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‘Brief introduction !
to particle physics’

W. Verkerke (NIKHEF)

Wouter Verkerke, NIKHEF

0

Particle physics

Study nature at distance scales < 10-15 m

atom                          nucleus                                    

Looking at the smallest constituents of matter à Building a!
consistent theory that describe matter and elementary forces 

10-15 m
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Newton                               

Maxwell

Einstein                               
Theory of Relativity

Quantum Mechanics

Bohr                              

Quantum Mechanics + Relativity = QFT

High Energy Physics – the Standard Model

•  Working model: ‘the Standard Model’ (a Quantum Field Theory)
–  Describes constituents of matter, 3 out of 4 fundamental forces
–  Forces described by exchange of messenger particles 
–  ‘Gauge theory’ – Structure of forces derives from symmetry U(1)xSU(2)XSU(3)  

Wouter Verkerke, NIKHEF
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High Energy Physics – QFT formulation

•  How can we obtain predictions from the Standard Model (a 
Quantum Field Theory), for observable processes.

•  Formulation of the theory is a Lagrangian that describes the 
equation of motion of all particles/fields that are stipulated to exist

Wouter Verkerke, NIKHEF

High Energy Physics – Feynman rules & diagrams

•  The ‘Feynman rules’ map elements in the Lagrangian to 
construction rules for Feynman diagrams

–  Propagators (particles traveling through space)
–  Interactions between particles (vertices à decay, production, scattering)

Wouter Verkerke, NIKHEF
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High Energy Physics – Feynman diagrams

•  A Feynman diagram represents an QM amplitude for a transition 
process.

•  Probability of transition is coherent sum of all possible amplitudes!
squared 

Wouter Verkerke, NIKHEF

A(p,q,…)

‘Feynman diagram is a graphical 
representation of an integral’ 

Feynman rules prescribe how to 
construct integral from diagram 

P(A→ B) = A1 + A2 +...An
2

High Energy Physics – Feynman diagrams

•  In principle, infinite number of diagrams contribute to each 
transition probability. 

•  But for most process can rank diagrams a priori by counting 
vertices that carry (often) a numerically small coupling constant à 
Perturbation theory

Wouter Verkerke, NIKHEF

P(A→ B)LO = A1
2

‘Leading Order’ only includes 
diagrams with smallest possible 
number of vertices 

P(A→ B)NLO = A1 +...+ An
2

‘Next to Leading Order’ also includes 
diagrams with one more vertex 
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High Energy Physics – Factorization

•  Perturbation theory greatly simplifies calculability of theory 
predictions but critically relies on coupling constant (numeric 
weight associated with each vertex) to be small

•  à PT Not universally applicable. In particular for strong nuclear 
interaction, coupling constant depends on local energy scale and 
is large at low energy scales à Low-energy processes are not 
calculable

•  Solution: Factorize calculation of full process (proton + proton à 
Higgs + lots of stuff) in 

–  ‘perturbative part’ (that can be calculated and are predictive from the 
fundamental theory) and 

–  non-perturbative part (that can be described with effective models, that are 
not predictive can are largely based on measurements

Wouter Verkerke, NIKHEF

High Energy Physics – Factorization

•  Non-perturbative parts (not described by fundamental theory) are 
usually content of the proton, showering particle decays at 
energies below 1 GeV

Wouter Verkerke, NIKHEF

Perturbative!
(=calculable)

Non-perturbative!
(effectively described !
with proton structure !
functions)

Non-perturbative!
(effectively described with!
parton showering simulation)

Nevertheless, despite limitations, probabilities of many processes are calculable!
with a precision of a few % à Data from collision experiments can confront!
Standard Model theory
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The standard model has many open issues (this one is solved…)

Wouter Verkerke, NIKHEF

Temperature fluctuations!
in Cosmic Microwave Background

Rotation Curves Gravitational Lensing

What is !
dark matter?

Unsolved issues – what is particle content of Dark Matter?
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Particle Physic today – Large Machines 

Wouter Verkerke, NIKHEF

Detail of Large Hadron Collider

Wouter Verkerke, NIKHEF
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And large experiments underground

Wouter Verkerke, NIKHEF

One of the 4 LHC experiments – ATLAS 

Wouter Verkerke, NIKHEF
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View of ATLAS during construction

Wouter Verkerke, NIKHEF

View of ATLAS Lego detector in Construction

Wouter Verkerke, NIKHEF
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Experiments produce lots of data

4/9
5.000.000 Gb data
2.000.000.000.000 collisions 4/9

Higgs in 1 on 10.000.000.000 collisions

Higgs! 

