start with basics, gradually build up to complexity of

The statistical world

- Central concept in statistics is the 'probability model'
- A probability model assigns a probability to each possible experimental outcome.
- Example: a HEP counting experiment $\quad P(N \mid \mu)=\frac{\mu^{N} e^{-\mu}}{N!}$
- Count number of 'events' in a fixed time interval \rightarrow Poisson distribution
- Given the expected event count, the probability model is fully specified

Intermezzo on distributions - The binomial distribution

- Simple experiment - Drawing marbles from a bowl

- Bowl with marbles, fraction p are black, others are white
- Draw N marbles from bowl, put marble back after each drawing
- Distribution of R black marbles in drawn sample:

Binomial distribution

Basic Distributions - the Poisson distribution

- Sometimes we don't know the equivalent of the number of drawings
- Example: Geiger counter
- Sharp events occurring in a (time) continuum

- What distribution to we expect in measurement over a fixed amount of time?
- Can be related to Binomial distribution by dividing time interval in fixed number of small intervals, counting \#intervals with a collision

Een kansmodel voor LHC botsingen

- For k expected collisions in measurement, probability of collision in one of N intervals is $\mathrm{K} / \mathrm{B} \rightarrow$ Now back to binomial distribution

Begin
measurement

$$
p\left(r \left\lvert\, \frac{k}{N}\right., N\right)=\frac{k^{r}}{N^{r}}\left(1-\frac{k}{N}\right)^{N-r} \frac{N!}{r!(N-r)!}
$$

Eind

- Now take limit $N \rightarrow \infty$
(to avoid possibility of >1 collision per interval)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n!}{(n-r)!} & =n^{r} \\
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda}{n}\right)^{n-r} & =e^{-\lambda} \quad \square p(r \mid k)=\frac{e^{-k} k^{r}}{r!}
\end{aligned}
$$

The Poisson distribution for values value of $\lambda \quad p(r l k)=\frac{e^{-k} k^{r}}{r!}$

Named after Simeon de Poisson - who was investigating the occurence of judgement errors in the French judicial system

More properties of the Poisson distribution
$P(r ; \lambda)=\frac{e^{-\lambda} \lambda^{r}}{r!}$

- Mean, variance: $\quad\langle r\rangle=\lambda$

$$
V(r)=\lambda \Rightarrow \sigma=\sqrt{\lambda}
$$

- Convolution of 2 Poisson distributions is also a Poisson distribution with $\lambda_{a b}=\lambda_{a}+\lambda_{b}$

$$
\begin{aligned}
P(r) & =\sum_{r_{A}=0}^{r} P\left(r_{A} ; \lambda_{A}\right) P\left(r-r_{A} ; \lambda_{B}\right) \\
& =e^{-\lambda_{A}} e^{-\lambda_{B}} \sum \frac{\lambda_{A}^{r} \lambda_{B}^{-r} r_{A}}{r_{A}!\left(r-r_{A}\right)!} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!} \sum_{r_{1-0}}^{r} \frac{r!}{\left(r-r_{A}\right)!}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}\right)^{r r_{A}}\left(\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{r-r_{A}} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!}\left(\frac{\lambda_{A}}{\lambda_{A}+\lambda_{B}}+\frac{\lambda_{B}}{\lambda_{A}+\lambda_{B}}\right)^{r} \\
& =e^{-\left(\lambda_{A}+\lambda_{B}\right)} \frac{\left(\lambda_{A}+\lambda_{B}\right)^{r}}{r!}
\end{aligned}
$$

Basic Distributions - The Gaussian distribution

- Look at Poisson distribution in limit of large N

Properties of the Gaussian distribution

$$
P(x ; \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

- Mean and Variance

$$
\begin{aligned}
\langle x\rangle & =\int_{-\infty}^{+\infty} x P(x ; \mu, \sigma) d x=\mu \\
V(x) & =\int_{-\infty}^{+\infty}(x-\mu)^{2} P(x ; \mu, \sigma) d x=\sigma^{2} \\
\sigma & =\sigma
\end{aligned}
$$

