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Other uncertainties in MC shapes – finite MC statistics 


•  In practice, MC distributions used for template fits have finite 
statistics."
"
"
"
"
"
"
"
"
"
"
"



•  Limited MC statistics represent an uncertainty on your model "
à how to model this effect in the Likelihood?


Wouter Verkerke, NIKHEF


Other uncertainties in MC shapes – finite MC statistics 


•  Modeling MC uncertainties: each MC bin has a Poisson uncertainty

•  Thus, apply usual ‘systematics modeling’ prescription.  

•  For a single bin – exactly like original counting measurement 


Lbin−i (µ) = Poisson(Ni |µ ⋅ !si + !bi )

Lbin−i (µ, si,bi ) = Poisson(Ni |µ ⋅ si + bi )
⋅Poisson(Ni

MC−s | si )
⋅Poisson(Ni

MC−b | bi )

Fixed signal, bkg MC prediction


Signal, bkg "
MC nuisance params


Subsidiary measurement for signal MC"
(‘measures’ MC prediction si with Poisson uncertainty)
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Nuisance parameters for template statistics


•  Repeat for all bins


•  Result: accurate model for MC statistical uncertainty, but lots of 
nuisance parameters (#samples x #bins)...


L(
!
N |µ) = P(Ni |µ ⋅ !si + !bi )

bins
∏

L(
!
N |µ, !s,

!
b) = P(Ni |µ ⋅ si + bi )

bins
∏ P(!si | si

bins
∏ ) P( !bi | bi

bins
∏ )

Binned likelihood "
with rigid template


Response function"
w.r.t. s, b as parameters


2x Nbins subsidiary "
measurements"
of s ,b from s~,b~


The effect of template statistics


•  When is it important to model the effect of template "
statistics in the likelihood


–  Roughly speaking the effect of template statistics becomes "
important when Ntempl< 10x Ndata (from Beeston & Barlow)


•  Measurement of effect of template statistics in "
previously shown toy likelihood model, where"
POI is the signal yield"



Wouter Verkerke, NIKHEF, 4


‘model 2 – Beeston-Barlow likelihood’

‘model 1 – plain template likelihood’


NMC=Ndata


NMC=10Ndata


Note that even at"
NMC=10Ndata"
uncertainty on POI "
can be underestimated"
by 10% without BB
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Reducing the number NPs – Beeston-Barlow ‘lite’ 


•  Another approach that is being used is called ‘BB’ – lite

•  Premise: effect of statistical fluctuations on sum of templates is 

dominant à Use one NP per bin instead of one NP per 
component per bin  


L(

N | n) = P(Ni | ni )

bins
∏ P(si + bi | ni

bins
∏ )

L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

Response function"
w.r.t. n as parameters


Subsidiary measurements"
of n from s~+b~


Normalized NP lite model (nominal value of all γ is 1)


L(

N | s,


b) = P(Ni | si + bi )

bins
∏ P(si | si

bins
∏ ) P( bi | bi

bins
∏ )

‘Beeston-Barlow’


‘Beeston-Barlow lite ’


The accuracy of the BB-lite approximation


•  The Beeston-Barlow ‘lite’ approximation is quite good "
for high template statistics


•  Deviation at low template statistics large due to imperfect 
modeling of template bins with zero content  
 Wouter Verkerke, NIKHEF


10 evts/bin avg


100 evts/bin avg


‘model 2 – Beeston-Barlow full’

‘model 3 – Beeston-Barlow lite’
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The interplay between shape systematics and MC systematics


•  Best practice for template morphing models is to also include effect 
of MC systematics


•  Note that that for every ‘morphing systematic’ there is an set of two 
templates that have their own (independent) MC statistical 
uncertainties.


–  A completely accurate should model MC stat uncertainties of all templates"
"
"



•  But has severe practical problems

–  Can only be done in ‘full’ Beeston-Barlow model, not in ‘lite’ mode, enormous 

number of NP models with only a handful of shape systematics…

Wouter Verkerke, NIKHEF


L(

N |α, s −, s 0, s + ) = P(Ni | si (α, si

−, si
0, si

+ )
bins
∏ ) P(

bins
∏ si

− | si
− ) P(

bins
∏ si

0 | si
0 ) P(

bins
∏ si

+ | si
+ )

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing response function
 Subsidiary measurements


The interplay between shape systematics and MC systematics


•  Commonly chosen "
practical solution"
"
"
"



•  Approximate MC template statistics already significantly improves 
influence of MC fluctuations on template morphing


–  Because ML fit can now ‘reweight’ contributions of each bin 

Wouter Verkerke, NIKHEF


L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

Morphing & MC response function"
"
Models relative MC rate uncertainty for each bin w.r.t the nominal 
MC yield, even if morphed total yield is slightly different


Subsidiary measurements


without BB-L

with BB-L
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Pruning complexity – MC statistical for selected bins


•  Can also make decision to model MC statistical uncertainty on a 
bin-by-bin basis


