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KeV-MeV Energy - Solar/Reactor Neutrinos
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• Mainly inverse beta-decay for anti-neutrino detection 

• Positron annihilates with atomic electron 

• Neutron is absorbed by a doping agent at a characteristic time 
afterwards 

• Prompt light from positron annihilation followed by 
delayed light

Liquid Scintillator
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• Detector material must be 
low, low, low radioactivity 

• ‘Chimney’ for lowering 
radioactive calibration 
sources 

• Layered 
• Outer veto layer - catch nearby 

muons 

• Inner veto - catch penetrating 
muons 

• Gamma catcher - absorb 
photons from nearby radioactive 
decay from PMTs, steel, etc. 

• Fiducial volume separated from 
innermost veto volume by 
transparent barrier

Detectors
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Daya Bay
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• Muons can cause radioactive 
background 

• Cosmogenic activated 
radiation, i.e. cosmic ray muon 
creates isotope within the 
detector which decays long after 
the muon is gone 

• Muons can dislodge neutrons 
which wander undetected into 
the detector whereupon they are 
absorbed or collide

Secondary Muon Effects
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Variations
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• Event vertex calibration 
and light response as a 
function of position 

!

• Monitors any detector 
non-uniformities 

!

• Slightly dangerous 
because there is a 
passage from an 
outside region into the 
immaculately clean 
detector

Calibration (KamLAND)
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• Besides reactor flux the rate decreases vs. time 

• Scintillator degrades

Rate (Reno)
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Uncertainties are Small

10



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

• Solar/Reactor neutrino oscillation           and θ12 

• KamLAND, Borexino 

• Geo-neutrinos 

• KamLAND, Borexino 

• Measure neutrino mixing angle θ13 

• Reno, Chooz, Double Chooz, Daya Bay

Why Use Liquid Scintillator?
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• Use the many available reactors in Japan as sources 

• No directionality, so meticulous care had to be kept of 
power output (neutrino emission) of each reactor

KamLAND
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• Has both rate and energy spectrum measurements

KamLAND
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Best Result Plot?
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Solar/Reactor Results w/ KamLAND
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• Oscillation probability of electron neutrino to electron 
neutrino (or anti-neutrino) is 

!

!

• KamLAND+Solar experiments provide the           and θ12 
elements while atmospheric oscillation provides  

• L is the distance between neutrino emission and detection 

• Neutrino energy is reconstructed using the scintillation light

θ13
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Multiple Detectors Sites 

17



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

• Make energy cuts for prompt and delayed signal

Event Selection

18



D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

Bkg Rejection
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• Energy cuts on signal (IBD) 

• Prompt energy 0.7 MeV - 12 MeV 

• Delayed Neutron 6.0-12 MeV 

!
• Timing 

• Prompt is ‘immediate’ 

• Delayed 1μs-200μs 

!
• Veto Cuts 

• Outer veto volume (>12 hit PMTs) 
reject -2μs to 600μs 

• Inner volume (> 3000 PE) reject -2μs 
to 1400μs 

• Inner volume (> 3x105 PE) 

• reject -2μs to 0.4s

*D. Dwyer, LBNL
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Daya Bay Systematics Budget
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Daya Bay Result
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*C. Zhang, Neutrino 2014

sin2(2✓13) = 0.089± 0.010(stat)± 0.005(syst)
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• Located near 6 nuclear reactors in Yonggwang S. Korea

Reno Setup
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Near Detector

Far Detector
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• One larger detector 
instead of many 
smaller detectors 
(Daya Bay) 

• Consistent with Daya 
Bay

RENO
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sin2(2✓13) = 0.101± 0.008(stat)± 0.010(syst)

*S-H. Seo, Neutrino 2014
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New Reno Feature
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• In 2011 reactor antineutrino spectra predictions were 
reevaluated with a 3% increase in flux (arXiv:1101.2663)

Interesting
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Reactor Anomaly
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arXiv:1303.0900

Global Average: 0.959 +/- 0.009
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Versus Distance
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Global Average: 0.959 +/- 0.009
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θ13 Landscape
Global Comparison of ✓13 Measurements
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Daya Bay 217 Days 

Daya Bay 55 Days 

RENO 229 Days 

DC 228 Days 

T2K 11 Events

Daya Bay 139 Days 

DC 101 Days 

RENO 416 Days 

DC n-H Analysis

T2K 6 Events

MINOS 

Solar+KamLand

T2K 11 Events 

DC RRM Analysis

T2K 28 Events 
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Daya Bay remains the most precise of numerous largely consistent θ13 measurements

41Friday, September 6, 13 *B. Littlejohn
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Anomaly vs. Distance
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arXiv:1204.5379
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• Inverse Beta-Decay is most common detection channel 

!

• Low radioactivity in construction is essential 

!

• Excellent measurement of solar oscillation parameters and 
θ13 

!

• Rate anomaly seen

Reactors Wrap-Up
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