Statistical analysis of all collisions

Analyzing the data – The goal

Wouter Verkerke, NIKHEF

proton

proton

What we see in the detector Fundamental physics picture

Extremely difficult!
(and not possible on an event-by-event basis anyway due to QM)
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A more realistic picture of a proton-proton collision

‘Flying Garbage’

‘Hard Scatter’

‘Secondary interaction’

?
H

Proton-Proton collision at the LHC

A typical proton-proton collision

Wouter Verkerke, NIKHEF 

lepton

lepton
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To find (e.g.) the Higgs boson– you need something that stands out

Wouter Verkerke, NIKHEF 

To find (e.g.) the Higgs boson– you need something that stands out

Wouter Verkerke, NIKHEF 

But collisions with Higgs production and decay!
are extremely rare

In the 2011+2012 LHC data sample we have
  ~250.000.000.000.000 collisions
  ~500.000 with a Higgs boson [ 1 : 500.000.000 ]
  ~500 with a recognizable Higgs boson [ 1 : 500.000.000.000 ] 
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To find (e.g.) the Higgs boson– you need something that stands out

Wouter Verkerke, NIKHEF 

But collisions with Higgs production and decay!
are extremely rare

In the 2011+2012 LHC data sample we have
  ~250.000.000.000.000 collisions
  ~500.000 with a Higgs boson [ 1 : 500.000.000 ]
  ~500 with a recognizable Higgs boson [ 1 : 500.000.000.000 ] 

Speciale electronics & large computing farms make a !
real-time preselection (of every 5000 botsingen, 4999 rejected, 1 
retained, data written to disk, ca 10 Pb in total) 

Analyse challenge: find ~500 recognizable Higgs bosons in  
~50.000.000.000 collisions written to disk!

Quantify what we observe and what we expect to see

•  Methods and details are important – for certain physics we only 
expect a handful of events after years of data taking
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Wouter Verkerke, NIKHEF 

Tools for data analysis in HEP

•  Nearly all HEP data analysis happens in a single platform
–  ROOT (1995-now)
–  And before that PAW (1985-1995)

•  Large project with many developers, !
contributors, workshops

Wouter Verkerke, NIKHEF 

Choice of working environment R vs. ROOT
•  ROOT has become de facto HEP standard analysis environment

–  Available and actively used for analyses in running experiments !
(Tevatron, B factories etc..)

–  ROOT is integrated LHC experimental software releases
–  Data format of LHC experiments is (indirectly) based on ROOT à Several experiments 

have/are working on summary data format directly usable in ROOT 
–  Ability to handle very large amounts of data

•  ROOT brings together a lot of the ingredients needed for (statistical) data 
analysis

–  C++ command line, publication quality graphics 
–  Many standard mathematics, physics classes: Vectors, Matrices, Lorentz Vectors Physics 

constants…

•  Line between ‘ROOT’ and ‘external’ software not very sharp
–  Lot of software developed elsewhere, distributed with ROOT (TMVA, RooFit)
–  Or thin interface layer provided to be able to work with external library (GSL, FFTW)
–  Still not quite as nice & automated as ‘R’ package concept
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 !
‘Basic concepts’

Wouter Verkerke, NIKHEF

1

What do we want to know?

•  Physics questions we have…!
–  Does the (SM) Higgs boson exist?
–  What is its production cross-section?
–  What is its boson mass?!



•  Statistical tests construct!
probabilistic statements:!
p(theo|data), or p(data|theo)!

–  Hypothesis testing (discovery)
–  (Confidence) intervals!

Measurements & uncertainties!


•  Result: Decision based on tests!

Wouter Verkerke, NIKHEF

“As a layman I would now say: I think we have it”
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How do we do this?

•  All experimental results start with formulation of a (physics) theory!

•  Examples of HEP physics models being tested!
!
!
!
!
!
!
!
!


•  Next, you design a measurement to be able to test model!
–  Via chain of physics simulation, showering MC, detector simulation !

and analysis software, a physics model is reduced to a statistical model

 Wouter Verkerke, NIKHEF

The Standard Model The SM without a Higgs boson

✗ 

An overview of HEP data analysis procedures

Simulation of high-energy!
physics process

Simulation of ‘soft physics’!
physics process

Simulation of ATLAS!
detector

Reconstruction !
of ATLAS detector

LHC data

An
aly

sis
 E

ve
nt

 s
ele

ct
io

n

prob(data|SM)!

P(m4l|SM[mH])

Observed m4l

Proton!
Structure
Function
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HEP workflow: data analysis in practice

Wouter Verkerke, NIKHEF

MC Simulated 
Events (sig,bkg)

All available !
“real data”

Event 
selection 
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Final Result

Helps!
to define!
selection

Limit

Discovery

Measurement

Statistical!
analysis

N-tuples
Cut-flows,!
Multi-variate analysis (NN,BDT)!
ROOT, TMVA, NeuroBayes

Signal, background models!
Likelihood models,!