–  No modeling for high statistics bins

–  Explicit modeling for low-statistics bins


Wouter Verkerke, NIKHEF


L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

low−stats bins
∏ )) δ(γ i )

hi−stats bins
∏

Adapting binning to event density


•  Effect of template statistics can also be controlled by rebinning 
data such all bins contain expected and observed events


–  For example choose binning such that expected background has a uniform 
distribution (as signals are usually small and/or uncertain they matter less)


Wouter Verkerke, NIKHEF
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Example 4 – Beeston-Barlow light


•  Beeston-Barlow-(lite) modeling"
of MC statistical uncertainties


Wouter Verkerke, NIKHEF


L(

N | γ ) = P(Ni |γ i (si + bi ))

bins
∏ P(si + bi |γ i (si + bi

bins
∏ ))

// Import template histogram in workspace 
 w.import(hs) ; 
 
// Construct parametric template models from histograms 
// implicitly creates vector of gamma parameters 
 w.factory(“ParamHistFunc::s(hs)”) ; 
  
 // Product of subsidiary measurement 
 w.factory(“HistConstraint::subs(s)”) ;  
 
 // Construct full model 
 w.factory(“PROD::model(s,subs)”) ; 

Example 5 – BB-lite + morphing


•  Template morphing model"
with Beeston-Barlow-lite"
MC statistical uncertainties


L(

N | s,


b) = P(Ni |γ i ⋅[si (α, si

−, si
0, si

+ )+ bi ])
bins
∏ P(si + bi |γ i ⋅[ si + bi ]

bins
∏ )G(0 |α,1)

si (α,...) =
si
0 +α ⋅ (si

+ − si
0 ) ∀α > 0

si
0 +α ⋅ (si

0 − si
− ) ∀α < 0

$
%
&

'&

// Import template histograms in workspace 
 w.import(hs_0,hs_p,hs_m,hb) ; 
 
 // Construct parametric template morphing signal model 
 w.factory(“ParamHistFunc::s_p(hs_p)”) ; 
 w.factory(“HistFunc::s_m(x,hs_m)”) ; 
 w.factory(“HistFunc::s_0(x[80,100],hs_0)”) ; 
 w.factory(“PiecewiseInterpolation::sig(s_0,s_,m,s_p,alpha[-5,5])”) ;  
 
 // Construct parametric background model (sharing gamma’s with s_p) 
 w.factory(“ParamHistFunc::bkg(hb,s_p)”) ; 
 
 // Construct full model with BB-lite MC stats modeling 
 w.factory(“PROD::model(ASUM(sig,bkg,f[0,1]), 
            HistConstraint({s_0,bkg}),Gaussian(0,alpha,1))”) ; 
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Wouter Verkerke, NIKHEF


Diagnostics I:"
MINUIT, Fit stability "
& convergence 
7 

MINUIT and convergence of profile likelihood fits


•  Likelihoods with systematics modeling (‘profile likelihood fits’) tend 
to be more complex than ‘normal’ fits


•  Sometimes these likelihood can have pathological features that 
frustrate the minimization process


•  To help you understand I will briefly cover

–  How MINUIT works and defines ‘convergence’

–  Typical problems that occur in profile likelihood models and how these affect 

MINUIT


Wouter Verkerke, NIKHEF
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MINUIT in a nutshell


•  MINUIT is a function minimization and analysis packages written 
by Fred James


–  Original FORTRAN version more than 40 years old!

–  Currently two versions in C++ in ROOT: TMinuit and Minuit2. Former is a 

‘machine translated version’ from FORTRAN, latter hand-ported version under 
the supervision of Fred James


–  I recommend to always use Minuit2 – performance has been exhaustively 
validated against the original minuit and you get much more useful diagnostic 
information out of it. 


•  Three analysis routines implement main functionality

–  MIGRAD: Function minimization using the variable metric method developed 

by Fletcher Davidon and Powell. (This is efffectively equivalent to the ‘industry 
standard’ method of Broyden, Fletcher, Goldfarb and Shanno ‘BFGS’)


–  HESSE: Error analysis: Calculates Hessian matrix of 2nd derivatives and inverts 
this into the covariance matrix


–  MINOS: Calculates intervals based on the profile likelihood ratio


Wouter Verkerke, NIKHEF


Function minimization using the variable metric method 


•  MINUIT does not implement a simple ‘steepest descent’ method"
as plain gradient often does not point well in direction of minimum


Wouter Verkerke, NIKHEF
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Function minimization using the variable metric method 


•  Instead concept of ‘conjugate gradients’ that exploit knowledge of 
covariance information


Wouter Verkerke, NIKHEF


position: x0"
gradient: g0"
Covariance: V0 = G-1 = I
G(f)= 

position: x1=x0-V0g0!
gradient: g1!
"
Covariance: V1 = V0+f(V0,x0,x1,g0,g1)!

Davidon-Fletcher-Power rank 2 formula


NB: If function is perfectly parabolic "
       and initial V0 is correct, "
       convergence in one step! 


