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‘Composite 
hypotheses’
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Roadmap for this course

•  Tomorrow we with start with hypothesis with parameters

Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean"
with probabilities”

“p-values”

“Optimal event selection & "
machine learning”

“Confidence intervals, "
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and "
systematic uncertainties”Response functions and subsidiary measurements
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Introduce concept of composite hypotheses

•  In most cases in physics, a hypothesis is not “simple”, !
but “composite”

•  Composite hypothesis = Any hypothesis which does not specify 
the population distribution completely

•  Example: counting experiment with signal and background,!
that leaves signal expectation unspecified

Wouter Verkerke, NIKHEF

L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 

Composite hypothesis 

s=0

s=5

s=10
s=15

(My) notation convention: all symbols with ~ are constants !

With b=5
~

A common convention in the meaning of model parameters

•  A common convention is to recast signal rate parameters into a 
normalized form (e.g. w.r.t the Standard Model rate)
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L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 

Composite hypothesis 

s=0

s=5

s=10
s=15

With b=5
~

L(µ) = Poisson(N |µ ⋅ !s + !b)
Composite hypothesis !

with normalized rate parameter

μ=0 à no signal!
μ=1 à expected signal
μ>1 à more than expected signal


‘Universal’ parameter interpretation "
makes it easier to work with your models
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What can we do with composite hypothesis

•  With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

•  With composite hypotheses – many more options
•  1 Parameter estimation and variance estimation

–  What is value of s for which the observed data is most probable?
–  What is the variance (std deviation squared) in the estimate of s?

•  2 Confidence intervals
–  Statements about model parameters using frequentist concept of probability
–  s<12.7 at 95% confidence level
–  4.5 < s < 6.8 at 68% confidence level

•  3 Bayesian credible intervals 
–  Bayesian statements about model parameters
–  s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3

Parameter estimation using Maximum Likelihood

•  Likelihood is high for values of p that result in distribution similar to 
data!
!
!
!


•  Define the maximum likelihood (ML) estimator to be the procedure 
that finds the parameter value for which the likelihood is maximal.


Wouter Verkerke, NIKHEF
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Parameter estimation – Maximum likelihood

•  Practical estimation of maximum likelihood performed !
by minimizing the negative log-Likelihood!
!
!
!
!
!


–  Advantage of log-Likelihood is that contributions from events can be summed, 
rather than multiplied (computationally easier)

•  In practice, find point where derivative of –logL is zero

•  Standard notation for ML estimation of p is p !


L( !p) = f (!xi;
!p)

i
∏

− lnL( !p) = − lnF(!xi;
!p)

i
∑
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Example of Maximum Likelihood estimation 

•  Illustration of ML estimate on Poisson counting model!


•  Note that Poisson model is discrete in N, but continuous in s!
Wouter Verkerke, NIKHEF

-log L(N|s) versus s   [N=7]

s=2

s=0

s=5
s=10

s=15

L(N | s) = Poisson(N | s+ !b)

-log L(N|s) versus N   [s=0,5,10,15]

^
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Properties of Maximum Likelihood estimators

•  In general, Maximum Likelihood estimators are!


–  Consistent                (gives right answer for Nà∞)!


–  Mostly unbiased       (bias ∝1/N, may need to worry at small N)!


–  Efficient for large N  (you get the smallest possible error)!


–  Invariant:                 (a transformation of parameters !
                                  will Not change your answer, e.g                        !
   !
!
                !


•  MLE efficiency theorem: the MLE will be unbiased and efficient if 
an unbiased efficient estimator exists

–  Proof not discussed here
–  Of course this does not guarantee that any MLE is unbiased and efficient for 

any given problem

( ) ( )22ˆ pp =

Estimating parameter variance

•  Note that ‘uncertainty’ on a parameter estimate is an ambiguous 
statement

•  Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution

Wouter Verkerke, NIKHEF

Mean= !
<x>

Variance = !
<x2>-<x>2

For a Gaussian distribution!
mean and variance!
map to parameters!
for mean and sigma2!

 
and interval defined by !
√V contains 68%!
of the distribution!
(=‘1 sigma’ by definition)!
!
Thus for Gaussian distributions!
all common definitions of!
‘error’ work out to the same!
numeric value
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Estimating parameter variance

•  Note that ‘error’ or ‘uncertainty’ on a parameter estimate is an 
ambiguous statement

•  Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution

Wouter Verkerke, NIKHEF

Mean= !
<x>

Variance = !
<x2>-<x>2

For other distributions!
intervals by √V do!
not necessarily contain!
68% of the distribution 

Estimating variance on parameters

•  Variance on of parameter can also be estimated from Likelihood 
using the variance estimator!
!
!
!


•  Valid if estimator is efficient and unbiased!!


•  Illustration of Likelihood Variance estimate on a Gaussian distribution

Wouter Verkerke, NIKHEF
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b = bias as function of p,!
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Relation between Likelihood and χ2 estimators

•  Properties of χ2 estimator follow from properties of ML estimator 
using Gaussian probability density functions"

!

!


