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• Lowest energy experiments focus on neutrino mass and Dirac vs. Majorana 

• Reactor/Solar experiments dominate the < 1 GeV non-accelerator region 

• Accelerator coupled experiments are mainly probing oscillation physics 

• Highest energy experiments are involved with astro-physics and cosmic 
neutrinos

Experimental Landscape Overview

2

10 TeV 10 PeV1 TeV100 GeV10 GeV1 GeV100 MeV10 MeV
1 KeV1 eV

Super-K

IceCube/DeepCore	


ANTARES	



 Baikal

GERDA	


EXO	



KamLAND-Zen	


NEMO	



Cuoricino

Borexino	


KamLAND	



Double Chooz	


Daya Bay	



Reno	


SNO

ANITA	


HiRes	


Auger

!MINOST2K

OPERA

NOνA

MiniBooNE
MINERνA



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

• There are different types of Charged Current interactions 

• At high(er) energies Deep-Inelastic Scattering (DIS): Nucleon is 
destroyed created a shower of secondary hadrons 

• At ~1 GeV neutrino energy Resonance (RES): Nucleon ‘emits’ a low 
number of secondary mesons or resonant states 

• At lowest energies Quasi-Elastic (QE or QEL): Nucleon stays intact 

!

• Higher energies have higher cross-sections

Charged Current Types
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Sources
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Beta-Decay Endpoint
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• At rest, the energy of beta-decay is carried by the anti-
neutrino and beta (electron) 

• Measure the electron from tritium 

KATRIN Absolute Neutrino Mass
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Tritium
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KATRIN
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KATRIN
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KATRIN

7

• Where is the tritium source?

• Easy answer is “Right here. It says so on the diagram.”

• But most talks and documents start with “Tritium gas is injected into 
the Windowless Gas Tritium Source (WGTS)…”

• Tritium comes from the Tritium Laboratory Karlsruhe (TLK)

• But, TLK does not make tritium
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• Seriously, where does KATRIN’s tritium come from?

KATRIN Tritium Source
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• Seriously, where does KATRIN’s tritium come from?

KATRIN Tritium Source
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“The tritium at TLK comes from Canada in 
the form of metal hydride and is essentially 
a waste product from their natural uranium 
fuelled, heavy (deuterated) water 
moderated CANDU reactors.” 
!
Tritium Laboratory Karlsruhe (http://
www.itep.kit.edu/english/258.php)

http://www.itep.kit.edu/english/258.php
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CANadian Deutrium Uranium (CANDU)
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CANadian Deutrium Uranium (CANDU)
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Double Beta-Decay Diagram

10

Kinetic Energy

Q-Value
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Double Beta-Decay Sources
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• Higher Q-value is better 

• High decay rate 

• Less radioactive 
backgrounds 

!

• Larger natural 
abundance is cheaper
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Solar/Reactor
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Solar/Reactor
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Solar Neutrino Flux
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Solar/Reactor
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Solar Neutrino Flux Reactor Neutrino Flux
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Low Energy (semi) Natural Sources
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• Tritium: Canada
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• Tritium: Canada

• Double Beta-Decay: Radioactive Isotopes

• Solar: Sun

• Reactor: Reactors

Low Energy (semi) Natural Sources

13
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Scientist Impact
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• Scientists do not control nuclear reactors or the sun

Scientist Impact
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http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf
http://www-conf.slac.stanford.edu/ssi/2010/Hall080610.pdf
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• Scientists do not control nuclear reactors or the sun

• Difficult if not impossible to influence the neutrino source for 
neutrino physics goals

• Study the nuclear processes and isotope creation

• Excellent resources can be found online

• Reactor
• K. Heeger - http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf

• Double Beta-Decay
• Carter Hall - http://www-conf.slac.stanford.edu/ssi/2010/Hall080610.pdf
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• Scientists do not control nuclear reactors or the sun

• Difficult if not impossible to influence the neutrino source for 
neutrino physics goals

• Study the nuclear processes and isotope creation

• Excellent resources can be found online

• Reactor
• K. Heeger - http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf

• Double Beta-Decay
• Carter Hall - http://www-conf.slac.stanford.edu/ssi/2010/Hall080610.pdf

• Now, a look at man-made neutrinos, i.e. beams

Scientist Impact
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http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf
http://www-conf.slac.stanford.edu/ssi/2010/Hall080610.pdf
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Conventional 
Neutrino Beam

15



16http://www.symmetrymagazine.org/article/november-2012/how-to-make-a-neutrino-beam
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Where it All Starts (Fermilab)
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Where it All Starts (Fermilab)
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A canister of hydrogen gas



