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Beams

e Most beams are muon (anti)neutrinos

e Cern Neutrinos to Gran Sasso (CNGS)
e Neutrinos at Main Injector (NuMI) at Fermilab

e Japan Proton Accelerator Research Complex (J-PARC)
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e Most beams are muon (anti)neutrinos

e Cern Neutrinos to Gran Sasso (CNGS)
e Neutrinos at Main Injector (NuMI) at Fermilab

e Japan Proton Accelerator Research Complex (J-PARC)

e Peak energy in the O(1) GeV region

* Physics

e Oscillation physics: NOvA, T2K, Minos, ICARUS, OPERA

* |nteraction & Cross-Sections: MINERVA, ArgoNeut, SciBooNE, T2K
ND280
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Beams

e Most beams are muon (anti)neutrinos

e Cern Neutrinos to Gran Sasso (CNGS)
e Neutrinos at Main Injector (NuMI) at Fermilab

e Japan Proton Accelerator Research Complex (J-PARC)

e Peak energy in the O(1) GeV region

* Physics
e Oscillation physics: NOvA, T2K, Minos, ICARUS, OPERA

* |nteraction & Cross-Sections: MINERVA, ArgoNeut, SciBooNE, T2K
ND280

* Detectors have wide divergence in approach
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MINOS

Lake
Superior

A

Lake
Michigan

e Atmospheric neutrino
oscillation experiment

optimized for N

* Two magnetic calorimeter
detectors

e Near detector measures
unoscillated

Fermilab 110 km Soudan
e Far detector measures 730 km *‘ |__
oscillated 12 km
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Magnetizea Calorimeter
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Magnetizea Calorimeter

e With the exception of inverse beta-decay most neutrino
detectors have no charge identitication
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Magnetizea Calorimeter

e With the exception of inverse beta-decay most neutrino
detectors have no charge identitication

e MINOS has segmented magnetized steel followed by
active scintillator strips

e Provides mass for neutrino interaction

e Magnetic field
e Charge identification of muons
e Energy estimator from curvature

e Containment by keeping muon in detector
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Magnetizea Calorimeter

e With the exception of inverse beta-decay most neutrino
detectors have no charge identitication

e MINOS has segmented magnetized steel followed by
active scintillator strips

e Provides mass for neutrino interaction

e Magnetic field

e Charge identification of muons
e Energy estimator from curvature

e Containment by keeping muon in detector

e 1.5 tesla toroidal field
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Magnetic Fields

e At GeV+ energies magnetic fields allow muon/anti-muon
separation

* Provides energy for muons exiting detector
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MINOS

e Scintillator strips have orthogonal orientations (U &V)

 Embedded in the strips is a wavelength shitter fiber to
transport photons to the PMTs

Magnetic Coil Hole

Near Detector
Steel/Scintillator Plane
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Solid Scintillator

e \Wavelength shifting fibers convert blue scintillation light to
lower wavelength

e Reduces attenuation

* Matches wavelength to PMT response

Zio,

"green” photon

arXiv:0701153
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Far Detector Event




Far Detector Event




MINQOS Veto Panels

Snarl : 150170 EventType : Cosmic Muon

.

trigger : PLANE
trigger : E4
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MINQOS Veto Panels

Snarl : 150170 EventType : Cosmic Muon

trigger : E4
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MINQOS Veto Panels

Snarl : 150170 EventType : Cosmic Muon
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Neutrino Signal
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Neutrino Signal

e At the simplest, the goal is to see something ‘appear’
inside the detector

e |dentify interaction within a volume

e High efficiency identification due to low interaction rate

* Interaction-specific detector, e.g. identify electron from Charged-
Current electron neutrino interaction
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Neutrino Signal

e At the simplest, the goal is to see something ‘appear’
inside the detector

e |dentify interaction within a volume

e High efficiency identification due to low interaction rate

* Interaction-specific detector, e.g. identify electron from Charged-
Current electron neutrino interaction

* Neutrino cross-section is low, so experiments aim for:

e |arge detector mass

e High neutrino flux

e Get close to neutrino source

e Create a powerful source or beam

e | vetime
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Neutrino Background
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Neutrino Background
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Neutrino Background
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Neutrino Background
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Cosmic Ray Muon Backgrouna

e Penetrating muons that interact in the detector

e (Generally much, much more numerous than actual desired neutrinos

e Muons low energy deposition (~2 MeV cm?/gram) and therefore a
long range

e Stochastic energy loss produces a non-muon-like signature
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Muon Energy Loss in Matter