•  The χ2 estimator follows from ML estimator, i.e it is
–  Efficient, consistent, bias 1/N, invariant,
–  But only in the limit that the error on xi is truly Gaussian

F(xi, yi,σ i;
!p) = exp − yi − f (xi;

!p)
σ i
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Take log, 
Sum over all points (xi ,yi ,σi) 

The Likelihood function in p!
for given points xi(si)!
and function f(xi;p)

Gaussian Probability Density Function!
in p for single measurement y±σ !
from a predictive function f(x|p)

What can we do with composite hypothesis

•  With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

•  With composite hypotheses – many more options
•  1 Parameter estimation and variance estimation

–  What is value of s for which the observed data is most probable?
–  What is the variance (std deviation squared) in the estimate of s?

•  2 Confidence intervals
–  Statements about model parameters using frequentist concept of probability
–  s<12.7 at 95% confidence level
–  4.5 < s < 6.8 at 68% confidence level

•  3 Bayesian credible intervals 
–  Bayesian statements about model parameters
–  s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3
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Interval estimation with fundamental methods

•  Can also construct parameters intervals using ‘fundamental’ 
methods explored earlier (Bayesian or Frequentist)

•  Construct Confidence Intervals or Credible Intervals with defined 
probabilistic meaning, independent of assumptions on normality of 
distribution (Central Limit Theorem) à “95% C.L.”

•  With fundamental methods you greater flexibility in types of 
interval.  E.g when no signal observed à usually wish to set an 
upper limit (construct ‘upper limit interval’)

Wouter Verkerke, NIKHEF

Reminder - the Likelihood as basis for hypothesis testing

•  A probability model allows us to calculate !
the probability of the observed data under a hypothesis

•  This probability is called the Likelihood



Wouter Verkerke, NIKHEF

s=0

s=5
s=10

s=15
P(obs|theo) 
is called the !
Likelihood
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Reminder - Frequentist test statistics and p-values

•  Definition of ‘p-value’: Probability to observe this outcome or more 
extreme in future repeated measurements is x%, if hypothesis is 
true

•  Note that the definition of p-value assumes an explicit ordering of 
possible outcomes in the ‘or more extreme’ part

Wouter Verkerke, NIKHEF

s=0

s=5
s=10

s=15

)23.0()0;( =+= ∫
∞

obsN
b dNbNPoissonp

P-values with a likelihood ratio test statistic

•  With the introduction of a (likelihood ratio) test statistic, hypothesis 
testing of models of arbitrary complexity is now reduced to the 
same procedure as the Poisson example

•  Except that we generally "
don’t know distribution f(λ)…"


λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

log(λ)

λobs

p− value = f (λ |Hb )
λobs

∞

∫
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A different Likelihood ratio for composite hypothesis testing

•  On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative!
likelihood-ratio test statistics that has better properties

•  Advantage: distribution of new λμ has known asymptotic form!

•  Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*

*Some regularity conditions apply

•  à Asymptotically, we can directly calculate p-value from λμobs   
Wouter Verkerke, NIKHEF

λ(

N ) = L(


N |H0 )

L(

N |H1)

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘simple hypothesis’  ‘composite hypothesis’ 

‘Best-fit value’

Hypothesis !
μ that is being !
tested

What does a χ2 distribution look like for n=1?

•  Note that it for n=1, it does not peak at 1, but rather at 0…

Wouter Verkerke, NIKHEF
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Composite hypothesis testing in the asymptotic regime

•  For ‘histogram example’: what is p-value of null-hypothesis

− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit !
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large

P-value = TMath::Prob(34.77,1) !
            = 3.7x10-9

Wilks: f(λ|0) à χ2 distribution

Composite hypothesis testing in the asymptotic regime

•  For ‘histogram example’: what is p-value of null-hypothesis

t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit !
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large On background-like data t0 is small

P-value = TMath::Prob(34.77,1) !
            = 3.7x10-9

P-value = TMath::Prob(0.02,1) !
            = 0.88

Use
Wilks!

Theorem
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How quickly does f(λμ|μ) converge to its asymptotic form

•  Pretty quickly – 

Wouter Verkerke, NIKHEF

Here is an example of likelihood function!
for 10-bin distribution with 200 events


Here is an example for event!
counting at various s,b

From hypothesis testing to confidence intervals

•  Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ "


•  Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.

–  Note that the output is not a probabilistic statement on the true s value 
–  The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ
–  Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)


•  Definition of confidence intervals does not make !
any assumption on shape of interval !
!
à Can choose one-sided intervals (‘limits’), !
     two-sided intervals (‘measurements’),!
     or even disjoint intervals (‘complicated measurements’)

Wouter Verkerke, NIKHEF
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Exact confidence intervals – the Neyman construction

•  Simplest experiment: one measurement (x), one theory parameter (θ)
•  For each value of parameter θ, determine distribution in in observable 

x

Wouter Verkerke, NIKHEF

observable x 

How to construct a Neyman Confidence Interval

•  Focus on a slice in θ
–  For a 1-α% confidence Interval, define acceptance interval  

that contains 100%-α% of the distribution

Wouter Verkerke, NIKHEF

observable x 

pdf for observable x!
given a parameter value θ0
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How to construct a Neyman Confidence Interval

•  Definition of acceptance interval is not unique !
à Choose shape of interval you want to set here.

