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Experimental Landscape Overview

* Lowest energy experiments focus on neutrino mass and Dirac vs. Majorana

* Reactor/Solar experiments dominate the < 1 GeV non-accelerator region

e Accelerator coupled experiments are mainly probing oscillation physics

e Highest energy experiments are involved with astro-physics and cosmic

neutrinos
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Charged Current Types

* There are different types of Charged Current interactions

e At high(er) energies Deep-Inelastic Scattering (DIS): Nucleon is
destroyed created a shower of secondary hadrons

e At ~1 GeV neutrino energy Resonance (RES): Nucleon ‘emits’ a low
number of secondary mesons or resonant states

e At lowest energies Quasi-Elastic (QE or QEL): Nucleon stays intact

 Higher energies have higher cross-sections
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Beta-Decay Endpoint
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KATRIN Absolute Neutrino Mass

e At rest, the energy of beta-decay is carried by the anti-
neutrino and beta (electron)

e Measure the electron from tritium

Tritium

D. Jason Koskinen - NBIA PhD School: Neutrinos Underg



KATRIN
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KATRIN

e \Where is the tritium source?
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KATRIN

e \Where is the tritium source?

e Easy answer is “Right here. It says so on the diagram.”
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KATRIN

e \Where is the tritium source?

e Easy answer is “Right here. It says so on the diagram.”

e But most talks and documents start with “Tritium gas is injected into
the Windowless Gas Tritium Source (WGTS)...”
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KATRIN

e \Where is the tritium source?

e Easy answer is “Right here. It says so on the diagram.”

e But most talks and documents start with “Tritium gas is injected into
the Windowless Gas Tritium Source (WGTS)...”

* Tritium comes from the Tritium Laboratory Karlsruhe (TLK)
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KATRIN

e \Where is the tritium source?

e Easy answer is “Right here. It says so on the diagram.”

e But most talks and documents start with “Tritium gas is injected into
the Windowless Gas Tritium Source (WGTS)...”

* Tritium comes from the Tritium Laboratory Karlsruhe (TLK)

e But, TLK does not make tritium
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KATRIN Tritium Source

e Seriously, where does KATRIN's tritium come from?
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e Seriously, where does KATRIN's tritium come from?
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KATRIN Tritium Source

e Seriously, where does KATRIN's tritium come from?

“"The tritium at TLK comes from Canada in
the form of metal hydride and is essentially
a waste product from their natural uranium
fuelled, heavy (deuterated) water
moderated CANDU reactors.”

Tritium Laboratory Karilsruhe (http://
www.itep.kit.edu/english/258.php)
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Double Beta-Decay Diagram

Kinetic Energy
Q-Value
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Double Beta-Decay Sources
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Solar/Reactor
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Solar/Reactor

Solar Neutrino Flux
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Solar/Reactor
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Low Energy (semi) Natural Sources




Low Energy (semi) Natural Sources

e Tritium: Canada
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Low Energy (semi) Natural Sources

e Tritium: Canada

* Double Beta-Decay: Radioactive Isotopes
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Low Energy (semi) Natural Sources

* Tritium: Canada
* Double Beta-Decay: Radioactive Isotopes

e Solar: Sun
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Low Energy (semi) Natural Sources

* Tritium: Canada
* Double Beta-Decay: Radioactive Isotopes
* Solar: Sun

e Reactor: Reactors
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Scientist Impact
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Scientist Impact

e Scientists do not control nuclear reactors or the sun
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http://www-conf.slac.stanford.edu/ssi/2010/Hall080610.pdf

Scientist Impact

e Scientists do not control nuclear reactors or the sun

e Difficult it not impossible to influence the neutrino source for
neutrino physics goals
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Scientist Impact

e Scientists do not control nuclear reactors or the sun

e Difficult it not impossible to influence the neutrino source for
neutrino physics goals