*Particle Data Group
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Muon Stochastic Energy Loss

D. Jason Koskinen - NBIA PhD School: Neutrinos Underg



Muon Stochastic Energy Loss
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Muon Stochastic Energy Loss
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Muon Stochastic Energy Loss
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Muon Stochastic Energy Loss
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Muon Event Cartoon

Toy Detector
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Muon Event Cartoon

~

Detector hits from
muon Ionization

Toy Detector
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Muon Event Cartoon
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Muon Event Cartoon
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Secondary Muon Eftects

KamLAND
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Secondary Muon Eftects

KamLAND

e Muons can cause radioactive
background
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Secondary Muon Eftects

KamLAND

e Muons can cause radioactive
background

e Cosmogenic activated
radiation, i.e. cosmic ray muon
creates isotope within the
detector which decays long after
the muon is gone
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Secondary Muon Effects

KamLAND

e Muons can cause radioactive
background

e Cosmogenic activated
radiation, i.e. cosmic ray muon
creates isotope within the
detector which decays long after
the muon is gone
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Secondary Muon Effects

KamLAND

e Muons can cause radioactive
background

e Cosmogenic activated
radiation, i.e. cosmic ray muon
creates isotope within the
detector which decays long after
the muon is gone

* Muons can dislodge neutrons
which wander undetected into
the detector whereupon they are
absorbed or collide
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KamLAND
AN

Eextra‘ > 3GeV

counts/0.1sec
S

e Use time cut around muon

N

AN
2 sec VET
for all volume

350 — 0.1

* High energy can produce
more background in the
whole detector

! ! |

* Lower energy only requires TR R RTET R
CUtS around the muon path time ditference from muon [sec]
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*P. Decowski, High Energy Physics in the LHC Era 2006
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Muon Backgrounao

 No matter the detector, atmospheric muons are almost
always a background

e Stochastic processes can confuse event identification algorithms

e Produce cosmogenic radioactivity which decays long after the muon
nas departed

* No detector is 100% sensitive, with enough statistics some muons
will ‘appear’
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Back to Experiments
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Generic Oscillations

Fixed Baseline L

w/o oscillations

w/ oscillations
+ bkgs, smearing, etc...

w/ oscillations
+ perfect detector

Events

vu Energy

0.0 i " " | ! ! ! | ! ! ! | ! ! ! |
vu Energy
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MINQOS Far Detector Data

Neutrinos

MINQOS Preliminar

=+ Minos data

=== Best fit oscillation
=== N0 oscillations
) NC background

Neutrino beam

10.71x 10°° POT
contained-vertex V“

0 2 4 6 8 10 12
Reconstructed v, Energy (GeV)
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Anti-Neutrinos

MINOS Preliminary

=+ Minos Data
= Best fit oscillations

Events

=== N0 oscillations
) NC background

Antineutrino beam
3.36 x 10°° POT

contained-vertex V,,

0 5 10
Reconstructed v, Energy (GeV)

*Alex Sousa, Neutrino 2014



Oscillation Results

'MINOS+ Preliminary

—

2.8 __ MINOS: v, disappearance + v, appearance
- 10.71x10% POT v,-mode, 3.36 x10°° POT ¥,-mode
26 -_ MINOS & MINOS+: 48.67 kt-yr atmospheric v
2.4
< b
L 2.2
o - Normal hierarchy
o - Inverted hierarchy
g 22k
<] -
2.4} x
26
- —_— o)
o8k * Best fit 68% C.L.
L - 00% C.L.
0.3 0.4 0.5 0.6 0.7
Sin2623 *A. Sousa, Neutrino 2014
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NOVA A
N P~

o Off-axis oscillation experiment v,, — v

e Major physics motivation was measurement of 613

e But, has other physics potential

e Neutrino Mass Hierarchy
e 3-flavor neutrino mixing

e Charge-Parity Violation in neutrinos

* NuMI upgraded from 400 kW to 700 kW

e Far Detector is NOT in a mine

e Uses beam timing, direction, and a big detector
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Why Off-Axis?

e On-axis conventional neutrino beams are wide-band, i.e.
‘wide’ distribution in energy producing background
neutrinos at unwanted energies

® |Intrinsic Ve contamination in v, beam that is much higher
for on-axis directions

ooiados  armiviors.erar
. Beam MC —LE 1
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: & 0.010 —HE
i Target Hall e e H* s —
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NuMI off-axis event spectra arXiv:1209.0716
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Off-Axis Baseline
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NOVA Detector

e Uses scintillator to detect (anti)ve. events
e 14 kiloton volume using a totally active design