–  Algorithm to define acceptance interval is called ‘ordering rule’

Wouter Verkerke, NIKHEF

observable x 

pdf for observable x given a parameter value θ0

observable x

observable x

Lower Limit

Central Interval

Other options, are e.g. !
‘symmetric’ and ‘shortest’

How to construct a Neyman Confidence Interval

•  Now make an acceptance interval in observable x!
for each value of parameter θ

Wouter Verkerke, NIKHEF

observable x 
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How to construct a Neyman Confidence Interval

•  This makes the confidence belt

Wouter Verkerke, NIKHEF

observable x 

How to construct a Neyman Confidence Interval

•  This makes the confidence belt

Wouter Verkerke, NIKHEF

observable x 
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How to construct a Neyman Confidence Interval

•  The confidence belt can constructed in advance of any measurement, 
it is a property of the model, not the data

•  Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows

•  The interval [θ-,θ+] has a 68% probability to cover the true value

Wouter Verkerke, NIKHEF

observable x 

What confidence interval means & concept of coverage

•  A confidence interval is an interval on a parameter that contains 
the true value X% of the time

•  This is a property of the procedure, and should be interpreted in 
the concept of repeated identical measurements:!
!
Each future measurement will result a confidence interval that has 
somewhat different limits every time!
(‘confidence interval limits are a random variable’)"
"
But procedure is constructed such that true value is in X% of the 
intervals in a series of repeated measurements!
(this calibration concept is called ‘coverage’. The Neyman 
constructions guarantees coverage)

•  It is explicitly not a probability statement on the true value you 
are trying to measure. In the frequentist the true value is fixed (but 
unknown)

Wouter Verkerke, NIKHEF
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On the interpretation of confidence intervals

Wouter Verkerke, NIKHEF

The confidence interval – Poisson counting example

•  Given the probability model for Poisson counting example: for 
every hypothesized value of s, plot the expected distribution N

Wouter Verkerke, NIKHEF

Wouter Verkerke, NIKHEF

Confidence belt for!
68% and 90% central intervals

Confidence belt for!
68% and 90% lower limit

‘central’
ordering
rule

‘lower limit’
ordering
rule
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The confidence interval – Poisson counting example

•  Given confidence belt and observed data, confidence interval on 
parameter is defined by belt intersection

Confidence belt for!
68% and 90% central intervals

Confidence belt for!
68% and 90% lower limit

Nobs Nobs
Central interval on s at 68% C.L. Lower limit on s at 90% C.L.

Confidence intervals using the Likelihood Ratio test statistic

•  Neyman Construction on Poisson counting looks like ‘textbook’ belt. 
•  In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of hypothesis 
testing.

•  Procedure to construct belt with LR is  identical: !
obtain distribution of λ for every value of μ to construct confidence belt   

x=3.2

observable x

pa
ra

m
et

er
 μ


λμ(x,μ)

Likelihood Ratio λ

pa
ra

m
et

er
 μ


?
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The asymptotic distribution of the likelihood ratio test statistic

•  Given the likelihood ratio !
!
!
!
Q: What do we know about asymptotic distribution of λ(μ)?  

•  A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution!
!
                                             f(tμ|μ) = χ2(tμ,n)!
 !


•  Note that f(tμ|μ) is independent of μ! !
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt

Wouter Verkerke, NIKHEF

tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where !
μ is the hypothesis being tested and !
n is the number of parameters (here 1: μ )


Confidence intervals using the Likelihood Ratio test statistic

•  Procedure to construct belt with LR is identical: !
obtain distribution of λ for every value of μ to construct belt   

x=3.2

observable x

pa
ra

m
et

er
 μ


tμ(x,μ)

Likelihood !
Ratio

pa
ra

m
et

er
 μ


Confidence !
belt now !
range in LR
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What does the observed data look like with a LR?

•  Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ

x=3.2

observable x

pa
ra

m
et

er
 μ


tμ(x,μ)

Likelihood Ratio

pa
ra

m
et

er
 μ


Measurement = tμ(xobs,μ) !
is now a function of μ

Connection with likelihood ratio intervals

•  If you assume the asymptotic distribution for tμ, 
–  Then the confidence belt is exactly a box 
–  And the constructed confidence interval can be simplified!

to finding the range in μ where tμ=½⋅Z2 
à This is exactly the MINOS error!

Wouter Verkerke, NIKHEF
tμ

pa
ra

m
et

er
 μ


FC interval with Wilks Theorem MINOS / Likelihood ratio interval
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Recap on confidence intervals

•  Confidence intervals on parameters are constructed !
to have precisely defined probabilistic meaning

–  This calibration is called “coverage” !
The Neyman Construction has coverage by construction

–  This is different from parameter variance estimates !
(or Bayesian methods) that don’t have (a guaranteed) coverage

–  For most realistic models confidence intervals are calculated using !
(Likelihood Ratio) test statistics to define the confidence belt

•  Asymptotic properties
–  In the asymptotic limit (Wilks theorem), !