MINUIT, RooFit!
RooStats, MCLimit

From physics theory to statistical model

•  HEP “Data Analysis” is for large part !
the reduction of a physics theory to a statistical model!

Physics Theory: Standard Model with 125 GeV Higgs boson

Statistical Model: Given a measurement x (e.g. an event count)!
                              what is the probability to observe each possible value of x,!
                              under the hypothesis that the physics theory is true.
Once you have a statistical model, all physics knowledge has been abstracted !
into the model, and further steps in statistical inference are ‘procedural’ !
(no physics knowledge is required in principle)!
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From statistical model to a result

•  The next step of the analysis is to confront your model with the 
data, and summarize the result in a probabilistic statement of 
some form

•  The last step, usually not in a (first) paper, that you, !
or your collaboration, decides if your theory is valid

Final Result

Limit

Discovery

Measurement

σ/σSM (HàZZ) |mH=150 < 0.3 @ 95% C.L.  

“Probability to observed this signal!
or more extreme, under the hypothesis!
of background-only is 1x109”!

σ/σSM (HàZZ) |mH=126 = 1.4 ± 0.3 !

‘Confidence/Credible Interval’

‘p-value’

‘Measurement with variance estimate’

Roadmap for this course

•  Start with basics, gradually build up to complexity of !


Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean!
with probabilities”

“p-values”

“Optimal event selection & !
machine learning”

“Confidence intervals, !
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and !
systematic uncertainties”Response functions and subsidiary measurements
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The statistical world

•  Central concept in statistics is the ‘probability model’
•  A probability model assigns a probability to each possible 

experimental outcome.
•  Example: a HEP counting experiment

–  Count number of ‘events’ in a fixed time interval à Poisson distribution
–  Given the expected event count, the probability model is fully specified  

Wouter Verkerke, NIKHEFà Experimental outcome

à
 P

ro
ba

bi
lity

 o
f o

ut
co

m
e

P(N |µ) = µ
Ne−µ

N!

μ=3 (“bkg only”) μ=7 (“bkg+signal”)

Wouter Verkerke, UCSB

Intermezzo on distributions – The binomial distribution

•  Simple experiment – Drawing marbles from a bowl
–  Bowl with marbles,  fraction p are black, others are white

–  Draw N marbles from bowl, put marble back after each drawing
–  Distribution of R black marbles in drawn sample:

Binomial distribution

)!(!
!)1(),;(
RNR

NppNpRP RNR

−
−= −

Probability of a!
specific outcome!
e.g. ‘BBBWBWW’

Number of equivalent!
permutations for that!

outcome 

p=0.5!
N=4

R

P(
R;

0.
5,

4)
(
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Basic Distributions – the Poisson distribution

•  Sometimes we don’t know the equivalent of the number of 
drawings

–  Example: Geiger counter
–  Sharp events occurring in a (time) continuum!

!
!
!
!


•  What distribution to we expect in measurement !
over a fixed amount of time?

–  Can be related to Binomial distribution by dividing time interval in fixed number 
of small intervals, counting #intervals with a collision

Begin
measurement

End!
measurement

Begin
measurement

End!
measurement

Een kansmodel voor LHC botsingen

•  For k expected collisions in measurement, probability of collision!
in one of N intervals is k/B à Now back to binomial distribution

•  Now take limit Nà∞ !
(to avoid possibility of >1 collision per interval) 

Wouter Verkerke, NIKHEF 

Begin !
measurement

Eind!
measurement

p(r | kN ,N ) =
kr

N r 1−
k
N

"

#
$

%

&
'
N−r N!

r!(N − r)!

p(r | k) = e
−kkr

r!
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The Poisson distribution for values value of λ
λ=0.1 λ=0.5 λ=1

λ=2 λ=5 λ=10

λ=20 λ=50 λ=200

p(r | k) = e
−kkr

r!

Named after Simeon de Poisson – who was investigating the occurence!
of judgement errors in the French judicial system

Wouter Verkerke, UCSB

More properties of the Poisson distribution

•  Mean, variance:!


•  Convolution of 2 Poisson distributions is also a Poisson 
distribution with λab=λa+λb
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Wouter Verkerke, UCSB

Basic Distributions – The Gaussian distribution

•  Look at Poisson distribution in limit of large N

!
);(
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λ λ−=

Take log, substitute, r = l + x, !
and use  rrrrr π2lnln)!ln( +−≈
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Take exp

Familiar Gaussian distribution, !
(approximation reasonable for N>10)

l=1

l=10

l=200

Wouter Verkerke, UCSB

Properties of the Gaussian distribution

•  Mean and Variance!


