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Next subject…


•  Start with basics, gradually build up to complexity of "



Statistical tests with simple hypotheses for counting data 


Statistical tests with simple hypotheses for distributions 


Hypothesis testing as basis for event selection


Composite hypotheses (with parameters) for distributions 


“What do we mean!
with probabilities”


“p-values”


“Optimal event selection & !
machine learning”


“Confidence intervals, !
Maximum Likelihood”


“Fitting the background”
Statistical inference with nuisance parameters


“Sideband fits and !
systematic uncertainties”
Response functions and subsidiary measurements


So far we’ve only considered the ideal experiment


•  The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement


•  For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial"
"
"
"
"
"
"
"
"



•  So far only considered a single parameter in the likelihood:"
the physics parameter of interest, usually denoted as μ
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏
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The imperfect experiment


•  In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest


•  How do you model these uncertainties in the likelihood? 
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions!
are affected by (systematic) uncertainties


Adding parameters to the model


•  We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain


•  These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



3 

What are the nuisance parameters of your physics model?


•  Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions"
"



•  Is your model correct? (Is true signal distr. captured by a Gaussian?)

•  Is your model flexible enough? (4th order polynomial, or better 6th)?

•  How do model parameters connect to known detector/theory 

uncertainties in your distribution? 

–  what conceptual uncertainty do your parameters represent?
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

The statisticians view on nuisance parameters


•  In general, our model of the data is not perfect


•  Can improve modeling by including additional adjustable parameters

•  Goal: some point in the parameter space of the enlarged model 

should be “true”

•  Presence of nuisance parameters decreases the sensitivity of the 

analysis of the parameter(s) of interest
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Treatment of nuisance parameters in parameter estimation


•  In POI parameter estimation, the effect of NPs incorporated 
through unconditional minimization


–  I.e. minimize Likelihood w.r.t all parameter simultaneously.


•  Simple example with 2-bin Poisson counting experiment
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L(s,b) = Poisson(10 | s+ b)Poisson(10 | 3⋅b)

Unconditional"
minimum in s,b


Conditional "
minimum in s"
(condition: b=5)


(ŝ, b̂)

ˆ̂s
b=5

L(s) = Poisson(10 | s+ 5)

Treatment of nuisance parameters in variance estimation


•  Maximum likelihood estimator of parameter variance "
is based on 2nd derivative of Likelihood 


–  For multi-parameter problems this 2nd derivative is generalized "
by the Hessian Matrix of partial second derivatives"
"
"
"



•  For multi-parameter likelihoods estimate of covariance Vij of pair"
of 2 parameters in addition to variance of individual parameters


–  Usually re-expressed in terms dimensionless correlation coefficients ρ 


Wouter Verkerke, NIKHEF


1

2

2
2 ln)(ˆ)(ˆ

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

pd
LdpVpσ σ̂ (pi )

2 = V̂ (pii ) = H −1( )ii

Vij = ρij V iiVjj



5 

Treatment of nuisance parameters in variance estimation


•  Effect of NPs on variance estimates visualized
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Uncertainty on background increases uncertainty on signal 


Treatment of NPs in hypothesis testing and conf. intervals


•  We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)


–  Result is p-value on hypothesis with given μ value, or

–  Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 

above a certain level (the confidence level)


•  How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?


–  With a test statistics qμ, we calculate p-value for hypothesis θ as 


•  But what values of θ do we use for f(qμ|μ,θ)?"
Fundamentally, we want to reject μ only if p<α for all θ"
à Exact confidence interval


∫
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Hypothesis testing & conf. intervals with nuisance parameters


•  The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter


•  if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 


–  e.g. don’t claim discovery if any background scenario is compatible with data"



•  But: technically very challenging and significant problems with 
over-coverage


–  Example: how broadly should ‘any background scenario’ be defined?  Should 
we include background scenarios that are clearly incompatible with the 
observed data?