Likelihood Ratio interval converges to a !
Neyman Construction interval !
(with guaranteed coverage) “Minos Error”!
NB: the likelihood does not need to be"
parabolic for Wilks theorem to hold

–  Separately, in the limit of normal distributions the !
likelihood becomes exactly parabolic and !
the ML Variance estimate converges to !
the Likelihood Ratio interval Wouter Verkerke, NIKHEF

Bayesian inference with composite hypothesis

•  With change LàL(μ) the prior and posterior model probabilities 
become probability density functions

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(µ |
!
N ) = L(

!
N |µ)P(µ)

L(
!
N |µ)P(µ)dµ∫

Hb Hs+b

H(μ)

P(µ |
!
N )∝ L(

!
N |µ)P(µ)

Prior !
probability density

Posterior!
probability density

NB: Likelihood is not a probability density
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Bayesian credible intervals

•  From the posterior density function, a credible interval can be 
constructed through integration

•  Note that Bayesian interval estimation require no minimization !
of –logL, just integration Wouter Verkerke, NIKHEF

95% credible central interval 95% credible upper limit

Posterior on μ Posterior on μ

Bayesian parameter estimation

•  Bayesian parameter estimate is the posterior mean
•  Bayesian variance is the posterior variance 

Wouter Verkerke, NIKHEF

Mean= !
<x>

Variance = !
<x2>-<x>2

V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ
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Choosing Priors

•  As for simple models, Bayesian inference always in involves a prior !
à now a prior probability density on your parameter

•  When there is clear prior knowledge, it is usually straightforward to 
express that knowledge as prior density function

–  Example: prior measurement of μ = 50 ± 10!



–  Posterior represents updated belief à It incorporates information from 

measurement and prior belief 
–  But sometimes we only want to publish result of this experiment, or there is no prior 

information. What to do?
Wouter Verkerke, NIKHEF

prior p(μ)

posterior !
p(μ|x0)

likelihood
L(x0|μ)

Choosing Priors

•  Common but thoughtless choice: a flat prior
–  Flat implies choice of metric. Flat in x, is not flat in x2

•  Flat prior implies choice on of metric
–  A prior that is flat in μ is not flat in μ2

–  ‘Preferred metric’ has often no clear-cut answer. !
(E.g. when measuring neutrino-mass-squared, state answer in m or m2)

–  In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?)

Wouter Verkerke, NIKHEF

prior p(μ)

posterior !
p(μ|x0)

likelihood
L(x0|μ) prior p(μ’)

posterior !
p(μ’|x0)

likelihood
L(x0|μ’)

distribution in μ distribution in μ2
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Is it possible to formulate an ‘objective’ prior?

•  Can one define a prior p(μ) which contains as little information as 
possible, so that the posterior pdf is dominated by the likelihood?

–  A bright idea, vigorously pursued by physicist Harold Jeffreys in in 
mid-20thcentury:

–  This is a really really thoughtless idea, recognized by Jeffreys as such, but 
dismayingly common in HEP: just choose p(μ) uniform in whatever metric you 
happen to be using! 

•  “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information.!
!
!


–  Unbounded mean μ of gaussian: p(μ) = 1
–  Poisson signal mean μ, no background: p(μ) = 1/√μ

•  Many ideas and names around on non-subjective priors
–  Advanced subject well beyond scope of this course.
–  Many ideas (see e.g. summary by Kass & Wasserman), !

but very much an open/active in area of research Wouter Verkerke, NIKHEF

I(θ ) = −E ∂2

∂θ 2
log f (x |θ )θ

#

$
%

&

'
(

Sensitivity Analysis

•  Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior.

•  Sensitivity generally decreases with precision of experiment!
!
!
!
!


•  Some level of arbitrariness – what variations to consider in sensitivity 
analysis Wouter Verkerke, NIKHEF 
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Likelihood Principle

•  As noted above, in both Bayesian methods and likelihood-ratio 
based methods, the probability (density) for obtaining the data at 
hand is used (via the likelihood function), but probabilities for 
obtaining other data are not used!

•  In contrast, in typical frequentist calculations (e.g., a p-value which 
is the probability of obtaining a value as extreme or more extreme 
than that observed), one uses probabilities of data not seen.

•  This difference is captured by the Likelihood Principle*: !
!
If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.

Wouter Verkerke, NIKHEF 
[B.Cousins HPCP] 

The “Karmen Problem”

•  Simple counting experiment: 
–  You expected precisely 2.8 background events !

with a Poisson distribution
–  You count the total number of observed events N=s+b
–  You make a statement on s, given Nobs and b=2.8

•  You observe N=0!
–  Likelihood: L(s) = (s+b)0 exp(-s-b) / 0! = exp(-s) exp(-b)

•  Likelihood –based intervals
–  LR(s) = exp(-s) exp(-b)/exp(-b)= exp(-s) à Independent of b!
–  Bayesian integral also independent of factorizing exp(-b) term

•  So for zero events observed, likelihood-based inference about 
signal mean s is independent of expected b. 

•  For essentially all frequentist confidence interval constructions, the 
fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for μ as b increases. 

–  Clear violation of the L.P.
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Likelihood Principle Example #2

•  Binomial problem famous among statisticians !


•  Translated to HEP: You want to know the trigger efficiency e. 
–  You count until reaching n=4000 zero-bias events, !

and note that of these, m=10 passed trigger. !
!
Estimate e = 10/4000, compute binomial confidence interval for e.!


–  Your colleague (in a different sample!) counts zero-bias events until m=10 !
have passed the trigger. She notes that this requires n=4000 events. !
!
Intuitively, e=10/4000 over-estimates e because she stopped just upon reaching 10 
passed events. (The relevant distribution is the negative binomial.)!


•  Each experiment had a different stopping rule. Frequentist confidence 
intervals depend on the stopping rule.

–  It turns out that the likelihood functions for the binomial problem and the negative 
binomial problem differ only by a constant! 