Function minimization using the variable metric method 


•  Convergence criteria is based on ‘estimated distance to minimum’

–  EDM ‘estimated vertical distance to minimum’ assuming parabolic function


–  NB: Derives from general distance metric in non-Euclidian space


•  Note that both minimization and convergence criteria depend on 
knowledge of covariance matrix


•  There are 2 ways to calculate V

1.  From the Davidon-Fletcher-Power formula"



2.  From the inversion of the Hessian matrix 


Wouter Verkerke, NIKHEF


2 ⋅EDM = ρ = gTVg

Δs2 = ΔxTAΔx
Covariant metric tensor


V =G−1

Calculation of Hessian is expensive "
(½N2 likelihood evaluations)
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MINUIT convergence


•  After every VariableMetric "
step calculate EDM = ½gTVg




•  Terminate VM procedure when EDM<0.001


Wouter Verkerke, NIKHEF


VariableMetric: start iterating until Edm is < 0.001 
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826 
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226 
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624 
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016 
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410 
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804 
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196 
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =    0.0498047 NCalls =   4588 
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      0.03473 NCalls =   4980 
VariableMetric: Iteration #   9 - FCN =  -308.0564661263 Edm =    0.0266955 NCalls =   5372 
VariableMetric: Iteration #  10 - FCN =  -308.1092267909 Edm =     0.038622 NCalls =   5764 
VariableMetric: Iteration #  11 - FCN =  -308.1547659161 Edm =    0.0290921 NCalls =   6156 
VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548 
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940 
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332 
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724 
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116 
 

MINUIT converge


•  (Terminate VM procedure when EDM<0.001)

–  Note that EDM  up to here was calculated with V from DFP updater formula"

"
"
"



•  From here on, procedure depends on ‘strategy code’

–  Code 0: terminate line search

–  Code 2: Recalculate V from G-1 (HESSE)"

             if EDM(HESSE)>0.001 restart line search, else terminate

–  Code 1: If accuracy of Vn from DFP  better than 5% terminate,"

             else follow Code 2 procedure   


•  Strategy 1 is the default. 

Wouter Verkerke, NIKHEF


VariableMetric: Iteration #  12 - FCN =  -308.1870210082 Edm =   0.00827767 NCalls =   6548 
VariableMetric: Iteration #  13 - FCN =  -308.2008924182 Edm =    0.0034224 NCalls =   6940 
VariableMetric: Iteration #  14 - FCN =  -308.2064790118 Edm =   0.00151676 NCalls =   7332 
VariableMetric: Iteration #  15 - FCN =  -308.2090105175 Edm =   0.00106118 NCalls =   7724 
VariableMetric: Iteration #  16 - FCN =  -308.2106535849 Edm =  0.000634155 NCalls =   8116 
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HESSE Convergence


•  For smooth functions covariance estimates from HESSE are 
generally more accurate than those from Davidon-Fletcher-Powell 
but matrix inversion step is vulnerable to singularity issues


•  Singularities detected with eigenvalue analysis of Hessian matrix G 
before matrix inversion


–  If  ‘smallest eigenvalue’/’largest eigenvalue’ < 10-6 then matrix is declared ‘not 
positive definite’ 


–  Note that happens for both negative and small eigenvalues

–  In that case an ‘ad-hoc’ term is added to the diagonal of the Hessian matrix to 

force it positive definite so that it can be inverted


•  The ‘adjusted’ V from HESSE is then used to calculate the EDM

–  EDM estimate less reliable in this case, may cause MINUIT to endlessly go 

back to VariableMetric line search and eventually give up "
‘maximum number of calls exceeded’


Wouter Verkerke, NIKHEF


Likelihood models that cause MINUIT problems


•  Example 1 – Strong correlations

–  Consider this simple likelihood model with one NP"




–  What does the likelihood look like, e.g. for N=1000?


–  Strong correlations, but numerically feasible


Wouter Verkerke, NIKHEF


L1(µ,α) = Poisson(N |µS(1+τα))Gaussian(0 |α,1)

Scan of –log L(μ,α)
 Error ellipse  from V(μ,α) HESSE


ρ=0.9945
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Increasing the observed event count


N=1000
 N=10.000
 N=100.000

Vertical"
scale"
maximized"
at 0.5 units


ρ=-0.9945
 ρ=-0.9995
 ρ=-0.98


Sc
an

 o
f –

lo
g 

L(
μ,
α)



Er
ro

r e
llip

se
  f

ro
m

 V
(μ

,α
) H

ES
SE




Increasing the observed event count


N=1.000.000
 N=10.000.000


Vertical"
scale"
maximized"
at 0.5 units


ρ=-0.9996
 ρ=-0.998


HESSE WARNING: "
Matrix not positive definite


Sc
an

 o
f –

lo
g 

L(
μ,
α)



Er
ro

r e
llip

se
  f

ro
m

 V
(μ

,α
) H

ES
SE
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Likelihood models that cause MINUIT problems


•  Example 2 – Hidden strong correlations

–  Consider this trivial extension of the previous example with 2 NPs




–  Underlying scenario: two (independent) sources of systematic uncertainty that 

have a similar effect on the physics measurement

–  What does (profile) likelihood look like for various S? 