•  Integrals of Gaussian

σσ
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68.27% within 1σ	
 90% à 1.645σ	

95.43% within 2σ	
 95% à 1.96σ	

99.73% within 3σ	
 99% à 2.58σ	


99.9% à 3.29σ	
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Wouter Verkerke, UCSB

The Gaussian as ‘Normal distribution’

•  Why are distributions often Gaussian?!


•  The Central Limit Theorem says
•  If you take the sum X of N independent measurements xi, !

each taken from a distribution of mean mi, a variance Vi=σi
2,!

the distribution for x!
!
(a) has expectation value!
!
!
(b) has variance!
!
!
(c) becomes Gaussian as N à ∞!
!

∑=
i

iX µ

∑ ∑==
i i

iiVXV 2)( σ

Demonstration of Central Limit Theorem

←  5000 numbers taken at random from a uniform 
distribution between [0,1].

–  Mean = 1/2, Variance = 1/12!


←  5000 numbers, each the sum of 2 random 
numbers, i.e. X = x1+x2.

–  Triangular shape


←  Same for 3 numbers, !
X = x1 + x2 + x3!
!
!
!


←  Same for 12 numbers, overlaid curve is exact 
Gaussian distribution

N=1!

N=2!

N=3!

Important: tails of distribution converge very slowly CLT 
often not applicable for ‘5 sigma’ discoveries!N=12!

)
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The statistical world

•  Central concept in statistics is the ‘probability model’
•  A probability model assigns a probability to each possible 

experimental outcome.
•  Example: a HEP counting experiment

–  Count number of ‘events’ in a fixed time interval à Poisson distribution
–  Given the expected event count, the probability model is fully specified  

Wouter Verkerke, NIKHEFà Experimental outcome

à
 P

ro
ba

bi
lity

 o
f o

ut
co

m
e

P(N |µ) = µ
Ne−µ

N!

μ=3 (“bkg only”) μ=7 (“bkg+signal”)

Probabilities vs conditional probabilities

•  Note that probability models strictly give conditional probabilities!
(with the condition being that the underlying hypothesis is true)

!

•  Suppose we measure N=7 then can calculate!

!
              L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%

•  Data is more likely under sig+bkg hypothesis than bkg-only hypo
•  Is this what we want to know? Or do we want to know L(Hs+b|N=7)?

Wouter Verkerke, NIKHEF

P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: !
P(data|hypo) is called !

the likelihood 
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Inverting the conditionality on probabilities

•  Do L(7|Hb) and L(7|Hsb) provide you !
enough information to calculate P(Hb|7) and P(Hsb|7)

•  No!!

•  Image the ‘whole space’ and two subsets A and B

Wouter Verkerke, NIKHEF

A!
(=Hx)!

B!
(=Nobs)!

P(A|B) ≠ P(B|A)!
!
!
!
P(7|Hb) ≠ P(Hb|7)!

Inverting the conditionality on probabilities

Wouter Verkerke, NIKHEF

A!
(=Hx)!

B!
(=Nobs)!

P(A|B) ≠ P(B|A)!
!
!

but you can deduce!
their relation!
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Inverting the conditionality on probabilities

•  This conditionality inversion relation is known as Bayes Theorem!
!

•  And choosing  A=data and B=theory!


•  Return to original question:!
 !
Do you L(7|Hb) and L(7|Hsb) provide you !
enough information to calculate P(Hb|7) and P(Hsb|7)!


•  No! à Need P(A) and P(B) à Need P(Hb), P(Hsb) and P(7)!
Wouter Verkerke, NIKHEF

Essay “Essay Towards Solving a Problem in the Doctrine of 
Chances”  published in Philosophical Transactions of the 
Royal Society of London in 1764

Thomas Bayes (1702-61)

P(B|A) = P(A|B) × P(B)/P(A)!

P(theo|data) = P(data|theo) × P(theo) / P(data)!

Inverting the conditionality on probabilities

•  What is P(data)?!

•  It is the probability of the data under any hypothesis
–  For Example for two competing hypothesis Hb and Hsb!

!
!
!
!
and generally for N hypotheses

•  Bayes theorem reformulated using law of total probability

•  Return to original question: Do you L(7|Hb) and L(7|Hsb) provide you !
enough information to calculate P(Hb|7) and P(Hsb|7) !
No! à Still need P(Hb) and P(Hsb)!

Wouter Verkerke, NIKHEF

P(N) = L(N|Hb)P(Hb) + L(N|Hsb)P(Hsb)!

P(N) = Σi P(N|Hi)P(Hi)!

P(theo|data) =  L(data|theo) × P(theo)  !
                      Σi L(data|theo-i)P(theo-i)!

P(theo|data) = P(data|theo) × P(theo) / P(data)!
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Prior probabilities

•  What is the meaning of P(Hb) and P(Hsb)? 
–  They are the probability assigned to hypothesis Hb prior to the experiment.

