

Exercise 10 - continued

- Now we introduce a nuisance parameter (continued)
 - Now comment the step-1 return statement.
 - Now make a fit of 'model2' similar to the fit of 'model' before
 - Compare what parameters are fitted, what the fitted values are, and how the uncertainties on the fitted parameters compare
 - What happens to the uncertainty on mu between the 1st and 2nd fit?
- Congratulations you have just performed your first profile likelihood fit that includes a systematic uncertainty (on the background estimate) in your fitted estimate of mu!

Exer	cise 13 - continued
• Cc	Instructing a template morphing model
-	Make a 2D plot of the template morphing signal model in the observable x and the nuisance parameter alpha
	w->function("pi_sig")->createHistogram("x,alpha")- >Draw("SURF")
-	You will clearly see that in the default configuration the signal model is allowed to extrapolate to negative signal yields. Disable this feature (w->function("pi_sig")->setPositiveDefinite(kTRUE)) and remake the above plot
-	You also clearly see the kinks in the predictions at alpha=0, as the model by default implements a piece-wise linear model. Switch this to polynomial interpolation model (w->function ("pi_sig") ->setAllInterpCodes (4)) and remake the above plot.
-	Finally construct the full template morphing model by 1) replacing in the 'model', the simple signal model 'hf_sig' with the morphing model 'pi_sig' 2) constructing the full likelihood 'model2' as the product of 'model' and Gaussian subsidiary measurement on alpha (with observed value 0 and width 1)
-	Fit the template morphing model to the data and observe the effect of the introduction of the JES uncertainty on mu.
_	Also look at the fitted value of alpha and its uncertainty. Is the physics measurement able to constrain the JES uncertainty beyond the 'input' of the subsidiary measurement?

•	A template fit accounting for statistical uncertainties
	 Now we need to construct the classes that introduces the subsidiary Poisson measurements that constrain the parameters of the flexible template parameters to the "measured" MC event counts:
	HistConstraint::hc_sig(hf_sig)
	The only constructor argument is the template function (RooParamHistFunc, named 'hf_sig' in the code example above) for which it makes subsidiary measurement.
	(The construction of this subsidiary measurement will 'automagically' make all parameters of the RooHistFunc floating)
	Construct objects of type for both the signal and background template (name them hc_sig and hc_bkg)
	 Finally, construct the full model multiplying the template model and the two HistConstraint objects (Use PROD::model2 () to construct the product. Note that you can use one PROD() object to multiply any number of models
	 Fit the template 'model2' that now includes Beeston-Barlow MC statistical uncertainty treatment. Look at the values of all fit parameters and in particular compare the uncertainty on mu of this fit w.r.t. the earlier fit to the rigid template model. Is the difference between mu uncertainties consistent with your expectation?