Wouter Verkerke, NIKHEF 


L2 (µ,α1,α2 ) = Poisson(N |µS(1+τ1α1 +τ 2α2 ))Gauss(0 |α1,1)Gauss(0 |α2,1)

− logL(µ,α1,α̂2 ) − logL(µ,α1, ˆ̂α2 (α1,µ)) Error ellipse V(μ,α) HESSE


-logL(μ,α1,α2) – 1000 events


Wouter Verkerke, NIKHEF 


− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse"
from HESSE


Slice in -logL


Profile likelihood
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-logL(μ,α1,α2) – 10.000 events


Wouter Verkerke, NIKHEF 


− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse"
from HESSE


Slice in -logL


Profile likelihood


Note that PLL"
contours don’t"

change between 1K"
and 10k!


-logL(μ,α1,α2) – 100.000 events


Wouter Verkerke, NIKHEF 


− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse"
from HESSE


Slice in -logL


Profile likelihood


Note that PLL"
contours don’t"

change between 10K"
and 100k close to min.!"
(but onset of fit failures 

further away…)
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-logL(μ,α1,α2) – 1.000.000 events


Wouter Verkerke, NIKHEF 


− logL(a,b, ĉ)

− logL(a,b, ˆ̂c(a,b))

Error ellipse"
from HESSE


Slice in -logL


Profile likelihood


Note that PLL"
contours don’t"

change between 100K"
and 1M close to min.!"

(but further increase of fit 
failures further away…)
 HESSE WARNING: "

Matrix not positive definite


Conclusions on strong correlations


•  MINUIT can handle strong correlations very well, but at some 
point algorithm breaks down


–  Notably HESSE will fail when ratio of weakest-to-strongest eigenvalue < 10-6


•  Diagnostic of the existence of strong correlations can be difficult

–  In simple models (Ex 1) this is reflected correlation coefficients

–  In more complex models (Ex 2) this may not show at all in the correlation 

coefficients because strong ‘N-point correlations’ may still project out to 
modest 2-point correlations (i.e. the usual Pearson correlation coefficients)


–  Better diagnostic tools is eigenvalues of Hessian matrix before inversion,"
but not (yet) available in Minuit2 [ I am discussing this with ROOT team ]


•  Solution: consider to simplify model: 

–  If two NPs represent conceptually distinct systematic uncertainties, but their 

effect on the likelihood is virtually identical, then there is effectively a redundant 
degree of freedom. You can eliminate one


Wouter Verkerke, NIKHEF
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Other likelihood pathologies


•  Template morphing algorithms can introduce various other 
pathologies in the likelihood that cause MINUIT to fail


–  We’ve already seen some of them"



•  Kinks & Multiple minima

–  Caused by (among others) template morphing with piece-wise linear 

interpolation and morphing of (low-statistics) template distributions where MC 
statistical effects are larger than systematic effect 


Wouter Verkerke, NIKHEF


Other likelihood pathologies


•  Effects of likelihood pathologies

–  Numerical noise and ‘jumping’ of profile likelihoods

–  Example NP (profile) likelihood scan of an ATLAS Higgs trial model


Wouter Verkerke, NIKHEF


Plain likelihood scan
Profile likelihood scan


− logL(µ, ˆ

θ )− logL(µ, ˆ̂


θ (µ))

Jump to another minimum solution"
in one of the profiled θ parameters


Jitter/noise
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Other likelihood pathologies


•  Another effect of likelihood pathologies is that calculation of 
derivatives and notably the Hessian from either FDP or HESSE 
matrix become inaccurate


–  Slows down minimization

–  Can blow up EDM calculation à no convergence


•  Red flags: EDM estimates that don’t decrease ~monotonically

–  Only possible in Minuit2 (Minuit1 does not report EDM per step)


•  Solutions: simplify model: eliminate nuisance parameters that 
suffer from dominant MC statistical effects (causing multiple 
minima, kinks etc…)


Wouter Verkerke, NIKHEF


VariableMetric: start iterating until Edm is < 0.001 
VariableMetric: Initial state   - FCN =  -289.1204081677 Edm =      46.0713 NCalls =   1826 
VariableMetric: Iteration #   1 - FCN =  -299.3073097602 Edm =      9.18415 NCalls =   2226 
VariableMetric: Iteration #   2 - FCN =  -304.9468725143 Edm =      2.22698 NCalls =   2624 
VariableMetric: Iteration #   3 - FCN =  -306.3323972775 Edm =      1.43793 NCalls =   3016 
VariableMetric: Iteration #   4 - FCN =   -307.199970017 Edm =     0.615574 NCalls =   3410 
VariableMetric: Iteration #   5 - FCN =  -307.6493784582 Edm =     0.352904 NCalls =   3804 
VariableMetric: Iteration #   6 - FCN =  -307.8960954798 Edm =    0.0749124 NCalls =   4196 
VariableMetric: Iteration #   7 - FCN =  -307.9549184882 Edm =     0.298047 NCalls =   4588 
VariableMetric: Iteration #   8 - FCN =  -308.0068371877 Edm =      3.40473 NCalls =   4980 

Other likelihood pathologies


•  Note that pathologies can affect calculation of V via "
iterative DFP updating and Hessian inversion differently