•  What are the values of P(Hb) and P(Hsb)?
–  Can be result of an earlier measurement
–  Or more generally (e.g. when there are no prior measurement) !

they quantify a prior degree of belief in the hypothesis!


•  Example – suppose prior belief P(Hsb)=50% and P(Hb)=50%!


•  Observation N=7 strengthens belief in hypothesis Hsb!
(and weakens belief in Hb à 13%) Wouter Verkerke, NIKHEF

P(Hsb|N=7) =               P(N=7|Hsb) × P(Hsb) !
                     [ P(N=7|Hsb)P(Hsb)+P(N=7|Hb)P(Hb) ]

                 =             0.149 × 0.50              = 87% !
                       [ 0.149×0.5+0.022x0.5 ]

Interpreting probabilities

•  We have seen !
!
probabilities assigned observed experimental outcomes!
(probability to observed 7 events under some hypothesis)!
!
probabilities assigned to hypotheses!
(prior probability for hypothesis Hsb is 50%)!
!
which are conceptually different.!


•  How to interpret probabilities – two schools!
!
Bayesian probability = (subjective) degree of belief !
!
Frequentist probability = fraction of outcomes in !
                                      future repeated identical experiments!
  

Wouter Verkerke, NIKHEF
“If you’d repeat this experiment identically many times, !
 in a fraction P you will observe the same outcome”

P(theo|data)
P(data|theo)

P(data|theo)
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Interpreting probabilities

•  Frequentist: !
Constants of nature are fixed – you cannot assign a probability to 
these. Probability are restricted to observable experimental results

–  “The Higgs either exists, or it doesn’t” – you can’t assign a probability to that
–  Definition of P(data|hypo) is objective (and technical)

•  Bayesian:!
Probabilities can be assigned to constants of nature

–  Quantify your belief in the existence of the Higgs – can assign a probablity
–  But is can very difficult to assign a meaningful number (e.g. Higgs)

•  Example of weather forecast!
!
Bayesian: “The probability it will rain tomorrow is 95%”

–  Assigns probability to constant of nature (“rain tomorrow”)!
P(rain-tomorrow|satellite-data) = 95%

     Frequentist: “If it rains tomorrow, !
                 95% of time satellite data looks like what we observe now”

–  Only states P(satellite-data|rain-tomorrow) Wouter Verkerke, NIKHEF

Bayesians and Frequentists

•  A slide from a professional statistician found when Googling…

Wouter Verkerke, NIKHEF
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Back to Hb/Hsb - Formulating evidence for discovery of Hsb

•  Given a scenario with exactly two competing hypotheses
•  In the Bayesian school you can cast evidence as an odd-ratio

Wouter Verkerke, NIKHEF

Oprior ≡
P(Hsb )
P(Hb)

=
P(Hsb )
1−P(Hsb )

If p(Hsb)=p(Hb) à Odds are 1:1

Oposterior ≡
L(x |Hsb )P(Hsb )
L(x |Hsb )P(Hb )

=
L(x |Hsb )
L(x |Hb )

Oprior

‘Bayes Factor’ K multiplies prior odds

P(data|Hb)=10-7!
P(data|Hsb)=0.5If                              K=2.000.000 à Posterior odds are 2.000.000 : 1

Formulating evidence for discovery

•  In the frequentist school you restrict yourself to P(data|theory)!
and there is no concept of ‘priors’

–  But given that you consider (exactly) 2 competing hypothesis,!
very low probability for data under Hb lends credence to ‘discovery’ of Hsb 
(since Hb is ‘ruled out’). Example

•  Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.

–  E.g. ‘5 sigma’ à probability of 5 sigma Gaussian fluctuation =2.87x10-7 

•  No formal rules for ‘discovery threshold’
–  Discovery also assumes data is not too unlikely under Hsb. If not, no discovery,!

but again no formal rules (“your good physics judgment”)

–  NB: In Bayesian case, both likelihoods low reduces Bayes factor K to O(1)    

Wouter Verkerke, NIKHEF

P(data|Hb)=10-7!
P(data|Hsb)=0.5 “Hb ruled out” à “Discovery of Hsb”
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Taking decisions based on your result

•  What are you going to do with the results of your measurement?
•  Usually basis for a decision 

–  Science: declare discovery of Higgs boson (or not), make press release,!
              write new grant proposal

–  Finance: buy stocks or sell

•  Suppose you believe P(Higgs|data)=99%.
•  Should declare discovery, make a press release? !

A: Cannot be determined from the given information!
•  Need in addition: the utility function (or cost function), 

–  The cost function specifies the relative costs (to You) of a Type I error 
(declaring model false when it is true) and a Type II error (not declaring model 
false when it is false).

