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Wouter Verkerke, NIKHEF 

Day 3

Exercise 9 – A Poisson counting experiment

•  Run macro ex9.C. 
•  This macro does the following for you:

–  It creates an empty RooFit workspace 
–  Fills the workspace a Poisson probability model Poisson(N,S+B) with B fixed to 2, 

and signal floating (but chosen at 0)
–  It prints the contents workspace: it will show 3 variables (B,N,S) one function object 

Nexp(B,S) and one probability model ‘model(N,Nexp)’.

•  Look at the macro and understand how the variables and function 
objects are created

•  Plotting the probability model
–  Comment the return statement at the STEP1 comment, and run again.
–  The macro will proceed to make a plot of the probability model for the observable 

N, for the parameter configuration B=5,S=0
–  Uncomment the return statement at the STEP2 comment, and run again.
–  The macro will change the value of S from 0 to 2, and plot the distribution of N on 

the same plot frame 
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Exercise 10 – Adding a nuisance parameter

•  We will now move to one of the core topic of this lecture: 
introducing a systematic uncertainty the model of ex9 by 
introducing a subsidiary measurement and a nuisance parameters

•  Run macro ex10.C 
•  This macro does the following for you

–  It makes a slight variation of the model of Ex1, but expresses the signal 
strength as the product S*mu of the (fixed) nominal signal strength S and a 
floating signal strength modifier mu (the modifier is then independent of the 
absolute yield, mu=0 à no signal, mu=1 à expected signal, mu=2 à twice 
expected signal)

•  Now we introduce a nuisance parameter
–  Make a fit (either using RooMinimizer or using fitTo) that measures the 

uncertainty on mu, using both HESSE and MINOS. [ Insert code before the 
Step1 return ]

–  OPTIONAL: Make a plot of –logL versus mu in the range [0,2] using your 
experience of Ex 2. 

Exercise 10 – continued 

•  Now we introduce a nuisance parameter (continued)
–  Now comment the step-1 return statement.
–  Now make a fit of ‘model2’ similar to the fit of ‘model’ before
–  Compare what parameters are fitted, what the fitted values are, and how the 

uncertainties on the fitted parameters compare
–  What happens to the uncertainty on mu between the 1st and 2nd fit? 


•  Congratulations – you have just performed your first profile 

likelihood fit that includes a systematic uncertainty (on the 
background estimate) in your fitted estimate of mu!
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Exercise 11 – A sideband measurement

•  We will now explore the similarity between subsidiary measurements 
and sideband measurements

–  In the model of Ex9 the background rate was constrained by a Gaussian subsidiary 
measurement that measurement B=20 with an uncertainty of 5

•  Run macro ex11.C 
•  This macro does the following for you

–  It rebuild the model of Ex 10 in a compact syntax, and fits it to the data

•  Now we rebuild the model assuming that B is measurement in a 
control region, rather than describing an ‘abstract’ Gaussian 
uncertainty

–  Construct a Poisson model for a fictitious control region that measures the model 
parameter B from an observed number of event NCTL=20 in the control region 
(Hint: name this model ‘control_model’, and name the observable for this 
control region ‘Nctl’ and set it to a constant value of 20

–  Once the control measurement is made, construct a new product (name it 
‘model3’ of the original measurement ‘model’ and ‘control_model’) 

–  Fit model3 to the data, compared the results 

Exercise 11– continued

•  Comparing the results
–  You will find that the uncertainty on mu between the fit to model2 and 

model3 is somewhat different. This is driven by the fact that the uncertainty 
on B in both models is also somewhat different: model2 implements a 
Gaussian uncertainty of width 5, whereas the sideband measurement with 
Nctl measures and uncertainty of sqrt(20). 

–  We have so far assumed that the control region measures the same B as 
‘model’, but it could very well be that the control region is larger, and would 
effectively measure twice the rate (i.e. if Nctl =40 then B=20). To introduce this 
effect of the ‘size’ of the control region, we introduce an extra (constant) 
parameter in the model that expresses this rescaling: Construct a new 
sideband model (name it model_control2) that implements Poisson(Nctl|
tau*B) where tau is a constant parameter with value 2. "
Hint: you can use an “expr::tauxb(‘tau*b’,tau,b)” function 
expression to construct an object that represents the product ‘tau*b’. 

–  Once this is done, construct a new full model (named model4) that is the 
product of ‘model’ and ‘model_control2’ and fit this again to the data. 
What happens to the uncertainty on B and mu?

–  What value of tau should you use to obtain uncertainties on B and tau that are 
identical to those of model2? 
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Exercise 12

•  Template fits
–  We will now construct a first template fit, where a signal and a background 

model are described by a histogram obtained from MC simulation

•  Run ex12.C
–  Note that this macro uses input file ex12.root 

•  This macro does the following for you
–  It opens ex12.root and uses the a template histogram in ex12.root to 

construct a probability model for ‘signal’ in an observable x

•  Performing a simple template fit
–  Open first ex12.root and look at the TH1 histograms stored in here: there 

is a signal template, a background template and a ‘data’ histogram
–  In a new root session, run macro ex12.C. You now see the signal histogram 

used to construct a yield function (a RooHistFunc) in. Add code to also do 
this for the background template (the TH1 is called h_bkg, name the 
corresponding RooDataHist and RooHistFunc dh_bkg and fh_bkg 
respectively)

Exercise 12 - continued

•  Performing a simple template fit
–  Now construct from the sum of two yield functions a probability model as 

follows (in the workspace factory)"
"
ASUM::model(mu[1,0,5]*hf_sig,nu[1]*hf_bkg) 
 
This class takes two yield histograms and turns the weighted sum of these in 
a probability model that can fitted. 