Wouter Verkerke, NIKHEF, 11


The profile likelihood construction as compromise


•  For LHC the following prescription is used: "
"
                Given L(μ,θ)"
"
perform hypothesis test for each value of μ (the POI), "
"
using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ


•  Introduce the following notation"
"



•  The resulting confidence interval will have exact coverage for the 
points


–  Elsewhere it may overcover or undercover (but this can be checked)


Wouter Verkerke, NIKHEF, 12


)(ˆ̂ µθ M.L. estimate of θ for a given value of μ"
(i.e. a conditional ML estimate)


))(ˆ̂,( µθµ

POI


NPs
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The profile likelihood ratio


•  With this prescription we can construct the profile likelihood ratio 
as test statistic


•  NB: value profile likelihood ratio does not depend on θ 


Wouter Verkerke, NIKHEF, 13


)ˆ(
)()(

µ
µ

µλ
L
L

=
)ˆ,ˆ(
))(ˆ̂,()(

θµ

µθµ
µλ

L
L

=

Likelihood for given μ


Maximum Likelihood


Maximum Likelihood for given μ


Maximum Likelihood


Profiling illustration with one nuisance parameter
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Profile scan of a Gaussian plus Polynomial probability model


Wouter Verkerke, NIKHEF


Likelihood Ratio


Profile Likelihood Ratio



Minimizes –log(L) "
for each value of fsig "
by changing bkg shape params"
(a 6th order Chebychev Pol)


Profile scan of a Gaussian plus Polynomial probability model
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Likelihood Ratio


Profile Likelihood Ratio



Minimizes –log(L) "
for each value of fsig "
by changing bkg shape params"
(a 6th order Chebychev Pol)


Interval on μ widens 
due to effect of uncertain NPs 
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PLR Confidence interval vs MINOS


tμ(x,μ)


Profile Likelihood Ratio


pa
ra

m
et

er
 μ



Confidence "
belt now "
range in PLR
 tμ(x,μ)


Profile Likelihood Ratio

pa

ra
m

et
er

 θ



Measurement = tμ(xobs,μ) "
is now a function of μ


Asymptotically,"
distribution is identical"
for all μ


NB: asymptotically, distribution !
is also independent of true !
values of θ


Link between MINOS errors and profile likelihood


"
"
"
"
"
"
"



•  Note that MINOS algorithm in "
MINUIT gives same errors as "
Profile Likelihood Ratio


–  MINOS errors is bounding box "
around λ(s) contour


–  Profile Likelihood = Likelihood"
minimized w.r.t. all nuisance "
parameters
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NB: Similar to graphical interpretation of variance estimators, but those"
       always assume an elliptical contour from a perfectly parabolic likelihood 
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Summary on NPs in confidence intervals


•  Exact confidence intervals are difficult with nuisance parameters

–  Interval should cover for any value of nuisance parameters

–  Technically difficult and significant over-coverage common


•  LHC solution Profile Likelihood ratio à Guaranteed coverage at 
measured values of nuisance parameters only


–  Technically replace likelihood ratio with profile likelihood ratio

–  Computationally more intensive (need to minimize likelihood w.r.t all nuisance 

parameters for each evaluation of the test statistic), but still very tractable


•  Asymptotically confidence intervals constructed with profile 
likelihood ratio test statistics correspond to (MINOS) likelihood 
ratio intervals


–  As distribution of profile likelihood becomes asymptotically independent of θ,"
coverage for all values of θ restored  


Wouter Verkerke, NIKHEF, 19


Dealing with nuisance parameters in Bayesian intervals


•  Elimination of nuisance parameters in Bayesian interval: Integrate 
over the full subspace of all nuisance parameters;"
"
 "
"
"



•  You are left with posterior pdf for µ


P(µ | x)∝ L(x |µ,

θ )π (µ)π (


θ )( )d


θ∫

µ 

θ 

)ˆ,ˆ( θµ∫ × = ),( θµπ

Credible interval:

area that integrates "
X% of posterior


P(µ | x)∝ L(x |µ) ⋅π (µ)
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Computational aspects of dealing with nuisance parameters


•  Dealing with many nuisance parameters is computationally 
intensive in both Bayesian and (LHC) Frequentist approach


•  Profile Likelihood approach

–  Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve

–  Minimization can be a difficult problem, "

e.g. if there are strong correlations, or multiple minima


•  Bayesian approach

–  Computational challenge = Integration of posterior density of all nuisance 

parameters


–  Requires sampling of very potentially very large space.