–  So with same n and m, (the strong version of) the L.P. demands same inference 
about e from the two stopping rules!!
!


Wouter Verkerke, NIKHEF 
[B.Cousins HPCP] 

Using priors to exclude unphysical regions

•  Priors provide simple way to exclude unphysical regions 
•  Simplified example situations for a measurement of mν

2

1.  Central value comes out negative (= unphysical).
2.  Even upper limit (68%) may come out negative, e.g. m2<-5.3,
3.  What is inference on neutrino mass, given that is must be >0? !

!
!
!
 

–  Introducing prior that excludes unphysical region ensure limit in physical range of 
observable (m2<6.4)

–  NB: Previous considerations on appropriateness of flat prior for domain m2>0 still apply
Wouter Verkerke, NIKHEF

p(μ|x0) with flat prior p(μ|x0) with p’(μ)p’(μ)
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Using priors to exclude unphysical regions

•  Do you want publish (only) results restricted to the physical region?
–  It depends very much to what further analysis and/or combinations is needed…

•  An interval / parameter estimate that in includes unphysical still 
represents the best estimate of this measurement

–  Straightforward to combined with future measurements,!
new combined result might be physical (and more precise)

–  You need to decide between ‘reporting outcome of this measurement’ vs 
‘updating belief in physics parameter’

•  Typical issues with unphysical results in confidence intervals
–  ‘Low fluctuation of background’ à ‘Negative signal’ à !

95% confidence interval excludes all positive values of cross-section.
–  Correct result (it should happen 5% of the time), !

but people feel ‘uncomfortable’ publishing such a result

•  Can you also exclude unphysical regions in confidence intervals?
–  No concept of prior…But yes, it can be done!

Wouter Verkerke, NIKHEF

Physical boundaries frequentist confidence intervals

•  Solution is to modify the statistic!
to avoid unphysical region

Wouter Verkerke, NIKHEF

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
&

Introduce "
“physical bound”
μ>0

    If μ<0, use 0 in denominator!
à Declare data maximally "
    compatible with hypothesis μ=0 

μ=-1 μ=1 μ=2

μ=-1 μ=1 μ=2
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Physical boundaries in frequentist confidence intervals

•  What is effect on distribution !
of test statistic?

Wouter Verkerke, NIKHEF

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
&

    If μ<0, use 0 in denominator!
à Declare data maximally "
    compatible with hypothesis μ=0 

Distribution of t0 for μ=2

Distribution of t0 for μ=0
~

Spike at zero contains all!
“unphysical” observations

~

Unmodified….

Introduce "
“physical bound”
μ>0

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

Physical boundaries frequentist confidence intervals

•  What is effect on acceptance interval!
of test statistic?

Wouter Verkerke, NIKHEF

!tµ (x) =
−2 log L(x |µ)

L(x | µ̂)
∀µ̂ ≥ 0

−2 log L(x |µ)
L(x | 0)

∀µ̂ < 0

$

%

&
&

'

&
&

    If μ<0, use 0 in denominator!
à Declare data maximally "
    compatible with hypothesis μ=0 

Effect: Acceptance !
interval is shortened!

Introduce "
“physical bound”
μ>0

tµ (x) = − 2 log L(x |µ)
L(x | µ̂)

Distribution of t0 for μ=0

Spike at zero contains all!
“unphysical” observations

~

Unmodified….
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Physical boundaries frequentist confidence intervals

•  Putting everything together – the confidence with modified tμ
•  Confidence belt ‘pinches’ towards physical boundary
•  Offsetting of likelihood curves for measurements that prefer μ<0  

tμ(x,μ)

ß Large μ !
2-sided interval in μ 

pa
ra

m
et

er
 μ


Likelihood Ratio


~

Physical boundaries frequentist confidence intervals

•  Putting everything together – the confidence with modified tμ
•  Confidence belt ‘pinches’ towards physical boundary
•  Offsetting of likelihood curves for measurements that prefer μ<0  

tμ(x,μ)

ß Small μ>0!
 ‘upper limit’ interval
 

pa
ra

m
et

er
 μ


Likelihood Ratio


~
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Physical boundaries frequentist confidence intervals

•  Putting everything together – the confidence with modified tμ
•  Confidence belt ‘pinches’ towards physical boundary
•  Offsetting of likelihood curves for measurements that prefer μ<0  

tμ(x,μ)

μ<0 à !
‘upper limit’ interval

pa
ra

m
et

er
 μ


Likelihood Ratio


~

Physical boundaries frequentist confidence intervals

•  Example for unconstrained unit Gaussian measurement

Wouter Verkerke, NIKHEF

L =Gauss(x |µ,1)
tμ(x,μ)

pa
ra

m
et

er
 μ


Likelihood Ratio


x

pa
ra

m
et

er
 μ


Gauss(x|μ,1)
95% Confidence belt in (x,μ)  
defined by cut on tμ

0!

2!

6!