–  Fit the model to the data, make a plot of the data overlaid with the fitted model 
(hint: first call data.plotOn(frame) and then model.plotOn(frame). 
You can also overlay the background component of the model using"
 "
  pdf("model”)->plotOn(frame, 
             Components(”hf_bkg"),LineStyle(kDashed)) ;) 

–  OPTIONAL: repeat this exercise with different templates and datasets to 
observe how signal/background shape and yields affect the fitted signal rate 
mu. To make these modified inputs, copy file makeinput_ex10.C, adjust 
the parameters inside it, and run it to regenerate ex10.root 
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Exercise 13
•  Constructing a template morphing model that accounts for a ‘jet 

energy scale’ (JES) uncertainty in the signal template 
•  Run macro ex13.C 
•  What does this macro do for you?

–  It opens ex13.root and uses the a template histogram in ex13.root to construct 
a probability model for ‘signal plus background’ in an observable x

–  Note that we switched back to 100 bins for a more ‘dramatic’ visualization

•  Constructing a template morphing model
–  Run the macro as provided and observe the fit result and plotted result. 
–  The first step towards setting up a template morphing model is constructing 

HistFunc objects for the JES-up and JES-down variation templates (the datasets 
are already imported by the macro)

–  The next step is to make a template morphing signal model. The ‘magic’ class to 
do this is called PiecewiseInterpolation. The workspace factory string to 
make such an object is"
"
PiecewiseInterpolation::pi_sig(Fnom,Flo,Fhi,NP) 
"
where Fnom/lo/hi are the RooHistFuncs representing the nominal, down and 
up templates and NP is the nuisance parameter associated with the systematic 
uncertainty. Construct the PiecewiseInterpolation function, and the 
nuisance parameter (call that one ‘alpha’ with a range [-5,5]).  

Exercise 13 - continued

•  Constructing a template morphing model
–  Make a 2D plot of the template morphing signal model in the observable x and the 

nuisance parameter alpha"
"
w->function(“pi_sig”)->createHistogram(“x,alpha”)-
>Draw(“SURF”) 

–  You will clearly see that in the default configuration the signal model is allowed to 
extrapolate to negative signal yields. Disable this feature (w-
>function(“pi_sig”)->setPositiveDefinite(kTRUE)) and remake the 
above plot

–  You also clearly see the kinks in the predictions at alpha=0, as the model by default 
implements a piece-wise linear model. Switch this to polynomial interpolation model 
(w->function(“pi_sig”)->setAllInterpCodes(4)) and remake the 
above plot. 

–  Finally construct the full template morphing model by "
1) replacing in the ‘model’, the simple signal model ‘hf_sig’ with the morphing 
model ‘pi_sig’ 2) constructing the full likelihood ‘model2’ as the product of 
‘model’ and Gaussian subsidiary measurement on alpha (with observed value 0 
and width 1)

–  Fit the template morphing model to the data and observe the effect of the 
introduction of the JES uncertainty on mu.

–  Also look at the fitted value of alpha and its uncertainty. Is the physics 
measurement able to constrain the JES uncertainty beyond the ‘input’ of the 
subsidiary measurement?
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Exercise 15 – (Optional, skip if you are short on time!)

•  Performing a template fit accounting for MC statistical 
uncertainties ‘Beeston-Barlow-style’

•  Run macro ex15.C 
–  Note that this macro uses input file ex15.root 

•  This macro does the following for you
–  It opens ex15.root and uses the template histograms in ex15.root to 

construct a probability model for ‘signal plus background’ in an observable x
–  Note that the number of bins has changed from 100 to 20

•  A template fit accounting for statistical uncertainties
–  Perform a fit of the ‘model’ to the ‘data’ dataset and plot the dataset and 

model overlaid, following the example of ex12.
–  Now change the ‘rigid’ template for signal and background in a ‘flexible’ 

template for signal and background as follows:: change class HistFunc in 
class RooParamHistFunc 

–  When you fit again you will that result is (still) the same, as parameters that can 
change each bin the templates are initially constant.

Exercise 15 – (Optional, skip if you are short on time!)

•  A template fit accounting for statistical uncertainties
–  Now we need to construct the classes that introduces the subsidiary Poisson 

measurements that constrain the parameters of the flexible template parameters to 
the “measured” MC event counts:"
"
HistConstraint::hc_sig(hf_sig)  
"
The only constructor argument is the template function (RooParamHistFunc, 
named ‘hf_sig’ in the code example above) "
for which it makes subsidiary measurement."
"
(The construction of this subsidiary measurement will ‘automagically’ make all parameters of the 
RooHistFunc floating)"
"
Construct objects of type for both the signal and background template (name them 
hc_sig and hc_bkg)"
"
Finally, construct the full model multiplying the template model and the two 
HistConstraint objects (use PROD::model2(….) to construct the product. 

•  Note that you can use one PROD() object to multiply any number of models 

–  Fit the template ‘model2’ that now includes Beeston-Barlow MC statistical 
uncertainty treatment. Look at the values of all fit parameters and in particular 
compare the uncertainty on mu of this fit w.r.t. the earlier fit to the rigid template 
model. Is the difference between mu uncertainties consistent with your 
expectation?     