–  Markov Chain MC and importance sampling techniques can help, but still very 

CPU consuming 


Wouter Verkerke, NIKHEF


Other procedures that have been tried*


•  Hybrid Frequentist-Bayesian approach (‘Cousins-Highland / ZN’)

–  Integrate likelihood over nuisance parameters"

"
"
"



–  Then treat integrated Lm as test statistic à obtain p-value from its distribution

–  In practice integral is performed using MC integration, so often described as a 

‘sampling method’"
"



–  Method has been shown to have bad coverage


•  Ad-hoc sampling methods of various types.

–  Usually amount to either MC integration or fancy error propagation"

 "
Note that sampling the conditional estimator       "
over sample of θ values obtained from π(θ) "
is just glorified error propagation! 


Wouter Verkerke, NIKHEF

* But are known to have problems


Lm (µ) = L(µ,

θ )π (


θ )( )d


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1
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L(µ,
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θi )π (


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How much do answers differ between methods?


These slide discuss "
a ‘prototype’ likelihood"
that statisticians like: "
"
Poisson(Nsig|s+b) ⋅ Poisson(Nctl|τ⋅b)



NB: This is one of the very few"
problems with nuisance parameters"
with can be exactly calculation"



Recent comparisons results from PhyStat 2007


Wouter Verkerke, NIKHEF


Exact 
solution 
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Summary of statistical treatment of nuisance parameters


•  Each statistical method has an associated technique to propagate 
the effect of uncertain NPs on the estimate of the POI


–  Parameter estimation à Joint unconditional estimation

–  Variance estimation à Replace d2L/dp2 with Hessian matrix

–  Hypothesis tests & confidence intervals à Use profile likelihood ratio

–  Bayesian credible intervals à Integration (‘Marginalization’)"




•  Be sure to use the right procedure with the right method

–  Anytime you integrate a Likelihood you are a Bayesian

–  If you are minimizing the likelihood you are usually a Frequentist

–  If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation


•  Answers can differ substantially between methods!

–  This is not always a problem, but can also be a consequence of a difference in 

the problem statement 

Wouter Verkerke, NIKHEF


Overview


•  Start with basics, gradually build up to complexity of "



Statistical tests with simple hypotheses for counting data 


Statistical tests with simple hypotheses for distributions 


Hypothesis testing as basis for event selection


Composite hypotheses (with parameters) for distributions 


“What do we mean!
with probabilities”


“p-values”


“Optimal event selection & !
machine learning”


“Confidence intervals, !
Maximum Likelihood”


“Fitting the background”
Statistical inference with nuisance parameters


“Profile Likelihood fits”
Response functions and subsidiary measurements
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The ideal experiment


•  The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement


•  For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial"
"
"
"
"
"
"
"
"



•  Only a single* parameter in the likelihood:"
the physics parameter of interest, usually denoted as μ


*Unless there are of course multiple POIs…
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L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

The imperfect experiment


•  In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest


•  How do you model these uncertainties in the likelihood? 