8!

x
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Physical boundaries frequentist confidence intervals

•  First map back horizontal axis of confidence belt from tμ(x)àx

tμ(x,μ)

pa
ra

m
et

er
 μ


Likelihood Ratio


x

observable x

pa
ra

m
et

er
 μ


Gauss(x|μ,1)
95% Confidence belt in (x,μ)  
defined by cut on tμ 

~

~

“Feldman-Cousins” 

Comparison of Bayesian and Frequentist limit treatment

•  Bayesian 95% credible upper-limit interval with flat prior μ>0 

tμ(x,μ)

pa
ra

m
et

er
 μ


Likelihood Ratio


x

observable x

pa
ra

m
et

er
 μ


Gauss(x|μ,1)
95% Confidence belt in (x,μ)  
defined by cut on tμ for

~
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Comparison of Bayesian and Frequentist limit treatment

•  Bayesian 95% credible upper-limit interval with flat prior μ>0 

tμ(x,μ)

pa
ra

m
et

er
 μ


Likelihood Ratio


x

observable x

pa
ra

m
et

er
 μ


Gauss(x|μ,1)
95% Confidence belt in (x,μ)  
defined by cut on tμ for

Note that tμ / Feldman-Cousins automatically 
switches from ‘upper limit’ to ‘two-sided’
à  “unified procedure”

Note that Bayesian and Frequentist intervals"
at x>2 would agree exactly for Gaussian example "
if both would be taken as ‘two-sided’

~

~

Summary

•  Maximum Likelihood
–  Point and variance estimation
–  Variance estimate assumes normal!

distribution. No upper/lower limits

•  Frequentist confidence intervals
–  Extend hypothesis testing to composite hypothesis
–  Neyman construction provides exact “coverage” !

= calibration of quoted probabilities
–  Strictly p(data|theory)
–  Asymptotically identical to likelihood ratio intervals!

(MINOS errors, does not assume parabolic L)

•  Bayesian credible intervals
–  Extend P(theo) to p.d.f. in model parameters
–  Integrals over posterior density à credible intervals
–  Always involves prior density function!

 in parameter space
Wouter Verkerke, NIKHEF
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Next subject…

•  Start with basics, gradually build up to complexity of !


Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean"
with probabilities”

“p-values”

“Optimal event selection & "
machine learning”

“Confidence intervals, "
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and "
systematic uncertainties”Response functions and subsidiary measurements

The likelihood is at the basis of many statistical techniques

Wouter Verkerke, NIKHEF

L(data |µ,
!
θ )

Maximum Likelihood Parameter estimation

Frequentist confidence intervals!
(likelihood-ratio intervals) 

Bayesian credible intervals

0)(ln

ˆ

=
= ii pppd

pLd
!
!

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘Best-fit value’

Hypothesis !
μ that is being !
tested

P(µ | x)∝ L(x |µ) ⋅π (µ)
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RooFit – Focus: coding likelihood functions

•  Focus on one practical aspect of many data analysis in HEP: How 
do you formulate your likelihood functions in ROOT 

–  For ‘simple’ problems (gauss, polynomial) this is easy!
!


–  But if you want to do unbinned ML fits, use non-trivial functions, or work with 
multidimensional functions you quickly find that you need some tools to help 
you

1 

Introduction – Why RooFit was developed

•  BaBar experiment at SLAC: Extract sin(2β) from time dependent CP 
violation of B decay: e+e- à Y(4s) à BB

–  Reconstruct both Bs, measure decay time difference
–  Physics of interest is in decay time dependent oscillation!

!


•  Many issues arise
–  Standard ROOT function framework clearly insufficient to handle such complicated 

functions à must develop new framework
–  Normalization of p.d.f. not always trivial to calculate à may need numeric integration 

techniques
–  Unbinned fit, >2 dimensions, many events à computation performance important à 

must try optimize code for acceptable performance
–  Simultaneous fit to control samples to account for detector performance

( )[ ]
( )[ ]);|BkgResol();(BkgDecay);BkgSel()1(

);|SigResol())2sin(,;(SigDecay);SigSel(

bkgbkgbkgsig

sigsigsigsig

rdttqtpmf
rdttqtpmf
!!

!!

⊗⋅−

+⊗⋅⋅ β

2 
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RooFit core design philosophy

•  Mathematical objects are represented as C++ objects


variable RooRealVar 

function RooAbsReal 

PDF RooAbsPdf 

space point RooArgSet 

list of space points RooAbsData 

integral RooRealIntegral 

RooFit class Mathematical concept 

)(xf

x

x!

dxxf
x

x
∫
max

min

)(

)(xf

5 

RooFit core design philosophy - Workspace

•  Instead of ‘double Likelihood(double paramVec[])’, !
a flexible modular structure of ‘programmed’ functions

Gauss(x,µ,σ) 

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 
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Basics – Creating and plotting a Gaussian p.d.f 

// Create an empty plot frame 
RooPlot* xframe = w::x.frame() ; 
 
// Plot model on frame 
model.plotOn(xframe) ; 
 
// Draw frame on canvas 
xframe->Draw() ;  
 

Plot range taken from limits of x 

Axis label from gauss title 

Unit  
normalization 

Setup gaussian PDF and plot 

A RooPlot is an empty frame 
capable of holding anything 
plotted versus it variable 

13 

Basics – Generating toy MC events

// Generate an unbinned toy MC set 
RooDataSet* data = w::gauss.generate(w::x,10000) ;   
 
// Generate an binned toy MC set 
RooDataHist* data = w::gauss.generateBinned(w::x,10000) ;   
 
// Plot PDF 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
xframe->Draw() ; 

Generate 10000 events from Gaussian p.d.f and show distribution 

Can generate both binned and!
unbinned datasets

14 
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Basics – ML fit of p.d.f to unbinned data