•  A real-life example of complex likelihood fit where DFP estimate is 
strongly affected by likelihood pathologies"



"


•  But other likelihood pathologies can affect Hessian inversion more





V from Davidon-Fletcher-Powell
 V from inversion of Hessian


Many spurious large correlations 
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Summary


•  A variety of pathological features in likelihood models can interfere 
with minimization


–  Strong correlations

–  Kinks

–  Multiple minima

–  ‘Forbidden regions’ where likelihood is not defined


•  Problems affect various steps of the minimization process

–  Understanding these effects requires basic understanding of the minimization 

algorithms and strategies


•  Solutions usually involve simplifications of models


Wouter Verkerke, NIKHEF


Being a good physicist – Understand your model!!

•  Full (profile) likelihood treats physics and subsidiary measurement 
on equal footing


•  Our mental picture:


"


•  Is this picture (always) correct?!

!
!

Wouter Verkerke, NIKHEF


L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement
 Subsidiary measurement


“measures s”
 “measures α”


“dependence on α"
weakens inference on s”
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Understanding your model – what constrains your NP


•  The answer is no – not always! Your physics measurement"
may in some circumstances constrain α better than your 
subsidiary measurement.


•  Doesn’t happen in Poisson counting example 

–  Physics likelihood has no information to distinguish effect of s from effect of α


•  But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 


Wouter Verkerke, NIKHEF


L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement
 Subsidiary measurement


Understanding your model – what constrains your NP


•  A case study – measuring jet multiplicity (3j,4j,5j)"
"
"



•  Signal mildly peaks in 4j bin, sits on top of a falling background


Wouter Verkerke, NIKHEF


L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Effect of changing µ Effect of changing αJES 
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Understanding your model – what constrains your NP


•  Now measure (μ,α) from data – 80 events"



•  Is this fit OK?

–  Effect of JES uncertainty propagated in to μ via response modeling in 

likelihood. Increases total uncertainty by about a factor of 2

–  Estimated uncertainty on α is not precisely 1, as one would expect"

from unit Gaussian subsidiary measurement…  

Wouter Verkerke, NIKHEF


µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of"
μ, α correlated"
due to similar"

response in physics"
measurement


Uncertainty"
on μ with/without "
effect of JES


Understanding your model – what constrains your NP


•  The next year – 10x more data  (800 events)"
repeat measurement with same model


•  Is this fit OK?

–  Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)

–  Because the physics likelihood can measure it better than the subsidiary 

measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision)
 Wouter Verkerke, NIKHEF


µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of"
μ, α correlated"
due to similar"

response in physics"
measurement
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Understanding your model – what constrains your NP


•  Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?


–  From the statisticians point of view: no problem, simply a product of two 
likelihood that are treated on equal footing ‘simultaneous measurement’


–  From physicists point of view? Measurement is only valid is model is valid.


•  Is the probability model of the physics measurement valid?


•  Reasons for concern

–  Incomplete modeling of systematic uncertainties,

–  Or more generally, model insufficiently detailed 


Wouter Verkerke, NIKHEF


L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Understanding your model – what constrains your NP


•  What did we overlook in the example model?

–  The background rate has no uncertainty!


•  Insert modeling of background uncertainty"
"



•  With improved model"
accuracy estimated"
uncertainty on both"
αJES, μ goes up again…


–  Inference weakened"
by new degree of"
freedom αbkg


–  NB αJES estimate still"
deviates a bit from normal"
distribution estimate…
 Wouter Verkerke, NIKHEF


L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate"
subsidiary measurement


Background rate"
response function


µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)
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Understanding your model – what constrains your NP


•  Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate 
uncertainties


•  Normalized subsidiary measurement provide an excellent 
diagnostic tool


–  Whenever estimates of a NP associated with unit Gaussian subsidiary 
measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.


•  Is ‘over-constraining’ of systematics NPs always bad?

–  No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)


–  Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement


Wouter Verkerke, NIKHEF


Commonly heard  arguments in discussion on over-constraining


•  Overconstraining of a certain systematic is OK “because this is what 
the data tell us”


–  It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition


•  “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”


–  A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.


–  If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 


•  “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%


–  It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.


–  One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)   


Wouter Verkerke, NIKHEF
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Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Written prescription often not clear on number of nuisance 
parameters: 


•  Does “the JES uncertainty is 5% for all jets” mean one NP
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Jet pT


αJES 

i.e. JES miscalibration is coherent for all jets"
à You can calibrate high pT jets with a low pT jet sample


5% 

Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Written prescription often not clear on number of nuisance 
parameters: 


•  Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT


i.e. JES miscalibration is not coherent across pT "
but still has 5% uncertainty for each pT bin


αJES1 

αJES2 

αJES3 

αJES4 
αJES5 

5% 
5% 

5% 
5% 

5% 
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Dealing with over-constraining – introducing more NPs


•  Some systematic uncertainties are not captured well by one 
nuisance parameter. 