$\mathbf{6 8 . 2 7 \%}$ within 1 σ	$90 \% \rightarrow 1.645 \sigma$
95.43% within 2 σ	$95 \% \rightarrow 1.96 \sigma$
99.73% within 3σ	$99 \% \rightarrow 2.58 \sigma$
	$99.9 \% \rightarrow 3.29 \sigma$

The Gaussian as 'Normal distribution’

- Why are distributions often Gaussian?
- The Central Limit Theorem says
- If you take the sum X of N independent measurements X_{i}, each taken from a distribution of mean m_{i}, a variance $\mathrm{V}_{\mathrm{i}}=\sigma_{\mathrm{i}}{ }^{2}$, the distribution for x
(a) has expectation value $\langle X\rangle=\sum_{i} \mu_{i}$
(b) has variance $V(X)=\sum_{i} V_{i}=\sum_{i} \sigma_{i}^{2}$
(c) becomes Gaussian as $\mathrm{N} \rightarrow \infty$

Demonstration of Central Limit Theorem

$\leftarrow 5000$ numbers taken at random from a uniform distribution between $[0,1]$.

- Mean $=1 / 2$, Variance $=1 / 12$
$\leftarrow 5000$ numbers, each the sum of 2 random numbers, i.e. $X=x_{1}+x_{2}$.
- Triangular shape
\leftarrow Same for 3 numbers, $X=x_{1}+x_{2}+x_{3}$
\leftarrow Same for 12 numbers, overlaid curve is exact Gaussian distribution

Important: tails of distribution converge very slowly CLT often not applicable for ' 5 sigma' discoveries

The statistical world

- Central concept in statistics is the 'probability model'
- A probability model assigns a probability to each possible experimental outcome.
- Example: a HEP counting experiment $\quad P(N \mid \mu)=\frac{\mu^{N} e^{-\mu}}{N!}$
- Count number of 'events' in a fixed time interval \rightarrow Poisson distribution
- Given the expected event count, the probability model is fully specified

Probabilities vs conditional probabilities

- Note that probability models strictly give conditional probabilities (with the condition being that the underlying hypothesis is true)

- Suppose we measure $\mathrm{N}=7$ then can calculate

$$
L\left(N=7 \mid \mathrm{H}_{\text {bkg }}\right)=2.2 \% \quad L\left(\mathrm{~N}=7 \mid \mathrm{H}_{\text {sig+bkg }}\right)=14.9 \%
$$

- Data is more likely under sig+bkg hypothesis than bkg-only hypo
- Is this what we want to know? Or do we want to know $\mathrm{L}\left(\mathrm{H}_{s+b} \mid \mathrm{N}=7\right)$?

Inverting the conditionality on probabilities

- Do $L\left(7 \mid H_{\mathrm{b}}\right)$ and $\mathrm{L}\left(7 \mid \mathrm{H}_{\mathrm{sb}}\right)$ provide you enough information to calculate $P\left(H_{b} \mid 7\right)$ and $P\left(H_{s b} \mid 7\right)$
- No!
- Image the 'whole space' and two subsets A and B

Inverting the conditionality on probabilities

Inverting the conditionality on probabilities

- This conditionality inversion relation is known as Bayes Theorem

$$
P(B \mid A)=P(A \mid B) \times P(B) / P(A)
$$

Essay "Essay Towards Solving a Problem in the Doctrine of Chances" published in Philosophical Transactions of the Royal Society of London in 1764

- And choosing $A=$ data and $B=$ theory

Thomas Bayes (1702-61)
$P($ theo \mid data $)=P($ data \mid theo $) \times P($ theo $) / P($ data $)$

- Return to original question:

Do you $\mathrm{L}\left(7 \mid \mathrm{H}_{\mathrm{b}}\right)$ and $\mathrm{L}\left(7 \mid \mathrm{H}_{\text {sb }}\right)$ provide you
enough information to calculate $P\left(H_{b} \mid 7\right)$ and $P\left(H_{s b} \mid 7\right)$

- No! \rightarrow Need $P(A)$ and $P(B) \rightarrow \operatorname{Need} P\left(H_{b}\right), P\left(H_{s b}\right)$ and $P(7)$