* Study the nuclear processes and isotope creation
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Scientist Impact

e Scientists do not control nuclear reactors or the sun

e Difficult if not impossible to influence the neutrino source for
neutrino physics goals

e Study the nuclear processes and isotope creation

e Excellent resources can be found online

e Reactor

e K. Heeger - http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf

e Double Beta-Decay
e Carter Hall - http://www-cont.slac.stanford.edu/ssi/2010/Hall080610.pdf
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Scientist Impact

e Scientists do not control nuclear reactors or the sun

e Difficult if not impossible to influence the neutrino source for
neutrino physics goals

e Study the nuclear processes and isotope creation

e Excellent resources can be found online

e Reactor

e K. Heeger - http://neutrino.physics.wisc.edu/talks/old/Heeger_reactornu.pdf

e Double Beta-Decay
e Carter Hall - http://www-cont.slac.stanford.edu/ssi/2010/Hall080610.pdf

e Now, a look at man-made neutrinos, i.e. beams
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Conventional
Neutrino Beam
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http://www.symmetrymagazine.org/article/november-2012/how-to-make-a-neutrino-beam



http://www.symmetrymagazine.org/article/november-2012/how-to-make-a-neutrino-beam



Where it All Starts (Fermilab)
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Where it All Starts (Fermilab)

A canister of hydrogen gas
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lons

e Hydrogen gas is fed into H™ ion creator
* |n this case a plasma magnetron

e Continuous feed

H, GAS
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D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June



Linear Accelerator

* |ons are continuously fed into a linear accelerator (linac)

o Accelerated to MeV energies and slightly ‘bunched’

lon source

drift tubes

P~
P~

— RF source
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lons to Protons

Orbump
Septum magnets
Booster
orbit
p* P’
Stripping collimator
foil

|
400 MeV H ions
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lons to Protons

e After the linear accelerator the ions are at ~400 MeV
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lons to Protons

e After the linear accelerator the ions are at ~400 MeV

e Take the ions and put them into a proton accelerator
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Septum magnets
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lons to Protons

o After the linear accelerator the ions are at

~400 MeV

e Take the ions and put them into a proton accelerator

e Strip off the electron

Orbump
Septum magnets
"""""" Booster
orbit
p* p*
Strippinéw ~ collimator
foil

|
400 MeV H ions
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lons to Protons

o After the linear accelerator the ions are at ~400 MeV

e Take the ions and put them into a proton accelerator

e Strip off the electron

e Combine with a circulating proton beam (FNAL Booster)

Orbump

Septum magnets
S T T S B o o Ste r

orbit
p* P
Stripping collimator
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|

400 MeV H ions
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lons to Protons

* Use the same magnets for (de)tocusing the p+ and H-
because of the opposite sign

.Orbump 1 Orbump 2
(dipole magnet)

Orbump
Septum magnets
Booster
orbit
P y - — 3
o : NN
e ,H T
Stripping | collimator
foil

|
400 MeV H ions
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Proton Acceleration

* Accelerate protons in Booster to 8 GeV

e Extract for fixed target experiments (rare particle and MiniBooNE)
e Extract for further acceleration for (MINOS, NOvVA)

Fermilab Accelerator Complex

Main Injector Recycler Ring

Neutrino — ===
Experiments

——— Neutrino
Experiments

t ~
g ... B8
Booster

Fixed-Target > ’,- 7))
Expeniments, ~ _,
Test Beam 7 P Linac Muon  Muon——==
Facility y Delivery  Experiments
——lon Source  ing

BEAM g

STARTS

HERE
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Proton Acceleration

Fermilab Accelerator Complex

Main Injector Recycler Ring
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Proton Acceleration

e 2nd accelerator (Main Injector) with is 7x the circumference

of Booster
Fermilab Accelerator Complex
Main Injector Recycler Ring
Neutrino \
Experiments o
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Proton Acceleration

e 2nd accelerator (Main Injector) with is 7x the circumference
of Booster

e Can load 6 Booster ‘batches’

Fermilab Accelerator Complex

Main Injector Recycler Ring
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Main Injector

_—
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Main Injector

* \Why only 6 batches it there are 7 total?
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Main Injector

* \Why only 6 batches it there are 7 total?