•  Written prescription often not clear on number of nuisance 
parameters: 


•  If you assume one NP – chances are that your physics Likelihood "
                                      will exploit this oversimplified JES model "
                                      to overconstrain JES for high pT jets!
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Jet pT


αJES 

i.e. JES miscalibration is coherent for all jets"
à You can calibrate high pT jets with a low pT jet sample


5% 

Modeling theory uncertainties


•  Modeling of systematic uncertainties originating from theory 
sources can pose some extra & thorny problems


Wouter Verkerke, NIKHEF
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Modeling theory uncertainties


•  Difficulties are not in the modeling procedure, but in quantifying what 
precisely we know


•  Difficulty 1 – What is distribution of the subsidiary measurement?!

•  Easy example – Top cross-section uncertainty




•  Difficult example – Factorization scale uncertainty


Wouter Verkerke, NIKHEF


Lfull (s,σ tt ) = Poisson(NSR | s+εtt ⋅σ tt ) ⋅Gauss( !σ tt |σ tt, 0.08)

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“XS Uncertainty  is 8%” à Gaussian subsidiary with 8% uncertainty"
(because XS uncertainty is ultimately from a measurement)  


“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian"
So what distribution was meant? 


Modeling theory uncertainties


•  Difficult example – Factorization scale uncertainty"





•  Difficult arises from imprecision in original prescription.


–  NB: Issue is physics question, not a statistical procedure question. Answer will also 
need to be motivated with physics arguments


•  Note that you always assume some distribution (even if you do error 
propagation) à Profiling approach requires you to write"
it out explicitly. This is good!


Wouter Verkerke, NIKHEF


Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian"
So what distribution was meant? 
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Modeling theory uncertainties


•  Difficulty 2 – What are the parameters of the systematic model?!

•  Easy example – Factorization scale uncertainty"



–  One parameter: the factorization scale à Clearly described and connected to the 
underlying theory model


–  You can ask yourself if there are additional uncertainties in the theory model 
(renormalization scale etc), this a valid, but distinct issue. "



•  Difficult example – Hadronization/Fragmentation model

–  Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics analysis

–  How do you model this in the likelihood?


Wouter Verkerke, NIKHEF


Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

Modeling theory uncertainties


•  Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects. Examples of such systematic prescriptions


–  Evaluate measurement with Herwig and Pythia showering Monte Carlos and 
take the difference as systematic uncertainty


–  Evaluate measurement with CTEQ and MRST parton density functions and 
take the difference as systematic uncertainty."
 


•  I call these ‘2-point systematics’. 

–  You have the technical means to evaluate (typically) two known different 

configurations, but reasons for underlying difference are not clearly identified.


Wouter Verkerke, NIKHEF
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Specific issue with theory uncertainties


•  It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide


•  If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood


•  If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 


–  You should go back to the drawing board and design a new measurement 
that is less sensitive to these issues.


–  E.g. If your inclusive cross-section uncertainty is dominated by fullàfiducial 
acceptance uncertainty due to Herwig/Pythia issue, shouldn’t you rather be 
publishing the fiducial cross-section?


Wouter Verkerke, NIKHEF


Specific issues with theory uncertainties


•  Pragmatic solutions to likelihood modeling of ‘2-point systematics’

•  Final solution will need to follow usual pattern"

"
"



•  Defining an (empirical) response "
function b(α) is the easy part"
"
"
"



•  A thorny question remains: "
What is the subsidiary measurement for α?"
This should reflect you current knowledge on α.  


Wouter Verkerke, NIKHEF


L(N | s,α) = Poisson(N | s+ b(α)) ⋅SomePdf (0 |α)

αgen


b
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Nuisance parameter


Pythia


Herwig
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Specific issues with theory uncertainties


•  Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models


–  Extra difficult to make meaningful statement about this, since meaning of 
parameter is not well embedded in underlying theory model


–  But again, all procedures need to assume some distribution… Profiling requires 
you to spell it out


•  Some options and their effects




Wouter Verkerke, NIKHEF


Herwig
Pythia
 Pythia
 Herwig
Pythia
 Pythia
 Herwig
Pythia
 Pythia


Prefers Herwig at 1σ
 All predictions ‘between’"
Herwig and Pythia equally"
probable


Only ‘pure’ Herwig"
and Pythia exist


Gaussian

Box with "

Gaussian wings
 Delta fuctions


Not c
om

pat
ible

 with M
INUIT


Two-point systematics on non-counting measurements


•  In a counting experiment you can argue "
that for every conceivable background rate "
there exists a value of the NP that "
corresponds to that rate


–  Even if ‘SHERPA’ was never used to construct"
the model, you can still represent its outcome


•  This is not generally true for distributions."
A shape interpolation between "
‘pythia’ and ‘herwig’ does not"
necessarily describe shape of "
‘sherpa’ (or of Nature!)


–  Fundamental modeling"
problem!


–  You may need more"
parameters… 


Wouter Verkerke, NIKHEF


αgen
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Nuisance parameter


Pythia


Herwig


Bkg shape Herwig
Bkg shape Pythia


Sherpa 

Sherpa?
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Dealing with ‘two-point’ uncertainties


•  Key issue: How many d.o.f. does you systematic uncertainty 
have?