Inverting the conditionality on probabilities

- What is P (data)?
- It is the probability of the data under any hypothesis
- For Example for two competing hypothesis H_{b} and H_{sb}

$$
\mathrm{P}(\mathrm{~N})=\mathrm{L}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{b}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{b}}\right)+\mathrm{L}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{sb}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{sb}}\right)
$$

and generally for N hypotheses

$$
\mathrm{P}(\mathrm{~N})=\Sigma_{\mathrm{i}} \mathrm{P}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{i}}\right)
$$

- Bayes theorem reformulated using law of total probability

$$
\mathrm{P}(\text { theo } \mid \text { data })=\frac{\mathrm{L}(\text { dataltheo }) \times \mathrm{P}(\text { theo })}{\Sigma_{\mathrm{i}} \mathrm{~L}(\text { data|theo- } \mathrm{i}) \mathrm{P}(\text { theo- } \mathrm{i})}
$$

- Return to original question: Do you $L\left(7 \mid \mathrm{H}_{\mathrm{b}}\right)$ and $\mathrm{L}\left(7 \mid \mathrm{H}_{\mathrm{sb}}\right)$ provide you enough information to calculate $P\left(H_{b} \mid 7\right)$ and $P\left(H_{s b} \mid 7\right)$ No! \rightarrow Still need $P\left(H_{b}\right)$ and $P\left(H_{s b}\right)$

Prior probabilities

- What is the meaning of $P\left(H_{b}\right)$ and $P\left(H_{s b}\right)$?
- They are the probability assigned to hypothesis H_{b} prior to the experiment.
- What are the values of $P\left(H_{b}\right)$ and $P\left(H_{s b}\right)$?
- Can be result of an earlier measurement
- Or more generally (e.g. when there are no prior measurement) they quantify a prior degree of belief in the hypothesis
- Example - suppose prior belief $P\left(H_{s b}\right)=50 \%$ and $P\left(H_{b}\right)=50 \%$

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{H}_{\mathrm{sb}} \mid \mathrm{N}=7\right) & =\frac{\mathrm{P}\left(\mathrm{~N}=7 \mid \mathrm{H}_{\mathrm{sb}}\right) \times \mathrm{P}\left(\mathrm{H}_{\mathrm{sb}}\right)}{\left[\mathrm{P}\left(\mathrm{~N}=7 \mid \mathrm{H}_{\mathrm{sb}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{sb}}\right)+\mathrm{P}\left(\mathrm{~N}=7 \mid \mathrm{H}_{\mathrm{b}}\right) \mathrm{P}\left(\mathrm{H}_{\mathrm{b}}\right)\right]} \\
& =\frac{0.149 \times 0.50}{[0.149 \times 0.5+0.022 \times 0.5]}=87 \%
\end{aligned}
$$

- Observation $\mathrm{N}=7$ strengthens belief in hypothesis H_{sb} (and weakens belief in $\mathrm{H}_{\mathrm{b}} \rightarrow 13 \%$)

Interpreting probabilities

- We have seen
probabilities assigned observed experimental outcomes
(probability to observed 7 events under some hypothesis)
probabilities assigned to hypotheses
(prior probability for hypothesis $\mathrm{H}_{\text {sb }}$ is 50%)
which are conceptually different.
- How to interpret probabilities - two schools

Bayesian probability = (subjective) degree of belief	P(theoldata) P(data\|theo)
Frequentist probability = fraction of outcomes in $\quad \begin{aligned} & \text { futataltheo) }\end{aligned}$	

"If you'd repeat this experiment identically many times,
in a fraction P you will observe the same outcome"

Interpreting probabilities

- Frequentist:

Constants of nature are fixed - you cannot assign a probability to these. Probability are restricted to observable experimental results

- "The Higgs either exists, or it doesn't" - you can't assign a probability to that
- Definition of P (data|hypo) is objective (and technical)
- Bayesian:

Probabilities can be assigned to constants of nature

- Quantify your belief in the existence of the Higgs - can assign a probablity
- But is can very difficult to assign a meaningful number (e.g. Higgs)
- Example of weather forecast

Bayesian: "The probability it will rain tomorrow is 95\%"

- Assigns probability to constant of nature ("rain tomorrow") P(rain-tomorrow|satellite-data) $=95 \%$
Frequentist: "If it rains tomorrow,
95\% of time satellite data looks like what we observe now"
- Only states P(satellite-data|rain-tomorrow)

Bayesians and Frequentists

- A slide from a professional statistician found when Googling...