* Need empty space, 'notch’, to extract beam
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Main Injector

 \Why only 6 batches if there are 7 total?

* Need empty space, 'notch’, to extract beam

e |n diagram below only 5 batches filled
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Main Injector

 \Why only 6 batches if there are 7 total?

* Need empty space, 'notch’, to extract beam
e |n diagram below only 5 batches filled

* The reason is due to a process called Slip Stacking
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Slip Stacking
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Slip Stacking

 Add more protons into the accelerator by radio-frequency manipulation
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Slip Stacking

 Add more protons into the accelerator by radio-frequency manipulation

* Inject 5 slipped stacked batches with a slight frequency offset followed
by 6 reqular batches

A—regula\r
batch

Injected batch
from Booster

_—

Arrows are illustrative. Batches are
not actually counter-rotating

slip-stacked
batches
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Slip Stacking

 Add more protons into the accelerator by radio-frequency manipulation

* Inject 5 slipped stacked batches with a slight frequency offset followed

oy 6 regular batches

* Frequency offset makes them drift in time

A—regula\r
batch

Injected batch
from Booster

_—

Arrows are illustrative. Batches are
not actually counter-rotating

slip-stacked
batches
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Slip Stacking

Merged bunch train in MI
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Slip Stacking
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Slip Stacking

* Using the same machinery it is possible to get 50%
Increase In protons
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Slip Stacking

* Using the same machinery it is possible to get 50%
INcrease In protons

* Requires impressive accelerator expertise

e Proton bunches are not well defined

* Two separate out-of-phase proton ‘beams’ in the same pipe
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Slip Stacking

* Using the same machinery it is possible to get 50%
INcrease In protons

* Requires impressive accelerator expertise

e Proton bunches are not well defined

* Two separate out-of-phase proton ‘beams’ in the same pipe

* More protons means more neutrinos
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Slip Stacking

* Using the same machinery it is possible to get 50%
INcrease In protons

* Requires impressive accelerator expertise

e Proton bunches are not well defined

* Two separate out-of-phase proton ‘beams’ in the same pipe

* More protons means more neutrinos

* Are there downsides to more protons?
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma
>Bunch intensities of ~10!! protons

*Bob Zwaska, FNAL
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma ©
>Bunch intensities of ~10!! protons

* Produce a few 1nitial/primary electrons
>Residual gas 1onization ©
 O(e /m/ torr / proton)
> Lost protons

*Bob Zwaska, FNAL
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma
>Bunch intensities of ~10!! protons

* Produce a few 1nitial/primary electrons
>Residual gas 1onization
 O(e /m/ torr / proton)
> Lost protons
e Can produce 100’s in beam pipe

v | P few kV

*Bob Zwaska, FNAL
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma
>Bunch intensities of ~10!! protons

* Produce a few 1nitial/primary electrons
>Residual gas 1onization
 O(e /m/ torr / proton)
> Lost protons
e Can produce 100’s in beam pipe

* Beam produces strong potential

v | few kV

*Bob Zwaska, FNAL
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma
>Bunch intensities of ~10!! protons

* Produce a few 1nitial/primary electrons
>Residual gas 1onization
 O(e /m/ torr / proton)
> Lost protons
e Can produce 100’s in beam pipe

* Beam produces strong potential
>Nonadiabatic appearance

v | few kV

*Bob Zwaska, FNAL
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Electron Cloud Model in Proton Machines

* Considering the Main Injector beam
>1-8 ns long bunches every 19 ns
>1-5 mm transverse sigma
>Bunch intensities of ~10!! protons ©

* Produce a few 1nitial/primary electrons
>Residual gas 1onization
 O(e /m/ torr / proton)
> Lost protons
e Can produce 100’s in beam pipe

* Beam produces strong potential
>Nonadiabatic appearance
>Electrons Accelerate v