* Long (15.7m) plastic cells tilled with mineral oil

3D schematic of View from the top Particle 1
NOvA particle detector
Interaction
Point
v — h
A ‘."_'] A A
AAA A g g Bl ] .-
s s, m ey | [ { Neutrino
/1 L LAA /_.".’,' from
A “ A A T A Y. ,,',:, Formilab
- <A1 7] 1 A ] - } ""‘-,.’
; / PVC coll filled with
LAY liquid scintillator
| 14 View from the side Particte 2
/’ ¥y
-
’ ,
/ {47 Interaction
/ 4 4 Point -~
-
/
/T aeeeeee ol
Noutrino Noutrino
from from
Formilab Formilad

Particle 3

http://www.fnal.gov/pub/presspass/press releases/2014/NOvA-20140211-images.html
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http://www.fnal.gov/pub/presspass/press_releases/2014/NOvA-20140211-images.html

NOVA Detector Cell

e Wavelength shifting fiber is looped

through eac
avalanche p

n cell and reac
notodiode (AP

e Scintillator ¢

ensity is fairly

out on an
D)

ow

e Bad: Low mass for neutrino interactions

* Good: Secondary particles travel longer and
are easier to identify

To 1 APD pixel

A

L
e
-
typical -7
charged -~ ~
particle

path
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Photo-multiplier Tubes
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Photo-multiplier Tubes

e \Workhouse of particle ana
neutrino physics
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Photo-multiplier Tubes

e \Workhouse of particle ana
neutrino physics

e Reverse light bulbs - convert
light into electricity
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Photo-multiplier Tubes

e \Workhouse of particle ana
neutrino physics

e Reverse light bulbs - convert
light into electricity

e Around since 1930s
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Photo-multiplier Tubes

e \Workhouse of particle ana
neutrino physics

e Reverse light bulbs - convert
light into electricity

e Around since 1930s

e Modern PMTs have >20%
orobability (Quantum
Efficiency) of single photon
detection
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PMT Operation

* Photon strikes photo-cathode, which emits an electron

e Electron is accelerated onto a chain of dynode which
create an increased cascade of subsequent electrons

Photocathode Lastdynode

Photons 4 £ Focusing electrode

5
1 .
Photons ( “ €
a—
i

4

ae 1
Photons

4

Window

e
-

Photomultiplier tubes (PMTs) *Australian Microscopy & Microanalysis

Research Facility
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PMT

e Amplification gains are ~10°-10/

* Timing is on the order of nanoseconds

Single PE Single PE
Charge Distribution 250 Timing
150 v 1 Y - I - Y r Y [ - v v . l . — Y i L B B B l i ) 1 l| ' LI L l ] L ] l. I ll LI L

il ‘ [ ceCube Preliminary:
lceCube Preliminary ; 16=2.16 ns Y.
; 200 - o
£ 100 . = : :
-\D -E 150 - -
2 o f :
c c l .
3 3 100 F -
O 50 O ' i
50 F -
0 < - ]

0 500 1000 1500 2000 % 10 20 30 40 50

ADC count Relative transit time (ns)

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014




PMT Fluctuation

e There is non-trivial fluctuation from PMT to PMT
e Charge

e Quantum efficiency

e Noise rate

arXiv:1109.6096
(0p) - rrr T L UL B B (V)] [T rrrrrr e L I L |
> 140__---standard DOMs ] > 18 [|--- standard DOMs ¥ ]
8 120:_—HQEDOMS ] 8 16 [-|— HQE DOMs J .
| = ] 14} -
100 - 7 i i
[ i : ] 121 7
80_— 7 10'_ P 4
60} : s E
: o ' 6 -

40 ] B
B 4__ _
i 21 mm -
005 10 15 20 25 30 35 O""5710 15 20 25 30 35 40
Noise Rate (kHz) Optical Efficiency (%)
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Avalanche Photo-Diode

e Solid State equivalent to PMT

|
i(p’) p | n

Absorption | lq:‘. ‘g.
» SeE

'unnn-uuu-ununuuu
=

Multiplikation

E=hv

N\

NoVA APD
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NOvVA APD vs. PMT

*NOVA Technical Design Report
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Other Options

e Micro-Channel Plates (MCP)

* Thousands of mm capillaries that amplify
signal

e Potential for 10-100 picosecond timing

e Challenges are R&D and manufacturing

 Hybrid PMTs
e Use APD instead of dynode for PMT

e Use MPC for electron collection

MCP Electron Gain

/—lnddent X-ray Photon

Point of Interaction
{photon to electron)