Wouter Verkerke, NIKHEF

Taking decisions based on your result

•  Thus, your decision, such as where to invest your time or money, 
requires two subjective inputs: !
!
Your prior probabilities, and !
!
the relative costs to You of outcomes.!


•  Statisticians often focus on decision-making; !
in HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations.!


•  Costs can be difficult to quantify in science. 
–  What is the cost of declaring a false discovery? 
–  Can be high (“Fleischman and Pons”), but hard to quantify 
–  What is the cost of missing a discovery (“Nobel prize to someone else”),!

but also hard to quantify
Wouter Verkerke, NIKHEF
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How a theory becomes text-book physics

P(data|Hb)=10-7!
P(data|Hsb)=0.5 P(data|Hb)=10-7

P(data|Hsb)=0.5

A: P(Hsb|data)=0.9999998
B: P(Hsb|data) = 83% 

Press release, accept as new 
‘text book physics’!

or!
Wait for more data

A: P(Hsb)=50%!
!

B: P(Hsb)=0.000001%

A: declare discovery at 3σ
B: declare discovery at 5σ

Information from experiment Information from experiment

Posterior from expt and prior!
following Bayesian paradigm

P-value threshold from “prior”!
(judgment call – no formal theory!)

Cost(FalseDiscovery)!
= EternalRidicule/Fired!


Cost(UnclaimedDiscovery)

= MissedNobelPrize

Press release, accept as new 
‘text book physics’!

OR
Wait for more data

Prior belief in theory!
(can be hard to quantify)

Cost of wrong decision!
(can be hard to quantify)

Recent judgements!
on of 5σ effects:
Higgs – text book
ν(β>1) – rejected

Frequentist! Bayesian!
Potentially fuzzy!

information

Summary on statistical test with simple hypotheses

•  So far we considered simplest possible experiment we can do: !
counting experiment

•  For a set of 2 or more completely specified (i.e. simple) hypotheses !
!


•  In principle, any potentially complex measurement (for Higgs, SUSY, 
top quarks) can ultimately take this a simple form.!
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions à Now try to incorporate that  

Wouter Verkerke, NIKHEF

à Given probability models P(N|bkg), and P(N|sig) !
    we can calculate P(Nobs|Hx) under either hypothesis!
!
à With additional information on P(Hi) we can also calculate P(Hx|Nobs)
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Practical statistics – (Multivariate) distributions

•  Most realistic HEP analysis are not like simple counting expts at all 
–  Separation of signal-like and background-like is a complex task that involves 

study of many observable distributions

•  How do we deal with distributions in statistical inference?!
à Construct a probability model for the distribution

•  Case 1 – Signal and background distributions from MC simulation
–  Typically have histograms for signal and background
–  In effect each histogram is a Poisson counting experiment!

à Likelihood for distribution is product of Likelihoods for each bin  

Wouter Verkerke, NIKHEF

L(
!
N |Hb ) = Poisson(

i
∏ Ni | "bi )

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi )

Working with Likelihood functions for distributions

•  How do the statistical inference procedures change !
for Likelihoods describing distributions?

•  Bayesian calculation of P(theo|data) they are exactly the same.
–  Simply substitute counting model with binned distribution model 

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(Hs+b |
!
N ) =

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )

Poisson
i
∏ (Ni | "si + "bi )P(Hs+b )+ Poisson

i
∏ (Ni | "bi )P(Hb )

Simply fill in new Likelihood function
Calculation otherwise unchanged
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Working with Likelihood functions for distributions

•  Frequentist calculation of P(data|hypo) also unchanged, !
but question arises if P(data|hypo) is still relevant?!

•  L(N|H) is probability to obtain exactly the histogram observed.!

•  Is that what we want to know? Not really.. We are interested in 
probability to observe any ‘similar’ dataset to given dataset,!
or in practice dataset ‘similar or more extreme’ that observed data

•  Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
Wouter Verkerke, NIKHEF

L(
!
N |Hb ) = Poisson(

i
∏ Ni | "bi )

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi )

Working with Likelihood functions for distributions

•  Definition: a test statistic T(x) is any function of the data
•  We need a test statistic that will classify (‘order’) all possible 

observations in terms of ‘extremity’ (definition to be chosen by 
physicist)

•  NB: For a counting measurement the count itself is already !
       a useful test statistic for such an ordering (i.e. T(x) = x)

Wouter Verkerke, NIKHEF

Test statistic T(N)=Nobs orders observed!
events count by estimated signal yield

Low N à low estimated signal!
High N à large estimated signal
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•  Now make a measurement N=Nobs (example Nobs=7)
•  Definition: p-value: !

probability to obtain the observed data, or more extreme!
in future repeated identical experiments!