Back to $\mathrm{H}_{\mathrm{b}} / \mathrm{H}_{\mathrm{sb}}$ - Formulating evidence for discovery of H_{sb}

- Given a scenario with exactly two competing hypotheses
- In the Bayesian school you can cast evidence as an odd-ratio

$$
O_{\text {prior }} \equiv \frac{P\left(H_{s b}\right)}{P\left(H_{b)}\right.}=\frac{P\left(H_{s b}\right)}{1-P\left(H_{s b}\right)} \quad \text { If } \mathrm{p}\left(\mathrm{H}_{s b}\right)=\mathrm{p}\left(H_{b}\right) \rightarrow \text { Odds are } 1: 1
$$

$$
O_{\text {posterior }} \equiv \frac{L\left(x \mid H_{s b}\right) P\left(H_{s b}\right)}{L\left(x \mid H_{s b}\right) P\left(H_{b}\right)}=\frac{\underbrace{L\left(x \mid H_{s b}\right)}}{L\left(x \mid H_{b}\right)} O_{\text {prior }}
$$

If $\begin{aligned} & \mathrm{P}\left(\text { data } \mid \mathrm{H}_{\mathrm{b}}\right)=10^{-7} \\ & \mathrm{P}(\text { datata } \mid\end{aligned}$
$\mathrm{P}\left(\right.$ data $\left.\mid \mathrm{H}_{\mathrm{sb}}\right)=0.5$
$\mathrm{K}=2.000 .000 \rightarrow$ Posterior odds are 2.000.000 : 1

Formulating evidence for discovery

- In the frequentist school you restrict yourself to P (dataltheory) and there is no concept of 'priors'
- But given that you consider (exactly) 2 competing hypothesis, very low probability for data under Hb lends credence to 'discovery' of Hsb (since Hb is 'ruled out'). Example
$P\left(\right.$ data $\left.\mid H_{b}\right)=10^{-7}$ $\mathrm{P}\left(\right.$ data $\left.\mid \mathrm{H}_{\mathrm{sb}}\right)=0.5$
 " H_{b} ruled out" \rightarrow "Discovery of H_{sb} "
- Given importance to interpretation of the lower probability, it is customary to quote it in "physics intuitive" form: Gaussian σ.
- E.g. ' 5 sigma' \rightarrow probability of 5 sigma Gaussian fluctuation $=2.87 \times 10^{-7}$
- No formal rules for 'discovery threshold'
- Discovery also assumes data is not too unlikely under H_{sb}. If not, no discovery, but again no formal rules ("your good physics judgment")
- NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)

Taking decisions based on your result

- What are you going to do with the results of your measurement?
- Usually basis for a decision
- Science: declare discovery of Higgs boson (or not), make press release, write new grant proposal
- Finance: buy stocks or sell
- Suppose you believe P(Higgs|data)=99\%.
- Should declare discovery, make a press release? A: Cannot be determined from the given information!
- Need in addition: the utility function (or cost function),
- The cost function specifies the relative costs (to You) of a Type I error (declaring model false when it is true) and a Type II error (not declaring model false when it is false).

Taking decisions based on your result

- Thus, your decision, such as where to invest your time or money, requires two subjective inputs:

Your prior probabilities, and
the relative costs to You of outcomes.

- Statisticians often focus on decision-making; in HEP, the tradition thus far is to communicate experimental results (well) short of formal decision calculations.
- Costs can be difficult to quantify in science.
- What is the cost of declaring a false discovery?
- Can be high ("Fleischman and Pons"), but hard to quantify
- What is the cost of missing a discovery ("Nobel prize to someone else"), but also hard to quantify

Summary on statistical test with simple hypotheses

- So far we considered simplest possible experiment we can do: counting experiment
- For a set of 2 or more completely specified (i.e. simple) hypotheses

$\mu=7$ ("bkg+signal")