MCP Pore j

———
Secondary
Electrons X~ ,

Accelerating Voltage

*M. Sanchez, Aspen Winter Workshop 2013
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Other Options

Incident X-ray Photon

W

Point of Interaction
MCP Pore N\ {photon to electron)

e Micro-Channel Plates (MCP) | T

Secondary
Electrons X

* Thousands of mm capillaries that amplity
Slgﬂal e : Accelerating Voltage

e Potential for 10-100 picosecond timing

e Challenges are R&D and manufacturing

e Hybrid PMTs
e Use APD instead of dynode for PMT

e Use MPC for electron collection

*M. Sanchez, Aspen Winter Workshop 2013
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New MCP-PMT Hybrio

1) Using two sets of Microchannel plates (MCPs) to replace the dynode chain
2) Using transmission photocathode (front hemisphere)

~ 411 viewing angle!!
and reflective photocathode (back hemisphere) } viewing ang

Transmission cathode: 20%
QE

Rl MR Reflection cathode: 40%
A MCP CE: 60%
3. down MCP
4. insulated trestle table
5. transmission photocathode > 20% * 60% = 12%
6. glass shell PDE
7. reflection photocathode > 70% * 40% * 60% = 17%
8. bracket of the cables
9. glass joint

Total Photon Detection Efficiency: ~30%

*Sen. Quan, New Developments in Photodection 2011
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Photon Collectors Comparison

e PhotoMultiplier Tube (PMT)

e Known, sturdy, and trusted
e Excellent timing

o Expensive

e Avalanche Photo-Diode (APD)

* ‘Cheap’ and small
e High quantum efficiency

e High noise rate, requires cooling

* |[n development

* Micro-channel plates
e Hybrid PMT style photo-cathode with APD or MCP collector
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ICARUS
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Wire

lanes

ionization

Liquid argon

ionization




ICARUS

e Liquid Argon (LAr) Time Projection Chamber (TPC)

e Liquid Argon produces scintillation light

* Interactions produce ionization (electrons) that 'drift’ in a magnetic

field

e Concept is the same for other noble gases too, notably Xenon

Wire planes

ionization Liquid argon

t11

..]...neutrino__
1 ionization
) _/

Y Y v
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ICARUS

e Liquid Argon (LAr) Time Projection Chamber (TPC)

e Liquid Argon produces scintillation light

* Interactions produce ionization (electrons) that 'drift’ in a magnetic

field

e Concept is the same for other noble gases too, notably Xenon

Wire ilanes

ionization Liquid argon

neutrino TT
T > 1 ionization
VE /

e PMTs trigger the detector to
read out the data
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ICARUS

e Liquid Argon (LAr) Time Projection Chamber (TPC)

e Liquid Argon produces scintillation light

* Interactions produce ionization (electrons) that 'drift’ in a magnetic

field

e Concept is the same for other noble gases too, notably Xenon

e PMTs trigger the detector to

Wire planes
codon e Yo ——
e |nduction/collection wires at

ionization Liquid argon

mm spacing collect | nevine A 1
ionization charge 4\%\
VE /

e |dentity and track individual

particles P e
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|ICARUS Event

http://icarus.Ings.infn.it/photos/NeutrinoEventsGallery/

Collectionview i : "
»
—
Wire coordinate (~9 m) CNGS v beam direction

bWy

Drift time coordinate (1.5 m)

Induction 2 view
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http://icarus.lngs.infn.it/photos/NeutrinoEventsGallery/

|ICARUS Event

e o _ -

http://icarus.Ings.infn.it/photos/NeutrinoEventsGallery/

Collection view

< SEET Hadronic
R Shower

B

Wire coordinate (~9 m) CNGS v beam direction

h. 58

Drift time coordinate (1.5 m)

Induction 2 view

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014


http://icarus.lngs.infn.it/photos/NeutrinoEventsGallery/

|ICARUS Event

C—  — _ -

http://icarus.Ings.infn.it/photos/NeutrinoEventsGallery/

Collection view

Hadronic

Shower
_
'S,
\'E)/ Wire coordinate (~9 m) CNGS v beam direction
S
<
o i
— £\
o N
S )
O \
x k
£
4
v =
c
&)

Induction 2 view
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http://icarus.lngs.infn.it/photos/NeutrinoEventsGallery/

|ICARUS Event

C—  — - -

http://icarus.Ings.infn.it/photos/NeutrinoEventsGallery/

Collection view

Stochastic?