Wouter Verkerke, NIKHEF


L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions!
are affected by (systematic) uncertainties
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Adding parameters to the model


•  But parametric form of detector and theory systematic 
uncertainties is often, at first sight, elusive


•  Ad-hoc parameterizations (like above) do not necessarily capture 
all uncertain degrees of freedom, provide no meaningful insight in 
effect of known systematic uncertainties on the analysis. 
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L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏

The simulation workflow and origin of uncertainties


Wouter Verkerke, NIKHEF

Wouter Verkerke, NIKHEF 


Simulation of high-energy"
physics process


Simulation of ‘soft physics’"
physics process


Simulation of ATLAS"
detector


Reconstruction "
of ATLAS detector


LHC data
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Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% for jets with pT<40”"




•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”

–  “Evaluate the effect of using Herwig and Pythia and consider the difference "

the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties in MC samples 


Wouter Verkerke, NIKHEF


What can you do with systematic uncertainties


•  As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 


•  This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation


•  Error propagation procedure in a nutshell

–  Make nominal measurement (using your favorite statistical inference procedure)

–  Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 

sigma’ up and down ) Redo measurement procedure for each shift

–  Consider propagated effect of shifted setting the systematic uncertainty"



"



Wouter Verkerke, NIKHEF


µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical!
analysis


Systematic uncertainty!
from error propagation
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Pros and cons of the ‘naïve’ approach


•  Pros

–  It’s easy to do

–  It results in a seemingly easy-to-interpret table of systematics


•  Cons

–  Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored

–  Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 

–  You lost the connection with fundamental statistical techniques "

(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way


–  No calibrated probabilistic statements possible (95% C.L.)


•  ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 


Wouter Verkerke, NIKHEF


Everything starts with the likelihood


•  All fundamental statistical procedures are based on the likelihood 
function as ‘description of the measurement’


Frequentist statistics 


Confidence interval on s! Posterior on s! s = x ± y!

Bayesian statistics 
 Maximum Likelihood


Nobs e.g. L(15|s=0)!
e.g. L(15|s=10)!
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Everything starts with the likelihood


Wouter Verkerke, NIKHEF


Frequentist statistics 


Confidence interval!
or p-value!

Posterior on s!
or Bayes factor!

s = x ± y!

Bayesian statistics 
 Maximum Likelihood


λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

P(µ)∝ L(x |µ) ⋅π (µ) 0)(ln

ˆ

=
= ii pppd

pLd
!
!

Introducing uncertainties – a non-systematic example


•  The original model (with fixed b)


•  Now consider b to be uncertain"
"



•  The experimental data contains insufficient to constrain both"
s and b à Need to add an additional measurement to constrain b


Wouter Verkerke, NIKHEF


s=0 

s=5 

s=10 
s=15 

L(N|s) à L(N|s,b)
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The sideband measurement


•  Suppose your data "
in reality looks like this è "
"
"
"
"
Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space "



•  Full likelihood of the measurement (‘simultaneous fit’)


LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents "
the amount of bkg is the SR. "
"
Scale factor τ accounts for difference "
in size between SR and CR


Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR
 SR


“Background uncertainty constrained from the data”


Generalizing the concept of the sideband measurement


•  Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’"
"
 


•  Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty 
 
 
 
 
 



–  We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement
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Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’


‘Subsidiary measurement’"
of background rate


Generalize: ‘sideband’ à ‘subsidiary measurement’!
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What is a systematic uncertainty?


•  Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.


–  E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” "
does not discuss systematic uncertainties at all"



•  A common definition is

–  “Systematic uncertainties are all uncertainties that are "

not directly due to the statistics of the data”"



•  But the notion of ‘the data’ is a key source of ambiguity: 

–  does it include control measurements?

–  does it include measurements that were used to perform basic "

(energy scale) calibrations?


Wouter Verkerke, NIKHEF


Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% "

 for jets with pT<40”"



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 "

and 2.0 and consider the difference "
the systematic uncertainty”


–  “Evaluate the effect of using "
Herwig and Pythia and consider the difference "
the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties"

in MC samples 


Wouter Verkerke, NIKHEF


Subsidiary measurement"
is an actual measurement"
à conceptually similar to "
    a ‘sideband’ fit


Subsidiary measurement"
unclear, but origin of"
prescription may well"
be another measurement

(if yes, like sideband, if"
 no, what is source of info?)