\rightarrow Given probability models $\mathrm{P}(\mathrm{N} \mid \mathrm{bkg})$, and $\mathrm{P}(\mathrm{N} \mid$ sig $)$
we can calculate $\mathrm{P}\left(\mathrm{N}_{\text {obs }} \mid \mathrm{Hx}\right)$ under either hypothesis
\rightarrow With additional information on $\mathrm{P}(\mathrm{Hi})$ we can also calculate $\mathrm{P}(\mathrm{Hx} \mid$ Nobs $)$
- In principle, any potentially complex measurement (for Higgs, SUSY, top quarks) can ultimately take this a simple form. But there is some 'pre-work' to get here - examining (multivariate) discriminating distributions \rightarrow Now try to incorporate that

Practical statistics - (Multivariate) distributions

- Most realistic HEP analysis are not like simple counting expts at all
- Separation of signal-like and background-like is a complex task that involves study of many observable distributions
- How do we deal with distributions in statistical inference? \rightarrow Construct a probability model for the distribution
- Case 1 - Signal and background distributions from MC simulation
- Typically have histograms for signal and background
- In effect each histogram is a Poisson counting experiment \rightarrow Likelihood for distribution is product of Likelihoods for each bin

Working with Likelihood functions for distributions

- How do the statistical inference procedures change
for Likelihoods describing distributions?
- Bayesian calculation of $P($ theo|data) they are exactly the same.
- Simply substitute counting model with binned distribution model

$$
P\left(H_{s+b} \mid \vec{N}\right)=\frac{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)}{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)+L\left(\vec{N} \mid H_{b}\right) P\left(H_{b}\right)}
$$

Calculation otherwise unchanged Calculation otherwise unchanged
$P\left(H_{s+b} \mid \vec{N}\right)=\frac{\prod_{i} \operatorname{Poisson}\left(N_{i} \mid \tilde{s}_{i}+\tilde{b}_{i}\right) P\left(H_{s+b}\right)}{\prod_{i} \operatorname{Poisson}\left(N_{i} \mid \tilde{s}_{i}+\tilde{b}_{i}\right) P\left(H_{s+b}\right)+\prod_{i} \operatorname{Poisson}\left(N_{i} \mid \tilde{b}_{i}\right) P\left(H_{b}\right)}$

Working with Likelihood functions for distributions

- Frequentist calculation of P(data|hypo) also unchanged, but question arises if P (data|hypo) is still relevant?

- $\mathrm{L}(\mathrm{N} \mid \mathrm{H})$ is probability to obtain exactly the histogram observed.
- Is that what we want to know? Not really.. We are interested in probability to observe any 'similar' dataset to given dataset, or in practice dataset 'similar or more extreme' that observed data
- Need a way to quantify 'similarity' or 'extremity' of observed data

Working with Likelihood functions for distributions

- Definition: a test statistic $T(x)$ is any function of the data
- We need a test statistic that will classify ('order') all possible observations in terms of 'extremity' (definition to be chosen by physicist)
- NB: For a counting measurement the count itself is already a useful test statistic for such an ordering (i.e. $\mathrm{T}(\mathrm{x})=\mathrm{x}$)

Test statistic $\mathrm{T}(\mathrm{N})=$ Nobs orders observed events count by estimated signal yield

Low $N \rightarrow$ low estimated signal
High $N \rightarrow$ large estimated signal

P-values for counting experiments

- Now make a measurement $\mathrm{N}=\mathrm{N}_{\text {obs }}$ (example $\mathrm{N}_{\text {obs }}=7$)
- Definition: p-value: probability to obtain the observed data, or more extreme in future repeated identical experiments
- Example: p-value for background-only hypothesis

Ordering distributions by ‘signal-likeness’ aka 'extremity’

- How to define 'extremity' if observed data is a distribution

Which histogram is more 'extreme'?

The Likelihood Ratio as a test statistic

- Given two hypothesis H_{b} and $\mathrm{H}_{\mathrm{s}+\mathrm{b}}$ the ratio of likelihoods is a useful test statistic

$$
\lambda(\vec{N})=\frac{L\left(\vec{N} \mid H_{s+b}\right)}{L\left(\vec{N} \mid H_{b}\right)}
$$