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

Ions

18

• Hydrogen gas is fed into H- ion creator 

• In this case a plasma magnetron 

• Continuous feed
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• Ions are continuously fed into a linear accelerator (linac) 

• Accelerated to MeV energies and slightly ‘bunched’

Linear Accelerator

19
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Ions to Protons

20

+p

Septum

 ions-400 MeV H

Stripping
foil

collimator

Booster
orbit

+p

magnets
Orbump

-H

+p

-,H+p

+p

-,H-e



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

• After the linear accelerator the ions are at ~400 MeV
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• After the linear accelerator the ions are at ~400 MeV

• Take the ions and put them into a proton accelerator
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• After the linear accelerator the ions are at ~400 MeV

• Take the ions and put them into a proton accelerator

• Strip off the electron
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• After the linear accelerator the ions are at ~400 MeV

• Take the ions and put them into a proton accelerator

• Strip off the electron

• Combine with a circulating proton beam (FNAL Booster)
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• Use the same magnets for (de)focusing the p+ and H- 
because of the opposite sign

Ions to Protons
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• Accelerate protons in Booster to 8 GeV 

• Extract for fixed target experiments (rare particle and MiniBooNE) 

• Extract for further acceleration for (MINOS, NOvA)

Proton Acceleration

22
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Proton Acceleration
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• 2nd accelerator (Main Injector) with is 7x the circumference 
of Booster

Proton Acceleration

23
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• 2nd accelerator (Main Injector) with is 7x the circumference 
of Booster

• Can load 6 Booster ‘batches’

Proton Acceleration

23
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Main Injector

24
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• Why only 6 batches if there are 7 total?

Main Injector
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• Why only 6 batches if there are 7 total?

• Need empty space, ‘notch’, to extract beam

Main Injector
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• Why only 6 batches if there are 7 total?

• Need empty space, ‘notch’, to extract beam

• In diagram below only 5 batches filled
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• Why only 6 batches if there are 7 total?

• Need empty space, ‘notch’, to extract beam

• In diagram below only 5 batches filled

• The reason is due to a process called Slip Stacking

Main Injector

24

Injected batch
from Booster

regular
batch

slip-stacked
batches
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Slip Stacking

25
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• Add more protons into the accelerator by radio-frequency manipulation
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• Add more protons into the accelerator by radio-frequency manipulation

• Inject 5 slipped stacked batches with a slight frequency offset followed 
by 6 regular batches

Slip Stacking
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• Add more protons into the accelerator by radio-frequency manipulation

• Inject 5 slipped stacked batches with a slight frequency offset followed 
by 6 regular batches

• Frequency offset makes them drift in time

Slip Stacking

25
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Slip Stacking
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1st Booster Batch  
Injected into MI  

2nd Booster Batch  
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Slip Stacking
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• Proton bunches are not well defined 

• Two separate out-of-phase proton ‘beams’ in the same pipe 
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Slip Stacking

27

• Using the same machinery it is possible to get 50% 
increase in protons

• Requires impressive accelerator expertise 
• Proton bunches are not well defined 

• Two separate out-of-phase proton ‘beams’ in the same pipe 

• More protons means more neutrinos

• Are there downsides to more protons? 
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• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

Electron Cloud Model in Proton Machines

r

V

*Bob Zwaska, FNAL



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014 28

• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

• Produce a few initial/primary electrons
➢Residual gas ionization

• O( e- / m / torr / proton)
➢Lost protons

Electron Cloud Model in Proton Machines

e-

e-

e-

r

V

*Bob Zwaska, FNAL



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014 28

• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

• Produce a few initial/primary electrons
➢Residual gas ionization

• O( e- / m / torr / proton)
➢Lost protons

• Can produce 100’s in beam pipe

Electron Cloud Model in Proton Machines

e-

e-

e-

r

V

+

e- few kV

*Bob Zwaska, FNAL



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014 28

• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

• Produce a few initial/primary electrons
➢Residual gas ionization

• O( e- / m / torr / proton)
➢Lost protons

• Can produce 100’s in beam pipe

• Beam produces strong potential

Electron Cloud Model in Proton Machines

r

V

+

e-

e-

e-

e-

few kV

*Bob Zwaska, FNAL



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014 28

• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

• Produce a few initial/primary electrons
➢Residual gas ionization

• O( e- / m / torr / proton)
➢Lost protons

• Can produce 100’s in beam pipe

• Beam produces strong potential
➢Nonadiabatic appearance

Electron Cloud Model in Proton Machines

r

V

+

e-

e-

e-

e-

few kV

*Bob Zwaska, FNAL



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014 28

• Considering the Main Injector beam
➢1-8 ns long bunches every 19 ns
➢1-5 mm transverse sigma
➢Bunch intensities of ~1011 protons