Subsidiary measurement"
is a Poisson counting"
experiment (but now in"
MC events), otherwise"
conceptually identical to"
a ‘sideband fit’
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Typical systematic uncertainties in HEP


•  Detector-simulation related

–  “The Jet Energy scale uncertainty is 5%”

–  “The b-tagging efficiency uncertainty is 20% "

 for jets with pT<40”"



•  Physics/Theory related

–  The top cross-section uncertainty is 8%

–  “Vary the factorization scale by a factor 0.5 "

and 2.0 and consider the difference "
the systematic uncertainty”


–  “Evaluate the effect of using "
Herwig and Pythia and consider the difference "
the systematic uncertainty”"



•  MC simulation statistical uncertainty

–  Effect of (bin-by-bin) statistical uncertainties"

in MC samples 


Wouter Verkerke, NIKHEF


Subsidiary measurement"
is an actual measurement"
à conceptually to "
    a ‘sideband’ fit


Subsidiary measurement"
unclear, but origin of"
prescription may well"
be another measurement

(if yes, like sideband, if"
 no, what is source of info?)


Subsidiary measurement"
is a Poisson counting"
experiment (but now in"
MC events), otherwise"
conceptually identical to"
a ‘sideband fit’


Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape!


à Can always model systematics like sidebands "
     in the Likelihood



And even when the are not the (in)direct result of "
some measurement (certainty theory uncertainties)"
we can still model them in that form




Modeling a detector calibration uncertainty


•  Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 


L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)


Observed event count


Nominal background "
expectation from MC"
(a constant), obtained"
with a=a˜


Response function!
for JES uncertainty!
(a 1% JES change "

results in a 2% "
acceptance change)


“Subsidiary measurement”

Encodes ‘external knowledge’ "
on JES calibration


Nominal calibration

Assumed calibration


Uncertainty"
on nominal"
calibration"
(here 5%)!

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)
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Modeling a detector calibration uncertainty


•  Simplify expression by renormalizing “subsidiary measurement”


Wouter Verkerke, NIKHEF


L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)


Observed event count


Nominal background "
expectation from MC"
(a constant)


Response function 
for normalized JES  

parameter"
[a unit change in α "

– a 5% JES change –  "
still results in a 10% "
acceptance change]


“Normalized !
subsidiary measurement”!
!
The scale of parameter 
α is now chosen such that  
values ±1 corresponds to the  
nominal uncertainty 
(in this example 5%) 

Gauss( α |α,σα )

The response function as empirical model of full simulation


•  Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain


–  But you cannot run your full simulation chain for any arbitrary ‘systematic 
uncertainty variation’ à Too much time consuming


–  Typically, run full MC chain for nominal and ±1σ variation of systematic 
uncertainty, and approximate response for other values of NP with interpolation


–  For example run at nominal JES and with JES shifted up and down by ±5%


Wouter Verkerke, NIKHEF


L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α


b(
α)



-1
  0
  +1
 0.9


1.0


1.1


Full MC result for JES at -5%


Full MC result for JES at +5%

Empirical approximation!
of true response




23 

What is a systematic uncertainty?


•  It is an uncertainty in the Likelihood of your physics measurement"
that is characterized deterministically, up to a set of parameters,"
of which the true value is unknown.


•  A fully specified systematic uncertainty defines 

–  1: A set of one or more parameters "

    of which the true value is unknown, 

–  2: A response model that describes the effect of those "

    parameters on the measurement"
    (sampled from full simulation, and interpolation)


–  3: A subsidiary measurement of the parameters"
    that constrains the values the parameters can take"
    (implies a specific distribution: Gaussian (default, CLT),"
     Poisson (low-stats counting), or otherwise)
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Names and conventions – ‘profiling’ & ‘constraints’


•  The full likelihood function of the form "
"
"
"
is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way