•  Especially important in the discussion to what extent a two-point 
response function can be over-constrained.


–  A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 
assuming all generators are normally scattered in an imaginary ‘generator 
space’


Wouter Verkerke, NIKHEF


Pythia


Herwig


Sherpa


Nature


Next years"
generator


Modeled uncertainty (1 dimension)"
assuming ‘nature is on line’

Effectively captured uncertainty"
"
under the assumption that effect#
of ‘position in model space’ in #
any dimension is similar on#
response function 


Dealing with ‘two-point’ uncertainties


•  Key issue: How many d.o.f. does you systematic uncertainty 
have?


•  Especially important in the discussion to what extent a two-point 
response function can be over-constrained.


–  Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 
the generator model space?


Wouter Verkerke, NIKHEF


Pythia


Herwig


Sherpa


Nature


Next years"
generator


Modeled uncertainty (1 dimension)"
assuming ‘nature’ is on line


Effectively captured uncertainty"
"
under the assumption that effect#
of ‘position in model space’ in #
any dimension is similar on#
response function 
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Summary


•  The key challenge for experimental physicist is to construct the 
likelihood function describing his analysis/experiment


•  ‘Profiling’ is a technique allows to effectively incorporate all model 
uncertainties that are traditionally thought of as ‘systematic 
uncertainties’ 


–  By empirically parametrizing the response of the full simulation chain


•  Profiling enable used of all fundamental statistical inference 
techniques (frequentist/Bayesian), which start with the likelihood


–  A ‘profile likelihood’ allows execution of fundamental statistical techniques 
without cutting corners


–  Confidence intervals with guaranteed coverage, Bayesian posteriors, etc





Wouter Verkerke, NIKHEF


Summary


•  Profile likelihood implements and diagnoses many analysis issues that 
are missed by naïve approaches to systematic uncertainties (e.g. 
error prop)


–  “Posterior correlation” – Effect of correlations between systematics introduced by 
features of the physics measurement


–  “Overconstraining” – Either input magnitude was too conservative, or response 
model for systematic uncertainty was too simple (you’d like to know in either case)


–  “Imprecisely specified systematics” – Profiling requires physicist to explicit spell out 
precise model that is used


•  But is important to run diagnostics on a profile likelihood model!
–  Default interpretation in case of overconstraining is ‘input uncertainty too 

conservative’, which may lead to underestimated uncertainties if simplistic 
response model was the real problem


•  ‘Profiling’ is the best way we know to incorporate systematic 
uncertainties is probability models


Wouter Verkerke, NIKHEF
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The end


•  … of this course

•  As an ‘extra’, a glimpse of the state of the art in complex likelihood 

model building in particle physics – The Higgs discovery


Wouter Verkerke, NIKHEF


The structure of an (Higgs) profile likelihood function

•  A simultaneous fit of physics samples and (simplified) performance measurements


Wouter Verkerke, NIKHEF 


LH→X (x |µ,
!
θ ) = Lphys (x |µ,

!
θ )

i=0...n
∏ ⋅ Lcontrol (x |µ,

!
θ )

i=0...n
∏ ⋅Lsub(θ1) ⋅Lsub(θ1

) ⋅!⋅Lsub(θn )

Signal region 1


Signal region 2


Control region 1
 Control region 2


‘Simplified Likelihood of #
a measurement related#

to systematic uncertainties’


‘Subsidiary "
measurement 1’


‘Jet Energy scale’


‘Subsidiary "
measurement 2’


B-tagging eff


‘Subsidiary "
measurement n’"

Factorization scale


>200 samples modeled in total
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The idea behind the design of RooFit/RooStats/HistFactory


•  Step 1 – Construct the likelihood function L(x|p)#
#
#
#
#
#
#



•  Step 2 – Statistical tests on parameter of interest p "
"



Wouter Verkerke, NIKHEF 


RooFit,  or  RooFit+HistFactory!

RooStats!

RooWorkspace!

Complete description#
of likelihood model,#
persistable in ROOT file

(RooFit pdf function)

Allows full introspection#
and a-posteriori editing#



RooWorkspace w(“w”) ; 
w.factory(“Gaussian::sig(x[-10,10],m[0],s[1])”) ; 
w.factory(“Chebychev::bkg(x,a1[-1,1])”) ; 
w.factory(“SUM::model(fsig[0,1]*sig,bkg)”) ; 
w.writeToFile(“L.root”) ; 

RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 
pdf->fitTo(data) ; 

Example RooFit component model for realistic Higgs analysis


variables


function objects


Graphical illustration of function"
components that call each other




Likelihood model describing the "
ZZ invariant mass distribution including all 
possible systematic #
uncertainties


RooFit  
workspace 
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Analysis chain identical for highly complex (Higgs) models


•  Step 1 – Construct the likelihood function L(x|p)#
#
#
#
#
#
#



•  Step 2 – Statistical tests on parameter of interest p "
"



Wouter Verkerke, NIKHEF 


RooStats!

RooWorkspace!