* Beam disappears
> Electrons collide with wall ©

>Produce more electrons through
secondary emission r

*Bob Zwaska, FNAL
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Neutrino Beamline (NuMI)

Muon Monitors
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Proton Target for Neutrino Beam
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Proton Target for Neutrino Beam

e Must be tough
e Will be struck repeatedly by 100s or 1,000s of kilowatts or protons
every few seconds

* Should not warp, crack, shatter, or quickly degrade
e Carbon (graphite) and Beryllium
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Proton Target for Neutrino Beam

e Must be tough

e Will be struck repeatedly by 100s or 1,000s of kilowatts or protons
every few seconds

* Should not warp, crack, shatter, or quickly degrade
e Carbon (graphite) and Beryllium

* Produces charged hadrons (pions, kaons)
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Proton Target for Neutrino Beam

e Must be tough

e Will be struck repeatedly by 100s or 1,000s of kilowatts or protons
every few seconds

e Should not warp, crack, shatter, or quickly degrade
e Carbon (graphite) and Beryllium

* Produces charged hadrons (pions, kaons)

e Optimize target mass and design

* More mass: produces more mesons and therefore more neutrinos

* More mass: higher chance of meson absorption within the target
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NuMI Target Degradation

* Neutrino yield from the NuMI target degraded by
~5% over an exposure of ~ 6e¢20 protons

Events Per POT v.s. Run (E <6 GeV)
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Magnetic Horns

Absorber Muon Monitors
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Magnetic Horns

* Must bend energetic particles over short distances (1-10m)
with minimal material

Absorber Muon Monitors
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Magnetic Horns

* Must bend energetic particles over short distances (1-10m)
with minimal material

* Pulsed focusing horns produce magnetic field

¢ Momentum selects mesons

e Directionally focuses selected mesons down decay pipe

Absorber Muon Monitors
Target D - \ l S5 1 ) l S
ecay Pipe o | B | B
Target Hall e SNERASN PSR
120 GeV = ; _—— = ke ~, 4
ProtonS St s — . —:;;:;:;— :.‘ f; PO SE . \\:‘. ;& - '\
From #1 ’ o, &
Main Injector Horns# nt | A : /
10 m 30 m Vg
675 m
5

Hadron Monitor "

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014



Decay Pipe and Absorber

Absorber Muon Monitors
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Decay Pipe and Absorber

* Decay pipe allows mesons to decay into neutrinos

* Low pressure

e |Length is governed by funding

Absorber Muon Monitors
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Decay Pipe and Absorber

* Decay pipe allows mesons to decay into neutrinos

* Low pressure

e |Length is governed by funding
* Absorber stops un-decayed mesons

Absorber Muon Monitors
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Monitors
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Monitors

* Hadrons are the neutrino parent particles and muons are
the ‘siblings’
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Monitors

* Hadrons are the neutrino parent particles and muons are
the ‘siblings’

® Beam issues will show up much sooner in hadrons and muons than
neutrinos
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Monitors

* Hadrons are the neutrino parent particles and muons are
the ‘siblings’
* Beam issues will show up much sooner in hadrons and muons than

neutrinos

e Additional constraints on the neutrino beam intensity, energy, and

direction
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What is at the End?

arXiv:0709.2737
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Neutrino Flux Koan
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Neutrino Flux Koan

e How do we know neutrino flux?
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Neutrino Flux Koan

e How do we know neutrino flux?

e Rate
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Neutrino Flux Koan

e How do we know neutrino flux?

e Rate

e Flavor composition
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Neutrino Flux Koan

e How do we know neutrino flux?

* Rate
e Flavor composition

* Energy spectrum
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Neutrino Flux Koan

e How do we know neutrino flux?

* Rate
e Flavor composition

* Energy spectrum

* Reactors: Thermal output and isotopes
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Neutrino Flux Koan

e How do we know neutrino flux?