–  Example: p-value for background-only hypothesis

 

P-values for counting experiments

)23.0()0;( =+= ∫
∞

obsN
b dNbNPoissonp

s=0 

s=5 
s=10 

s=15 

Ordering distributions by ‘signal-likeness’ aka ‘extremity’

•  How to define ‘extremity’ if observed data is a distribution
Counting Histogram

Observation

Median expected!
by hypothesis

Predicted distribution!
of observables

Nobs=7

Nexp(s=0) = 5
Nexp(s=5) = 10

Which histogram is more ‘extreme’?!
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The Likelihood Ratio as a test statistic

•  Given two hypothesis Hb and Hs+b the ratio of likelihoods!
is a useful test statistic

•  Intuitive picture: !
!
à If data is likely under Hb,                à If data is likely under Hs+b!
     L(N|Hb) is large,                                 L(N|Hs+b) is large,!
     L(N|Hs+b) is smaller                            L(N|Hb) is smaller !
!
    !


Wouter Verkerke, NIKHEF

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

λ(
!
N ) = small

large
= small λ(

!
N ) = large

small
= large

Visualizing the Likelihood Ratio as ordering principle

•  The Likelihood ratio as ordering principle

•  Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic!

–  Probability to observe ‘similar data or more extreme’ then amounts to !
calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)!

Wouter Verkerke, NIKHEF

L(N|Hs+b)=small!
L(N|Hb)=large

L(N|Hs+b)=soso!
L(N|Hb)=soso

L(N|Hs+b)=large!
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000
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The distribution of the test statistic

•  Distribution of a test statistic is generally not known
•  Use toy MC approach to approximate distribution

–  Generate many toy datasets N under Hb and Hs+b!
and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for !
data sampled under Hs+b

Distribution of λ for !
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫

The distribution of the test statistic

•  Definition: p-value: !
probability to obtain the observed data, or more extreme!
in future repeated identical experiments!
(extremity define in the precise sense of the (LR) ordering rule)

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for !
data sampled under Hs+b

Distribution of λ for !
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫
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Likelihoods for distributions - summary

•  Bayesian inference unchanged!
 !
à simply insert L of distribution to calculate P(H|data)


•  Frequentist inference procedure modified!

!
à Pure P(data|hypo) not useful for non-counting data!
à Order all possible data with a (LR) test statistic in ‘extremity’!
à Quote p(data|hypo) as ‘p-value’ for hypothesis!
    Probability to obtain observed data, or more extreme, is X%   

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

‘Probability to obtain 13 or more 4-lepton events!
under the no-Higgs hypothesis is 10-7’!

‘Probability to obtain 13 or more 4-lepton events!
under the SM Higgs hypothesis is 50%’

The likelihood principle

•  Note that ‘ordering procedure’ introduced by test statistic !
also has a profound implication on interpretation

•  Bayesian inference only uses the Likelihood of the observed data

•  While the observed Likelihood Ratio also !
only uses likelihood of observed data.!



•  Distribution f(λ|N), and thus p-value, also uses likelihood of 

non-observed outcomes (in fact Likelihood of every possible 
outcome is used)!


Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )
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Likelihood Principle

•  In Bayesian methods and likelihood-ratio based methods, the 
probability (density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other data are 
not used!

•  In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

•  This difference is captured by the Likelihood Principle*: !
!
If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.

Wouter Verkerke, NIKHEF 

Generalizing to continuous distributions

•  Can generalize likelihood to described continuous distributions

•  Probability model becomes a probability density model
–  Integral of probability density model over full space of observable is always 1 !

(just like sum of bins of a probability model is always 1)
–  Integral of p.d.f. over a range of observable results in a probability

•  Probability density models have (in principle) more analyzing power
–  But relies on your ability to formulate an analytical model (e.g. hard at LHC)

Wouter Verkerke, NIKHEF

L(
!
N ) = Poisson(

i
∏ Ni | !si + !bi ) L( !mll ) = !fsigGauss(mll

(i), 91,1)+ (1− !fsig ) ⋅Uniform(mll
(i) )#

$
%
&

i
∏
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Generalizing to multiple dimensions

•  Can also generalize likelihood models to distributions in multiple 
observables

•  Neither generalization (binnedàcontinuous, oneàmultiple 
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 

Wouter Verkerke, NIKHEF

L(!x) = f (xi )
i
∏ L(!x, !y) = f (xi, yi )

i
∏

The Likelihood Ratio test statistic as tool for event selection

•  Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem

•  In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always !
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)!
with a likelihood ratio!
!

•  So far we have exploited λ to calculate a frequentist p-value!
tomorrow now explore properties ‘cut on λ’ as basis of (optimal) 
event selection! Wouter Verkerke, NIKHEF

λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )
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Roadmap for this course

•  Start with basics, gradually build up to complexity of !


Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean!
with probabilities”

“p-values”

“Optimal event selection & !
machine learning”

“Confidence intervals, !
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and !
systematic uncertainties”Response functions and subsidiary measurements

HEP workflow versus statistical concepts

MC Simulated 
Events (sig,bkg)

All available !
“real data”

Event 
selection 
(cuts, NN, 

BDT)

Final Event 
Selection (data)

Final Event 
Selection (MC)

Helps!
to define!
selection

Statistical!
Inference

L(x |Hi ) xobs

λ(x) ≡ L(x |Hs+b )
L(x |Hb )

>α

p0 (x |Hi ) = f (λ |Hi )
λobs

∞

∫

P(Hs+b | x) =
L(x |Hs+b )P(Hs+b )

L(x |Hs+b )P(Hs+b )+ L(x |Hb )P(Hb )

“Likelihood”

“Likelihood Ratio”

“p-value from Likelihood Ratio test statistic”

“Bayesian posterior probability”
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The distribution of the test statistic

•  Distribution of a test statistic is generally not known
•  Use toy MC approach to approximate distribution

–  Generate many toy datasets N under Hb and Hs+b!
and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for !
data sampled under Hs+b

Distribution of λ for !
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫

(
Intermezzo – Generating toy data

•  Two approaches to obtaining simulated data
•  First approach is !

‘Physics Monte Carlo Chain’, !
described earlier

–  Time consuming, but!
injects detailed knowledge!
about physics, detector,!
output is full collision!
information, and relation!
to underlying theory details

•  Alternative approach is!
sample sampling the!
probability model ‘toy MC’

–  Fast (generally), only requires access to probability model
–  Can only produce datasets with observables that are described by the 

probability model à Sufficient to study distribution of test statistics

Wouter Verkerke, NIKHEF
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How do you efficiently generate a toy dataset from a probability model?

•  Simplest method is accept/reject sampling!


1)  Determine maximum of function fmax

2)  Throw random number x
3)  Throw another random number y
4)  If y<f(x)/fmax keep x, !

otherwise return to step 2)!
!
!


–  PRO: Easy, always works
–  CON: It can be inefficient if function !

         is strongly peaked.!
         Finding maximum empirically !
         through random sampling can!
         be lengthy in >2 dimensions

Wouter Verkerke, NIKHEF

x 

y 

fmax 

How do you efficiently generate a toy dataset from a probability model?

•  Simplest method is accept/reject sampling!


1)  Determine maximum of function fmax

2)  Throw random number x
3)  Throw another random number y
4)  If y<f(x)/fmax keep x, !

otherwise return to step 2)!
!
!


–  PRO: Easy, always works
–  CON: It can be inefficient if function !

         is strongly peaked.!
         Finding maximum empirically !
         through random sampling can!
         be lengthy in >2 dimensions

Wouter Verkerke, NIKHEF

x 

y 

fmax 
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Wouter Verkerke, UCSB

Toy MC generation – Inversion method

•  Fastest: function inversion!

1)  Given f(x) find inverted function F(x) !

so that f( F(x) ) = x
2)  Throw uniform random number x
3)  Return F(x)!

!
!
!


–  PRO: Maximally efficient
–  CON: Only works for invertible functions

Take –log(x) 
x 

-ln(x) 

Exponential 
distribution 

Wouter Verkerke, UCSB

Toy MC Generation – importance sampling

•  Hybrid: Importance sampling!

1)  Find ‘envelope function’ g(x) !

that is invertible into G(x)!
and that  fulfills g(x)>=f(x) !
for all x

2)  Generate random number x !
from G using inversion method

3)  Throw random number ‘y’
4)  If y<f(x)/g(x) keep x, !

otherwise return to step 2!
!
!
!


–  PRO: Faster than plain accept/reject sampling!
        Function does not need to be invertible

–  CON: Must be able to find invertible envelope function

G(x) 

y 

g(x) 

f(x) 
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Toy MC Generation – importance sampling in >1D

•  General algorithms exists that can construct empirical envelope 
function 

–  Divide observable space recursively into smaller boxes and take uniform 
distribution in each box

–  Example shown below from FOAM algorithm

Wouter Verkerke, NIKHEF

Toy MC Generation – importance sampling in >1D

•  For binned distributions, can generate content of each bin on toy 
dataset independently, using a Poisson process

•  Note that efficient generation of Poisson random number relies on 
combination of importance sampling (for small μ, using 
exponential envelope, for large μ using Cauchy distribution)   

Wouter Verkerke, NIKHEF

L(
!
N |Hs+b ) = Poisson(

i
∏ Ni | "si + "bi ))