Complete description#
of likelihood model,#
persistable in ROOT file

(RooFit pdf function)

Allows full introspection#
and a-posteriori editing#



RooWorkspace* w=TFile::Open(“L.root”)->Get(“w”) ; 
RooAbsPdf* model = w->pdf(“model”) ; 
pdf->fitTo(data, 
           GlobalObservables(w->set(“MC_GlObs”), 
           Constrain(*w->st(“MC_NuisParams”) ; 

Workspaces power collaborative statistical modelling


•  Ability to persist complete(*) Likelihood models "
has profound implications for HEP analysis workflow


–  (*) Describing signal regions, control regions, and including nuisance 
parameters for all systematic uncertainties)


•  Anyone with ROOT (and one ROOT file with a workspace) !
can re-run any entire statistical analysis out-of-the-box!

–  About 5 lines of code are needed

–  Including estimate of systematic uncertainties


•  Unprecedented new possibilities for cross-checking results, "
in-depth checks of structure of analysis


–  Trivial to run variants of analysis (what if ‘Jet Energy Scale uncertainty’ is 7% 
instead of 4%). Just change number and rerun.


–  But can also make structural changes a posteri. For example, rerun with 
assumption that JES uncertainty in forward and barrel region of detector are 
100% correlated instead of being uncorrelated.


Wouter Verkerke, NIKHEF 
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Collaborative statistical modelling


•  As an experiment, you can effectively build a library of 
measurements, of which the full likelihood model is "
preserved for later use


–  Already done now, experiments have such libraries of workspace files,

–  Archived in AFS directories, or even in SVN….

–  Version control of SVN, or numbering scheme in directories allows for easy 

validation and debugging as new features are added"



•  Building of combined likelihood models greatly simplified. 

–  Start from persisted components. No need to (re)build input components.

–  No need to know how individual components were built, or are internally 

structured. Just need to know meaning of parameters. 

–  Combinations can be produced (much) later than original analyses.

–  Even analyses that were never originally intended to be combined with 

anything else can be included in joint likelihoods at a later time


Wouter Verkerke, NIKHEF 


Higgs discovery strategy – add everything together

HàZZàllll
 Hàττ
 HàWWàμνjj


+… 

Assume SM rates 

L(µ,

θ ) = LH→WW (µWW ,


θ ) ⋅LH→γγ (µγγ ,


θ ) ⋅LH→ZZ (µZZ ,


θ ) ⋅…

Dedicated physics working groups #
define search for each of the 
major Higgs decay channels #
(HàWW, HàZZ, Hàττ etc).#
#
Output is physics paper or note, #
and a RooFit workspace with the #
full likelihood function


A small dedicated team of specialists builds a combined likelihood from the inputs. #
Major discussion point: naming of parameters, choice of parameters for systematic #
uncertainties (a physics issue, largely)
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The benefits of modularity


•  Technically very straightforward to combine measurements #
#
#






Wouter Verkerke, NIKHEF 


RooFit,  or  RooFit+HistFactory!

RooStats


RooWorkspace! RooWorkspace!

RooWorkspace!

Higgs channel 1
 Higgs channel 2


Combiner!

RooStats!

Higgs

Combination


Lightweight#
software tool#
using RooFit#
editor tools#
(~500 LOC)


Insertion of #
combination #

step does not #
modify workflow #

before/after #
combination step


Workspace persistence of really complex models works too!


F(x,p)


x
 p


Atlas Higgs combination model (23.000 functions, 1600 parameters)


Model has ~23.000 function objects, ~1600 parameters

Reading/writing of full model takes ~4 seconds"

ROOT file with workspace is ~6 Mb
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With these combined models the Higgs discovery plots were produced…


Wouter Verkerke, NIKHEF 


LATLAS(µ,θ) = 

Neyman construction"
with profile likelihood "

ratio test


CMS


More benefits of modularity


•  Technically very straightforward to reparametrize measurements #
#
#
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RooFit,  or  RooFit+HistFactory!

RooStats


RooWorkspace!

RooWorkspace!

Standard "
Higgs combination


Reparametrize!

RooStats!

Lightweight"
software tool"
using RooFit"
editor tools


Reparametrization  
step does not  

modify workflow  
 

BSM"
Higgs combination
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An excursion – Collaborative analyses with workspaces


•  How can you reparametrize existing Higgs likelihoods in practice?

•  Write functions expressions corresponding to new parameterization"

"



•  Import transformation in workspace, edit existing model 
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w.factory(“expr::mu_gg_func(‘(KF2*Kg2)/ 
                            (0.75*KF2+0.25*KV2)’, 
                            KF2,Kg2,KV2) ; 

w.import(mu_gg_func) ; 
w.factory(“EDIT::newmodel(model,mu_gg=mu_gg_gunc)”) ; 

BSM Higgs constraints from"
reparametrization of SM Higgs"
Likelihood model 
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Simplified MSSM (tanβ,mA)


Imposter model(M,ε)

Minimal composite Higgs(ξ)


Two Higgs #
Double Model#
(tanβ,cos(α-β))


Portal model (mX)


(ATLAS-CONF-2014-010)