–  Note: statisticians use the word profiling for something else


•  Physicists often refer to the subsidiary measurement as a 
‘constraint term’


–  This is correct in the sense that it constrains the parameter α, but this labeling 
commonly lead to mistaken statements (e.g. that it is a pdf for α)


–  But it is not a pdf in the NP


Wouter Verkerke, NIKHEF


L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)
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Names and conventions


•  The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point


–  The full likelihood is simply a joint likelihood of a physics measurement and a 
calibration measurement where both terms are treated on equal footing in the 
statistical procedure


–  In a perfect world, not bound by technical modelling constraints"
you would use this likelihood"
"
"
"
where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.


•  Since we are bound by technical constrains, we substitute LJES 
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same


Wouter Verkerke, NIKHEF


L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )

MC statistical uncertainties as systematic uncertainty


•  Another example of modeling a systematic uncertainty:"
MC statistical uncertainty


•  Follow same procedure again as before: 

–  Define response function (this is trivial for MC statistics: "

it is the luminosity ratio of the MC sample and the data sample)

–  Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process

–  Construct full likelihood (‘profile likelihood’)


•  Note uncanny similarity to full likelihood of a sideband measurement! 


Wouter Verkerke, NIKHEF


L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)


L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)
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Modeling multiple systematic uncertainties


•  Introduction of multiple systematic uncertainties presents no 
special issues


•  Example JES uncertainty plus generator ISR uncertainty




•   A brief note on correlations


–  Word “correlations” often used sloppily – proper way is to think of correlations 
of parameter estimators. Likelihood defines parameters αJES, αISR. "
The (ML) estimates of these are denoted


–  The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)


–  The ML estimators of               using the full Likelihood may be correlated."
This is due to physics modeling effects encoded in the joint response function 
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L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function"
for both systematics


One subsidiary"
measurement for each 

source of uncertainty


α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR

Modeling systematic uncertainties in multiple channels


•  Systematic effects that affect multiple measurements should be 
modeled coherently.


–  Example – Likelihood of two Poisson counting measurements


–  Effect of changing JES parameter αJES coherently affects both measurement.

–  Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 


Wouter Verkerke, NIKHEF


L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅

JES response "
function for "
channel A


JES response 

function for "
channel B


JES"
subsidiary"

measurement
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Introducing response functions for shape uncertainties 


•  Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models


–  Example: Likelihood modeling "
distribution in a di-lepton invariant"
mass. POI is the signal strength μ"






•  Consider a lepton energy scale "
systematic uncertainty that affects this measurement


–  The LES has been measured with a 1% precision

–  The effect of LES on mll has been determined to a 2% shift for 1% LES change


Wouter Verkerke, NIKHEF


L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function
 Subsidiary measurement


Response modeling for distributions


•  For a change in the rate, response "
modeling of histogram-shaped "
distribution is straightforward:"
simply scale entire distribution!



•  But what about a systematic uncertainty that shifts the mean,"

or affects the distribution in another way?


Wouter Verkerke, NIKHEF


L(
!
N |µ) = Poisson(

i
∏ Ni |µ !si + !bi )

L(
!
N |µ,α) = Poisson(

i
∏ Ni |µ !si ⋅ (1+3.75α)+ !bi ) ⋅Gauss(0 |α,1)

Response function"
for signal rate


Subsidiary "
measurement
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Modeling of shape systematics in the likelihood


•  Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain


–  Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ "
settings of systematic effect


•  Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 


Wouter Verkerke, NIKHEF


‘-1σ’
 ‘nominal’
 ‘+1σ’


Need to interpolate between template models


•  Need to define ‘morphing’ algorithm to define "
distribution s(x) for each value of α


Wouter Verkerke, NIKHEF

s(x,α=-1) 

s(x,α=0) 

s(x,α=+1) 
s(x)|α=-1 

s(x)|α=0 

s(x)|α=+1 
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Piecewise linear interpolation


