<u>Experimental Lecture #5</u> <u>Reactor</u>

D. Jason Koskinen

NBIA PhD School: Neutrinos Underground and in the Heavens June 23-27, 2014

The Niels Bohr International Academy

KeV-MeV Energy - Solar/Reactor Neutrinos

Solar Neutrino Flux

Reactor Neutrino Flux

Experimental Landscape

Accelerator based

Non-accelerator based

*Boxes provide sense of scale for physics sensitive regions

Liquid Scintillator

- Mainly inverse beta-decay for anti-neutrino detection
 - Positron annihilates with atomic electron
 - Neutron is absorbed by a doping agent at a characteristic time afterwards
- Prompt light from positron annihilation followed by delayed light

Detectors

- Detector material must be low, low, low radioactivity
- 'Chimney' for lowering radioactive calibration sources
- Layered
 - Outer veto layer catch nearby muons
 - Inner veto catch penetrating muons
 - Gamma catcher absorb photons from nearby radioactive decay from PMTs, steel, etc.
 - Fiducial volume separated from innermost veto volume by transparent barrier

Daya Bay

Secondary Muon Effects

- Muons can cause radioactive background
 - Cosmogenic activated

radiation, i.e. cosmic ray muon creates isotope within the detector which decays long after the muon is gone

 Muons can dislodge neutrons which wander undetected into the detector whereupon they are absorbed or collide

KamLAND

KamLAND

Variations

Daya Bay

Calibration (KamLAND)

- Event vertex calibration and light response as a function of position
- Monitors any detector non-uniformities
- Slightly dangerous because there is a passage from an outside region into the immaculately clean detector

Rate (Reno)

- Besides reactor flux the rate decreases vs. time
- Scintillator degrades

Uncertainties are Small

Source of uncertainty		Chooz	Daya Bay (relative)		
		(absolute)	Baseline	Goal	Goal w/Swapping
# protons		0.8	0.3	0.1	0.006
Detector	Energy cuts	0.8	0.2	0.1	0.1
Efficiency	Position cuts	0.32	0.0	0.0	0.0
	Time cuts	0.4	0.1	0.03	0.03
	H/Gd ratio	1.0	0.1	0.1	0.0
	n multiplicity	0.5	0.05	0.05	0.05
	Trigger	0	0.01	0.01	0.01
	Live time	0	<0.01	<0.01	< 0.01
Total detector-related uncertainty		1.7%	0.38%	0.18%	0.12%

Why Use Liquid Scintillator?

- Solar/Reactor neutrino oscillation Δm^2_{12} and θ_{12}
 - KamLAND, Borexino
- Geo-neutrinos
 - KamLAND, Borexino
- Measure neutrino mixing angle θ_{13}
 - Reno, Chooz, Double Chooz, Daya Bay

KamLAND

- Use the many available reactors in Japan as sources
- No directionality, so meticulous care had to be kept of power output (neutrino emission) of each reactor

KamLAND

• Has both rate and energy spectrum measurements

Best Result Plot?

KamLAND: "just smiling"

Solar/Reactor Results w/ KamLAND

θ₁₃

 Oscillation probability of electron neutrino to electron neutrino (or anti-neutrino) is

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v} \right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v} \right)$$

- KamLAND+Solar experiments provide the Δm_{12}^2 and θ_{12} elements while atmospheric oscillation provides Δm_{31}^2
 - L is the distance between neutrino emission and detection
 - Neutrino energy is reconstructed using the scintillation light

Multiple Detectors Sites

Event Selection

Make energy cuts for prompt and delayed signal

Bkg Rejection

- Energy cuts on signal (IBD)
 - Prompt energy 0.7 MeV 12 MeV
 - Delayed Neutron 6.0-12 MeV
- Timing
 - Prompt is 'immediate'
 - Delayed 1µs-200µs
- Veto Cuts

*D. Dwyer, LBNL

- Outer veto volume (>12 hit PMTs) reject -2µs to 600µs
- Inner volume (> 3000 PE) reject -2µs to 1400µs
- Inner volume (> 3x10⁵ PE)
- reject -2µs to 0.4s

Daya Bay Systematics Budget

Detector							
Detector							
	Efficiency	Correlated	Uncorrelated				
Target Protons		0.47%	0.03%				
Flasher cut	99.98%	0.01%	0.01%				
Delayed energy cut	90.9%	0.6%	0.12%				
Prompt energy cut	99.88%	0.10%	0.01%				
Multiplicity cut		0.02%	< 0.01%				
Capture time cut	98.6%	0.12%	0.01%				
Gd capture ratio	83.8%	0.8%	< 0.1%				
Spill-in	105.0%	1.5%	0.02%				
Livetime	100.0%	0.002%	< 0.01%				
Combined	78.8%	1.9%	0.2%				
Reactor							
Correlated	ł	Uncorrelated					
Energy/fission	0.2%	Power	0.5%				
$\overline{\nu}_e$ /fission	3%	Fission fraction	0.6%				
		Spent fuel	0.3%				
Combined	3%	Combined	0.8%				

Daya Bay Result

 $\sin^2(2\theta_{13}) = 0.089 \pm 0.010(stat) \pm 0.005(syst)$

Reno Setup

• Located near 6 nuclear reactors in Yonggwang S. Korea

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

RENO

- One larger detector instead of many smaller detectors (Daya Bay)
- Consistent with Daya Bay

 $sin^{2}(2\theta_{13}) = 0.101 \pm 0.008(stat) \pm 0.010(syst)$ *S-H. Seo, Neutrino 2014

New Reno Feature

Interesting

• In 2011 reactor antineutrino spectra predictions were reevaluated with a 3% increase in flux (arXiv:1101.2663)

	old [3]	new			
$\sigma^{pred}_{f,^{235}U}$	$6.39{\pm}1.9\%$	$6.61{\pm}2.11\%$			
$\sigma^{pred}_{f,^{239}Pu}$	$4.19{\pm}2.4\%$	$4.34{\pm}2.45\%$			
$\sigma_{f,^{238}U}^{pred}$	$9.21{\pm}10\%$	$10.10{\pm}8.15\%$			
$\sigma^{pred}_{f,^{241}Pu}$	$5.73{\pm}2.1\%$	$5.97{\pm}2.15\%$			
σ_{f}^{pred}	$5.824{\pm}2.7\%$	$6.102{\pm}2.7\%$			
σ_{f}^{bugey}	$5.752 \pm 1.4\%$ [3]				
$\sigma_{f}^{bug\check{e}y}/\sigma_{f}^{pred}$	$0.987 {\pm} 1.4\% {\pm} 2.7\% \left 0.943 {\pm} 1.4\% {\pm} 2.7\% \right $				

Reactor Anomaly

Global Average: 0.959 +/- 0.009

Versus Distance

θ₁₃ Landscape

Daya Bay remains the most precise of numerous largely consistent θ_{13} measurements

Friday, September 6, 13

41

Anomaly vs. Distance

Reactors Wrap-Up

- Inverse Beta-Decay is most common detection channel
- Low radioactivity in construction is essential
- Excellent measurement of solar oscillation parameters and θ_{13}
- Rate anomaly seen