// ML fit of gauss to data 
w::gauss.fitTo(*data) ; 
(MINUIT printout omitted) 
 
// Parameters if gauss now 
// reflect fitted values 
w::mean.Print() 
RooRealVar::mean = 0.0172335 +/- 0.0299542  
w::sigma.Print() 
RooRealVar::sigma = 2.98094  +/- 0.0217306 
 
// Plot fitted PDF and toy data overlaid 
RooPlot* xframe = w::x.frame() ; 
data->plotOn(xframe) ; 
w::gauss.plotOn(xframe) ; 

PDF 
automatically 
normalized 
to dataset 

16 

RooFit core design philosophy - Workspace

•  The workspace serves a container class for all!
objects created

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace

Gauss(x,µ,σ) 
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The workspace

•  The workspace concept has revolutionized the way people share and 
combine analysis

–  Completely factorizes process of building and using likelihood functions
–  You can give somebody an analytical likelihood of a (potentially very complex) 

physics analysis in a way to the easy-to-use, provides introspection, and is easy to 
modify.

Wouter Verkerke, NIKHEF 

RooWorkspace 

RooWorkspace w(“w”) ; 
w.import(sum) ; 
w.writeToFile(“model.root”) ; 

model.root 

Using a workspace 

Wouter Verkerke, NIKHEF 
Wouter Verkerke, NIKHEF  

RooWorkspace 

// Resurrect model and data 
TFile f(“model.root”) ; 
RooWorkspace* w = f.Get(“w”) ; 
RooAbsPdf* model = w->pdf(“sum”) ; 
RooAbsData* data = w->data(“xxx”) ; 
 
// Use model and data 
model->fitTo(*data) ; 
 
RooPlot* frame =  
         w->var(“dt”)->frame() ; 
data->plotOn(frame) ; 
model->plotOn(frame) ; 
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Factory and Workspace

•  One C++ object per math symbol provides !
ultimate level of control over each objects functionality, but results 
in lengthy user code for even simple macros

•  Solution: add factory that auto-generates objects from a math-like 
language. Accessed through factory() method of workspace

•  Example: reduce construction of Gaussian pdf and its parameters 
from 4 to 1 line of code

w.factory(“Gaussian::f(x[-10,10],mean[5],sigma[3])”) ; 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar mean(“mean”,”mean”,5) ; 
RooRealVar sigma(“sigma”,”sigma”,3)  ; 
RooGaussian f(“f”,”f”,x,mean,sigma) ; 
w.import(f) ; 

8 

RooFit core design philosophy - Workspace

•  The workspace serves a container class for all!
objects created

RooRealVar x RooRealVar y RooRealVar z 

RooGaussian g 

RooRealVar x(“x”,”x”,-10,10) ; 
RooRealVar m(“m”,”y”,0,-10,10) ; 
RooRealVar s(“s”,”z”,3,0.1,10) ; 
RooGaussian g(“g”,”g”,x,m,s) ; 
RooWorkspace w(“w”) ; 
w.import(g) ; 

Math 

RooFit 
diagram 

RooFit 
code 

6 

RooWorkspace

Gauss(x,µ,σ) 
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Populating a workspace the easy way – “the factory”

•  The factory allows to fill a workspace with pdfs and variables using 
a simplified scripting language

RooRealVar x RooRealVar y RooRealVar z 

RooAbsReal f 

RooWorkspace w(“w”) ; 
w.factory(“RooGaussian::g(x[-10,10],m[-10,10],z[3,0.1,10])”); 

Math 

RooFit 
diagram 

RooFit 
code 

RooWorkspace

Gauss(x,µ,σ) 

Model building – (Re)using standard components

•  RooFit provides a collection of compiled standard PDF classes

RooArgusBG 

RooPolynomial 

RooBMixDecay 

RooHistPdf 

RooGaussian 

Basic 
Gaussian, Exponential, Polynomial,… 
Chebychev polynomial 

Physics inspired 
ARGUS,Crystal Ball,  
Breit-Wigner, Voigtian, 
B/D-Decay,…. 

Non-parametric 
Histogram, KEYS 

Easy to extend the library: each p.d.f. is a separate C++ class 

20 
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Model building – (Re)using standard components

•  List of most frequently used pdfs and their factory spec!

Gaussian       Gaussian::g(x,mean,sigma) 
Breit-Wigner            BreitWigner::bw(x,mean,gamma) 
Landau           Landau::l(x,mean,sigma) 
Exponential              Exponental::e(x,alpha) 
Polynomial   Polynomial::p(x,{a0,a1,a2}) 
Chebychev     Chebychev::p(x,{a0,a1,a2}) 
Kernel Estimation              KeysPdf::k(x,dataSet) 
Poisson        Poisson::p(x,mu) 
Voigtian      Voigtian::v(x,mean,gamma,sigma) 
(=BW⊗G)

21 

The power of pdf as building blocks – Advanced algorithms

•  Example: a ‘kernel estimation probability model’
–  Construct smooth pdf from unbinned data, using kernel estimation technique

•  Example

•  Also available for n-D data

Sample of events 
Gaussian pdf  

for each event 
Summed pdf 
for all events 

Adaptive Kernel: 
width of Gaussian depends  
on local event density 

 
   w.import(myData,Rename(“myData”)) ; 
   w.factory(“KeysPdf::k(x,myData)”) ; 
 

38 
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The power of pdf as building blocks – adaptability

•  RooFit pdf classes do not require their parameter arguments to be 
variables, one can plug in functions as well

•  Allows trivial customization, extension of probability models



 
  // Original Gaussian 
  w.factory(“Gaussian::g1(x[80,100],m[91,80,100],s[1])”) 
 
 
  // Gaussian with response model in mean 
  w.factory(“expr::m_response(“m*(1+2alpha)”,m,alpha[-5,5])”) ;   
  w.factory(“Gaussian::g1(x,m_response,s[1])”) 
 

Gauss(x |µ,σ ) Gauss(x |µ ⋅ (1+ 2α),σ )
class RooGaussian also class RooGaussian!