• Produce a few initial/primary electrons
➢Residual gas ionization

• O( e- / m / torr / proton)
➢Lost protons

• Can produce 100’s in beam pipe

• Beam produces strong potential
➢Nonadiabatic appearance
➢Electrons Accelerate

• Beam disappears
➢Electrons collide with wall
➢Produce more electrons through 

secondary emission

Electron Cloud Model in Proton Machines

r

V

e-

e-

e-

e-

*Bob Zwaska, FNAL
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Neutrino Beamline (NuMI)

29
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Proton Target for Neutrino Beam

30



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

• Must be tough  

• Will be struck repeatedly by 100s or 1,000s of kilowatts or protons 
every few seconds 

• Should not warp, crack, shatter, or quickly degrade 

• Carbon (graphite) and Beryllium

Proton Target for Neutrino Beam
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• Must be tough  

• Will be struck repeatedly by 100s or 1,000s of kilowatts or protons 
every few seconds 

• Should not warp, crack, shatter, or quickly degrade 

• Carbon (graphite) and Beryllium

• Produces charged hadrons (pions, kaons)

• Optimize target mass and design 

• More mass: produces more mesons and therefore more neutrinos 

• More mass: higher chance of meson absorption within the target

Proton Target for Neutrino Beam

30
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NuMI Target Degradation

• Neutrino yield from the NuMI target degraded by 
~5% over an exposure of ~ 6e20 protons

*Bob Zwaska, FNAL
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Magnetic Horns
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• Must bend energetic particles over short distances (1-10m) 
with minimal material

• Pulsed focusing horns produce magnetic field 

• Momentum selects mesons 

• Directionally focuses selected mesons down decay pipe

Magnetic Horns

32



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

Decay Pipe and Absorber

33
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• Decay pipe allows mesons to decay into neutrinos 

• Low pressure 

• Length is governed by funding

Decay Pipe and Absorber
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• Decay pipe allows mesons to decay into neutrinos 

• Low pressure 

• Length is governed by funding

• Absorber stops un-decayed mesons

Decay Pipe and Absorber

33
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Monitors

34
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• Hadrons are the neutrino parent particles and muons are 
the ‘siblings’
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• Hadrons are the neutrino parent particles and muons are 
the ‘siblings’

• Beam issues will show up much sooner in hadrons and muons than 
neutrinos

Monitors
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• Hadrons are the neutrino parent particles and muons are 
the ‘siblings’

• Beam issues will show up much sooner in hadrons and muons than 
neutrinos

• Additional constraints on the neutrino beam intensity, energy, and 
direction

Monitors

34
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• How do we know neutrino flux?

• Rate

• Flavor composition

• Energy spectrum

• Reactors: Thermal output and isotopes

• Sun: Solar observations in photons

• Accelerators: Initial estimate uses simulations of protons on 
a target and downstream physics

Neutrino Flux Koan
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• Predicted MiniBooNE flux using different hadron interaction models in 
Geant4
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Neutrino Beam Simulation

38

• Measure the energy and intensity of protons onto the target

• Use simulation for secondary hadron creation (pions/kaons) 

• Hadron re-scattering/absorption in target 

• Hadron transverse momentum

• Transport hadrons through magnetic 
field, magnetic horns, into decay pipe, 
and decay to produce neutrinos

• Large contribution from pion 
production from the target
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• Near Detectors are wonderful ways to constrain neutrino 
flux uncertainties 

• Measure unoscillated spectrum and use Monte Carlo to extrapolate 
to Far Detector 

• Many uncertainties or mis-modeling in Near Detector neutrinos map 
to Far Detector neutrinos 

• High neutrino statistics

Near Detector

39
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Near Detector

40

Near Detector Far Detector

• The neutrinos observed at the Near Detector are not 
guaranteed to be similar in kinematics to those at the Far 
Detector

• Near Detector cannot solve everything
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• Reweight pions in terms of transverse and longitudinal 
momentum 

• Produces agreement with dedicated hadroproduction data 

• Experiments explicitly measuring p+target meson production 

Hadron Tuning
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Beam Effects on Data
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• Conventional neutrino beams require many parts

• Near detector is very helpful, but cannot solve all ills

• Future precision neutrino physics goals utilizing neutrino 
beams (CP-violation) must tackle accelerator challenges 

• Target construction 

• Electron cloud 

• Hadroproduction 

• etc

Wrap-Up
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