- Intuitive picture:

$$
\begin{aligned}
& \rightarrow \text { If data is likely under } \mathrm{H}_{\mathrm{b}}, \quad \rightarrow \text { If data is likely under } \mathrm{H}_{\mathrm{s}+\mathrm{b}} \\
& \mathrm{~L}\left(\mathrm{~N} \mid \mathrm{H}_{b}\right) \text { is large, } \\
& \mathrm{L}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{s}+\mathrm{b}}\right) \text { is smaller } \\
& \mathrm{L}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{s}+\mathrm{b}}\right) \text { is large, } \\
& \mathrm{L}\left(\mathrm{~N} \mid \mathrm{H}_{\mathrm{b}}\right) \text { is smaller } \\
& \lambda(\vec{N})=\frac{\text { small }}{\text { large }}=\text { small } \\
& \lambda(\vec{N})=\frac{\text { large }}{\text { small }}=\text { large }
\end{aligned}
$$

Visualizing the Likelihood Ratio as ordering principle

- The Likelihood ratio as ordering principle

$\lambda(N)=0.0005$

$\lambda(N)=0.47$

$\lambda(N)=5000$
- Frequentist solution to 'relevance of P (data|theory') is to order all observed data samples using a (Likelihood Ratio) test statistic
- Probability to observe 'similar data or more extreme’ then amounts to calculating 'probability to observe test statistic $\lambda(N)$ as large or larger than the observed test statistic $\lambda\left(\mathrm{N}_{\text {obs }}\right)$

The distribution of the test statistic

- Distribution of a test statistic is generally not known
- Use toy MC approach to approximate distribution
- Generate many toy datasets N under H_{b} and $\mathrm{H}_{\mathrm{s}+\mathrm{b}}$ and evaluate $\lambda(\mathrm{N})$ for each dataset

The distribution of the test statistic

- Definition: p-value:
probability to obtain the observed data, or more extreme in future repeated identical experiments
(extremity define in the precise sense of the (LR) ordering rule)

Likelihoods for distributions - summary

- Bayesian inference unchanged
\rightarrow simply insert L of distribution to calculate $\mathrm{P}(\mathrm{H} \mid$ data $)$

$$
P\left(H_{s+b} \mid \vec{N}\right)=\frac{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)}{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)+L\left(\vec{N} \mid H_{b}\right) P\left(H_{b}\right)}
$$

- Frequentist inference procedure modified
\rightarrow Pure P (datalhypo) not useful for non-counting data
\rightarrow Order all possible data with a (LR) test statistic in 'extremity'
\rightarrow Quote p(data|hypo) as ' p-value' for hypothesis
Probability to obtain observed data, or more extreme, is X\%
'Probability to obtain 13 or more 4-lepton events under the no-Higgs hypothesis is 10^{-7},
'Probability to obtain 13 or more 4-lepton events under the SM Higgs hypothesis is 50\%'

The likelinood principle

- Note that 'ordering procedure' introduced by test statistic also has a profound implication on interpretation
- Bayesian inference only uses the Likelihood of the observed data

$$
P\left(H_{s+b} \mid \vec{N}\right)=\frac{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{+1}\right)}{L\left(\vec{N} \mid H_{s+b}\right) P\left(H_{s+b}\right)+L\left(\vec{N} \mid H_{b}\right) P\left(H_{b}\right)}
$$

- While the observed Likelihood Ratio also only uses likelihood of observed data.

$$
\lambda(\vec{N})=\frac{L\left(\vec{N} \mid H_{s+b}\right)}{L\left(\vec{N} \mid H_{b}\right)}
$$

- Distribution $\mathrm{f}(\lambda \mid \mathrm{N})$, and thus p -value, also uses likelihood of non-observed outcomes (in fact Likelihood of every possible outcome is used)

Likelihood Principle

- In Bayesian methods and likelihood-ratio based methods, the probability (density) for obtaining the data at hand is used (via the likelihood function), but probabilities for obtaining other data are not used!
- In contrast, in typical frequentist calculations (e.g., a p-value which is the probability of obtaining a value as extreme or more extreme than that observed), one uses probabilities of data not seen.
- This difference is captured by the Likelihood Principle*:

If two experiments yield likelihood functions which are proportional, then Your inferences from the two experiments should be identical.