•  Simplest solution is piece-wise linear interpolation for each bin


Wouter Verkerke, NIKHEF


Piecewise linear"
interpolation"
response model"
for a one bin


Extrapolation to |α|>1


Kink at α=0


Ensure si(α)≥0


Visualization of bin-by-bin linear interpolation of distribution


Wouter Verkerke, NIKHEF


x
α
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Limitations of piece-wise linear interpolation


•  Bin-by-bin interpolation looks spectacularly easy and simple, "
but be aware of its limitations


–  Same example, but with larger ‘mean shift’ between templates


Wouter Verkerke, NIKHEF


Note double peak structure around |α|=0.5


Non-linear interpolation options


•  Piece-wise linear interpolation leads to kink in response functions that 
may result in pathological likelihood functions"
"
"
"
"
"
"
"
"
"
"



•  A variety of other interpolation options exist that improve this

–  Parabolic interpolation/linear extrapolation (but causes shift of minimum)

–  Polynomial interpolation [orders 1,2,4,6]/linear extrapolation (order 1 term allows"

for asymmetric modeling of templates)

Wouter Verkerke, NIKHEF


L(α>0) predicts α<0
 L(α<0) predicts α>0
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Non-linear interpolation options


•  Comparison of common interpolation options


Wouter Verkerke, NIKHEF


Other morphing strategies – ‘horizontal morphing’


•  Other template morphing strategies exist that are less "
prone to unintended side effects


•  A ‘horizontal morphing’ strategy was invented by Alex read. 

–  Interpolates the cumulative distribution function instead of the distribution

–  Especially suitable for shifting distributions

–  Here shown on a continuous distribution, but also works on histograms

–  Drawback: computationally expensive, algorithm only worked out for 1 NP


Wouter Verkerke, NIKHEF


Integrate


Integrate


Interpolate
 Differentiate
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Yet another morphing strategy – ‘Moment morphing’


•  Given two template model f-(x) and f+(x) the strategy of moment 
morphing considers first two moment of template models"
(mean and variance)"
"
"
"
 


•  The goal of moment morphing is to construct an interpolated function 
that has linearly interpolated moments





•  It constructs this morphed function as combination of linearly 
transformed input models


–  Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]

Wouter Verkerke, NIKHEF


f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)

µ− = x ⋅ f−(x)∫ dx

V− = (x −µ− )
2 ⋅ f−(x)∫ dx

µ+ = x ⋅ f+(x)∫ dx

V+ = (x −µ+ )
2 ⋅ f+(x)∫ dx

µ(α) =αµ− + (1−α)µ+

V (α) =αV− + (1−α)V+
[1]


M. Baak & S. Gadatsch


Yet another morphing strategy – ‘Moment morphing’


•  For a Gaussian probability model with linearly "
changing mean and width, moment morphing "
of two Gaussian templates is the exact solution


•  But also works well on ‘difficult’ distributions


•  Good computational performance

–  Calculation of moments of templates is expensive,"

but just needs to be done once, otherwise very fast (just linear algebra)"



•   Multi-dimensional interpolation strategies exist 

Wouter Verkerke, NIKHEF


f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)
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There are other morphing algorithms to choose from


Wouter Verkerke, NIKHEF, 63


Vertical"
Morphing


Horizontal"
Morphing


Moment"
Morphing


Gaussian"
varying"
width


Gaussian"
varying"
mean


Gaussian

to"

Uniform"
(this is"

conceptually ambigous!)


n-dimensional"
morphing?
 ✔ ✗ ✔ 

Piece-wise interpolation for >1 nuisance parameter


•  Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.


–  Difficult to visualize effect on full distribution, but easy to understand concept 
at the individual bin level


"
"
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Visualization of 2D interpolation




33 

Shape, rate or no systematic?


•  Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)


–  Example morphing of a very subtle change in the background model

–  Is this a meaningful new degree of freedom in the likelihood model?