* Rate
e Flavor composition

* Energy spectrum

* Reactors: Thermal output and isotopes

* Sun: Solar observations in photons
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Neutrino Flux Koan

e How do we know neutrino flux?

* Rate
e Flavor composition

* Energy spectrum

* Reactors: Thermal output and isotopes
* Sun: Solar observations in photons

e Accelerators: Initial estimate uses simulations of protons on
a target and downstream physics
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MiniBooNE

e Predicted MiniBooNE flux using different hadron interaction models in
Geantd
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MiniBooNE

e Predicted MiniBooNE flux using different hadron interaction models in
Geantd
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Neutrino Beam Simulation
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Neutrino Beam Simulation

* Measure the energy and intensity of protons onto the target
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Neutrino Beam Simulation

* Measure the energy and intensity of protons onto the target

e Use simulation for secondary hadron creation (pions/kaons)

e Hadron re-scattering/absorption in target

e Hadron transverse momentum
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Neutrino Beam Simulation

 Measure the energy and intensity of protons onto the target

e Use simulation for secondary hadron creation (pions/kaons)

e Hadron re-scattering/absorption in target

e Hadron transverse momentum

e Transport hadrons through magnetic
field, magnetic horns, into decay pipe,
and decay to produce neutrinos
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Neutrino Beam Simulation

 Measure the energy and intensity of protons onto the target

e Use simulation for secondary hadron creation (pions/kaons)

e Hadron re-scattering/absorption in target

e Hadron transverse momentum

e Transport hadrons through magnetic
field, magnetic horns, into decay pipe,
and decay to produce neutrinos

* Large contribution from pion
oroduction from the target
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Near Detector

e Near Detectors are wonderful ways to constrain neutrino

flux uncertainties

* Measure unoscillated spectrum and use Monte Carlo to extrapolate

to Far Detector
 Many uncertainties or mis-modeling in Near Detector neutrinos map

to Far Detector neutrinos

* High neutrino statistics
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Near Detector
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Near Detector
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Near Detector

* The neutrinos observed at the Near Detector are not
guaranteed to be similar in kinematics to those at the Far

Detector
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Near Detector

* The neutrinos observed at the Near Detector are not
guaranteed to be similar in kinematics to those at the Far
Detector

 Near Detector cannot solve everything
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Near Detector Comparisons
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Near Detector Comparisons

e Stuck with some
contribution from
simulation if want to
know the neutrino flux
characteristics for
precision neutrino physics
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Near Detector Comparisons

e Stuck with some
contribution from
simulation if want to
know the neutrino tlux
characteristics for
precision neutrino physics

e Tune hadrons so that
Near Detector Monte
Carlo matches data
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Hadron Tuning

* Reweight pions in terms of transverse and longitudinal

momentum
arXiv:0711.0769
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Hadron Tuning

* Reweight pions in terms of transverse and longitudinal
momentum

arXiv:0711.0769

All animals are equal

-Animal Farm
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Hadron Tuning

* Reweight pions in terms of transverse and longitudinal
momentum

arXiv:0711.0769

All animals are equal
but some animals are
more equal than others

-Animal Farm
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Hadron Tuning

* Reweight pions in terms of transverse and longitudinal
momentum

arXiv:0711.0769

All pions are equal
but some pions are
more equal than others

-Animal Farm
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Hadron Tuning

* Reweight pions in terms of transverse and longitudinal
momentum

* Produces agreement with dedicated hadroproduction data

o Experiments explicitly measuring p+target meson production
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Beam Effects on Data

arXiv:0711.0769
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Wrap-Up
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Wrap-Up

e Conventional neutrino beams require many parts
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Wrap-Up
e Conventional neutrino beams require many parts

* Near detector is very helpful, but cannot solve all ills
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Wrap-Up
e Conventional neutrino beams require many parts

* Near detector is very helpful, but cannot solve all ills

e Future precision neutrino physics goals utilizing neutrino
beams (CP-violation) must tackle accelerator challenges

* Target construction
e Electron cloud
e Hadroproduction

® cic

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014