Generalizing to continuous distributions

- Can generalize likelihood to described continuous distributions

- Probability model becomes a probability density model
- Integral of probability density model over full space of observable is always 1 (just like sum of bins of a probability model is always 1)
- Integral of p.d.f. over a range of observable results in a probability
- Probability density models have (in principle) more analyzing power
- But relies on your ability to formulate an analytical model (e.g. hard at LHC)

Generalizing to multiple dimensions

- Can also generalize likelihood models to distributions in multiple observables

$L(\vec{x})=\prod_{i} f\left(x_{i}\right)$

$L(\vec{x}, \vec{y})=\prod_{i} f\left(x_{i}, y_{i}\right)$
- Neither generalization (binned \rightarrow continuous, one \rightarrow multiple observables) has any further consequences for Bayesian or Frequentist inference procedures

The Likelihood Ratio test statistic as tool for event selection

- Note that hypothesis testing with two simple hypotheses for observable distributions, exactly describes 'event selection' problem
- In fact we have already ‘solved’ the optimal event selection problem! Given two hypothesis H_{s+b} and H_{b} that predict an complex multivariate distribution of observables, you can always classify all events in terms of 'signal-likeness' (a.k.a 'extremity') with a likelihood ratio
$\lambda(\vec{x}, \vec{y}, \vec{z}, \ldots)=\frac{L\left(\vec{x}, \vec{y}, \vec{z}, \ldots \mid H_{s+b}\right)}{L\left(\vec{x}, \vec{y}, \vec{z}, \ldots \mid H_{b}\right)}$

- So far we have exploited λ to calculate a frequentist p-value tomorrow now explore properties 'cut on λ ' as basis of (optimal) event selection

Roadmap for this course

- Start with basics, gradually build up to complexity of

Intermezzo - Generating toy data

- Two approaches to obtaining simulated data
- First approach is 'Physics Monte Carlo Chain', described earlier
- Time consuming, but injects detailed knowledge about physics, detector, output is full collision information, and relation to underlying theory details
- Alternative approach is sample sampling the probability model 'toy MC'

- Fast (generally), only requires access to probability model
- Can only produce datasets with observables that are described by the probability model \rightarrow Sufficient to study distribution of test statistics

How do you efficiently generate a toy dataset from a probability model?

- Simplest method is accept/reject sampling

1) Determine maximum of function $f_{\text {max }}$
2) Throw random number x
3) Throw another random number y
4) If $y<f(x) / f_{\text {max }} k e e p ~ x$, otherwise return to step 2)

- PRO: Easy, always works
- CON: It can be inefficient if function is strongly peaked.
Finding maximum empirically through random sampling can be lengthy in >2 dimensions

How do you efficiently generate a toy dataset from a probability model?

- Simplest method is accept/reject sampling

1) Determine maximum of function $f_{\text {max }}$
2) Throw random number x
3) Throw another random number y
4) If $y<f(x) / f_{\text {max }}$ keep x,
otherwise return to step 2)

- PRO: Easy, always works
- CON: It can be inefficient if function is strongly peaked. Finding maximum empirically through random sampling can be lengthy in >2 dimensions

Toy MC generation - Inversion method

- Fastest: function inversion

1) Given $f(x)$ find inverted function $F(x)$ so that $f(F(x))=x$
2) Throw uniform random number x
3) Return $F(x)$

- PRO: Maximally efficient
- CON: Only works for invertible functions

Toy MC Generation - importance sampling

- Hybrid: Importance sampling

1) Find 'envelope function' $g(x)$ that is invertible into $G(x)$ and that fulfills $g(x)>=f(x)$ for all x
2) Generate random number x from G using inversion method
3) Throw random number ' y '
4) If $y<f(x) / g(x)$ keep x, otherwise return to step 2

- PRO: Faster than plain accept/reject sampling Function does not need to be invertible
- CON: Must be able to find invertible envelope function

Toy MC Generation - importance sampling in >1D

- General algorithms exists that can construct empirical envelope function
- Divide observable space recursively into smaller boxes and take uniform distribution in each box
- Example shown below from FOAM algorithm

Toy MC Generation - importance sampling in >1D

- For binned distributions, can generate content of each bin on toy dataset independently, using a Poisson process

[^0]: Nevertheless, despite limitations, probabilities of many processes are calculable with a precision of a few $\% \rightarrow$ Data from collision experiments can confront Standard Model theory