Introduce a response function for a systematic uncertainty

NB: “expr” operates builds an intepreted function expression on the fly

The power of building blocks – operator expressions

•  Create a SUM expression to represent a sum of probability models

•  In composite model visualization!
components can be accessed by name 

 
  w.factory(“Gaussian::gauss1(x[0,10],mean1[2],sigma[1]”) ; 
  w.factory(“Gaussian::gauss2(x,mean2[3],sigma)”) ; 
  w.factory(“ArgusBG::argus(x,k[-1],9.0)”) ; 
 
  w.factory(“SUM::sum(g1frac[0.5]*gauss1, g2frac[0.1]*gauss2, argus)”) 
 

25 

   
  // Plot only argus components 
  w::sum.plotOn(frame,Components(“argus”), 
                LineStyle(kDashed)) ; 
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Powerful operators – Morphing interpolation
•  Special operator pdfs can interpolate existing pdf shapes

–  Ex: interpolation between Gaussian and Polynomial!
!
!
!
!
!
!
!



•  Three morphing operator classes available

–  IntegralMorph (Alex Read). 
–  MomentMorph (Max Baak).
–  PiecewiseInterpolation (via HistFactory)!



w.factory(“Gaussian::g(x[-20,20],-10,2)”) ; 
w.factory(“Polynomial::p(x,{-0.03,-0.001})”) ; 
w.factory(“IntegralMorph::gp(g,p,x,alpha[0,1])”) ; 

Fit to data

α = 0.812 ± 0.008

39 

Powerful operators – Fourier convolution

•  Convolve any two arbitrary pdfs with a 1-line expression

•  Exploits power of FFTW!
package available via ROOT

–  Hand-tuned assembler code!
for time-critical parts

–  Amazingly fast: unbinned ML fit to !
10.000 events take ~5 seconds!

 
  w.factory(“Landau::L(x[-10,30],5,1)”) : 
  w.factory(“Gaussian::G(x,0,2)”) ; 
 
  w::x.setBins(“cache”,10000) ; // FFT sampling density 
  w.factory(“FCONV::LGf(x,L,G)”) ; // FFT convolution 
 

30 
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Working with the likelihood function

•  Plot the likelihood function!
versus a parameter!



•  Maximum Likelihood estimation of parameters and variance

RooAbsReal* nll = w::model.createNLL(data) ; 
 
RooPlot* frame = w::param.frame() ; 
nll->plotOn(frame,ShiftToZero()) ; 

 
RooMinimizer m(*nll) ; 
 
// ML Parameter estimation 
m.minimize(“Minuit2”,”migrad”) ; 
 
// Variance estimation 
m.hesse() ; 
 
// Alternatively – all this in one line 
pdf->fitTo(*data) ; 
 

Working with covariance and correlation matrices

•  Detailed information on parameter and covariance estimates can 
be saved for detailed information 

Wouter Verkerke, NIKHEF

 
RooMinimizer m(*nll) ; 
m.minimize(“Minuit2”,”migrad”) ; 
m.hesse() ; 
RooFitResult* r = m.save() ; 
 
// Visualize correlation matrix 
r->correlationHist->Draw(“colz”) ; 
 
// Extract correlation,covariance matrix 
TMatrixDSym cov = fr->covarianceMatrix() ; 
TMatrixDSym cov = fr->covarianceMatrix(a,b) ; 
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Use covariance matrices for correlated error propagation

•  Can (as visual aid) propagate errors in covariance matrix of a fit 
result to a pdf projection!


–  Linear propagation on !
pdf projection

•  Propagated error can be !
calculated on arbitrary function

–  E.g fraction of events in signal range

 

  w::model.plotOn(frame,VisualizeError(*fitresult)) ; 
  w::model.plotOn(frame,VisualizeError(*fitresult,fsig)) ; 
 

EVE
!!

1−=Δ

RooAbsReal* fracSigRange = 
     w::model.createIntegral(x,x,”sig”) ; 
 
Double_t err =  
    fracSigRange.getPropagatedError(*fr); 
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Next subject…

•  Start with basics, gradually build up to complexity of !


Statistical tests with simple hypotheses for counting data 

Statistical tests with simple hypotheses for distributions 

Hypothesis testing as basis for event selection

Composite hypotheses (with parameters) for distributions 

“What do we mean"
with probabilities”

“p-values”

“Optimal event selection & "
machine learning”

“Confidence intervals, "
Maximum Likelihood”

“Fitting the background”Statistical inference with nuisance parameters

“Sideband fits and "
systematic uncertainties”Response functions and subsidiary measurements