–  A χ2 or KS test between"
nominal and alternate"
template can help to decide "
if a shape uncertainty is meaningul


–  Most systematic uncertainties"
affect both rate and shape, but can make"
independent decision on modeling rate (which less likely to affect fit stability)


Wouter Verkerke, NIKHEF


Fit stability due to insignificant shape systematics


•  Shape of profile likelihood in NP α clearly raises two points


•  1) Numerical minimization process will be ‘interesting’

•  2) MC statistical effects induce strongly defined minima that are fake


–  Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)


Wouter Verkerke, NIKHEF


+ à 
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)
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Recap on shape systematics & template morphing 


•  Implementation of shape systematic in "
likelihoods modeling distributions conceptually "
no different that rate systematics in counting "
experiments


•  For template modes obtained from MC simulation template 
provides a technical solution to implement response function


–  Simplest strategy piecewise linear interpolation,"
but only works well for small changes


–  Moment morphing better adapted to modeling"
of shifting distributions


–  Both algorithms extend to n-dimensional"
interpolation to model multiple systematic NPs"
in response function


–  Be judicious in modeling ‘weak’ systematics:"
MC systematic uncertainties will dominate likelihood
 Wouter Verkerke, NIKHEF


L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Modular software design


Wouter Verkerke, NIKHEF


RooFit/HistFactory

Language for building!
probability models!
!
Comprises datasets,"
likelihoods, minimization,"
toy data generation,"
visualization and persistence


RooStats"
"
Suite of statistical tests"
operating on RooFit"
probability models 


(RooFit Workspace)
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RooFit core design philosophy


•  Mathematical objects are represented as C++ objects




variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf

5 

RooFit core design philosophy 


•  Instead of ‘double Likelihood(double paramVec[])’, "
a flexible modular structure of ‘programmed’ functions


RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace (keeps all parts together)


Gauss(x,µ,σ) 
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RooFit core design philosophy - Workspace


•  Alternatively, a simple math-like ‘factory language’ can quickly 
populates a workspace with the same objects


RooRealVar x RooRealVar m RooRealVar s 

RooGaussian g 

RooWorkspace w(“w”) ; 
w.factory(“Gaussian::g(x[-10,10],m[0],s[5])”) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace


Gauss(x,µ,σ) 

Example 1: counting expt


•  Will now demonstrate how to "
construct a model for a "
counting experiment with"
a systematic uncertainty
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  // Subsidiary measurement of alpha 
  w.faxtory(“Gaussian::subs(0,alpha[-5,5],1)”) ; 
 
 // Response function mu(alpha) 
  w.factory(“expr::mu(‘s+b(1+0.1*alpha)’,s[20],b[20],alpha)”) ;   
 
  // Main measurement  
  w.factory(“Poisson::p(N[0,10000],mu)”); 
   
  // Complete model Physics*Subsidiary 
  w.factory(“PROD::model(p,subs)”) ; 
 

L(N | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)
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Example 2: unbinned L with syst. 


•  Will now demonstrate how to "
code complete example of"
the unbinned profile likelihood "
of Section 5:
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L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES ),1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

 
  // Subsidiary measurement of alpha 
  w.factory(“Gaussian::subs(0,alpha[-5,5],1)”); 
   
  // Response function m(alpha) 
  w.factory(“expr::m_a(“m*(1+2alpha)”,m[91,80,100],alpha)”) ;   
 
  // Signal model 
  w.factory(“Gaussian::sig(x[80,100],m_a,s[1])”) 
 
  // Complete model Physics(signal plus background)*Subsidiary 
  w.factory(“PROD::model(SUM(mu[0,1]*sig,Uniform::bkg(x)),subs)”) ; 
 

Example 3 : binned L with syst


•  Example of template morphing"
systematic in a binned likelihood
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L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) ⋅G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m) ; 
 
 // Construct template models from histograms 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“HistFunc::s_p(x,hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 
 // Construct morphing model 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]),Gaussian(0,alpha,1))”) ; 