Hadronic
Shower

B

Wire coordinate (~9 m) CNGS v beam direction

Drift time coordinate (1.5 ‘

Induction 2 view
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Liquid Noble TPC

* Impurities determine drift length

e 'Absorb’ electrons

e Ar purity is so high that water will diffuse out of cable sheathing

® ReqUireS IN-situ purificatiOﬂ *T. Yang, Aspen Winter Workshop 2013
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Liquid Noble TPC

* Impurities determine drift length

e 'Absorb’ electrons

e Ar purity is so high that water will diffuse out of cable sheathing

® ReqUireS IN-situ purificatiOﬂ *T. Yang, Aspen Winter Workshop 2013

* 1-10 mm level spacial
resolution

e |dentify and track
individual particles
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Liquid Noble TPC

* Impurities determine drift length

e 'Absorb’ electrons

e Ar purity is so high that water will diffuse out of cable sheathing

° ReqUireS IN-situ pu rification *T. Yang, Aspen Winter Workshop 2013
Low charge High charge

* 1-10 mm level spacial
resolution

e |dentify and track
individual particles

-.-....—:

.._......g
o
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Transverse vs Z view - U Planes

Comparison
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Transverse vs Z view - U Planes

Comparison
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OPERA

e Emulsion Cloud Chambers

* Must be chemically developed

e Robot extracts bricks

e Solid scintillator |Ds bricks Changeable /||
Sheet (CS) \

-

)
-

" '1 | nmm ‘ { “ | | g L

AT U = Ll -
i '-.t g

S .. TR Y
W Rw | S

I\”IHIH

l'” il
® i ;f‘

, # D fu'mm
‘im'ﬂm il v ‘{_ | mum
g ummuumuuuuuum = =

arXIV 1308.2553

==

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014



Emulsion Film

A track of a M.I.P.
4 . Y \
50 micron

Resolutiop of 0.3 micron b L

. Microscopic Image
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OPERA Events

*S. Dusini, Neutrino 2014

t—h 0.4 +£0.08 0.033 = 0.006 2
T—>3h 0.57 £0.11 0.155 +£0.03 1
T—U 052+0.1 0.018 +0.007 1
TP 061012 0.027 + 0.005 0
Total 2.1+£042 0.23 + 0.04 4

e 4 observed events

e ?x tau decays to 1 hadron, tau decay to 3 hadrons, and tau decay to
muon

e 4.20 confirmation of v, appearance

e Statistics is not high enough to measure oscillation parameters
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Short Baseline and Non-

Oscillation Beam Experiments




MiniBooNE Cherenkov

Interaction  track Cherenkov Candidate

Muon ...::::;: o
v,CCQE 235 Vo3
a ) 80, %08 LTy
v, FN—=p+u AT i
Electron -
: S 000 '.
v, CCQE M e .-..
VoHn—p+e- A A ® e’
[ ..... .. =3
Neutral pion ¢
e
" . 0,000 A
NCm° M oe 3 0'.
vEN—>v+N+m° 0 g.::“'...;o- -----
TS [ ed
o * .9
® o
ey T

*T. Katori, Queen Mary
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MiniBooNE First Results

arXiv:0704.1500

2v oscillati .
a:zfl)ligsatl'l\?gshold * MiniBooNE data
2.5 > + expected background
--- BG + best-fit oscillation
= 2.0 — v, background
E v, background
» 1.5
=
S
o 1.0
0.5
S| IR Pr—— e "*“-'0“-*1==

. | I - —
300 600 900 1200 1500 3000
reconstructed E, (MeV)
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MiniBooNE First Results

arXiv:0704.1500

+ 2v oscillation

:J : analysis threshold * MiniBooNE data
2'5_ —> -+ expected background
n .-- BG + best-fit oscillation
> 2.0 inle — v, background
= I * v, background
o 1.9 5
£ [ L
S 1o} |
o 1.0 d i
L P
P PR B [ —— e
300 600 900 1200 1500 3000

reconstructed E, (MeV)
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Our Old Friend?




Back to Interactions

e MiniBooNE final state interactions (FSI)

* Energy determination is determined by detector response
which changes as a function of particle

e Could we study this via pion/nucleon scattering?

llllllllllllllllllll

12 | MiniBooNE 1x° —=— -
' ++ w/o FSI —-—--
{ withFS| ——— |

do/dE _+, 10™°° cm%/GeV

GIBUU, arXiv:1210.4717

D. Jason Kos




MINERVA

Elevation View

Side HCAL
. Side ECAL l
i | T,
Bllo Q D
2|3 / d P %E
& s }u % g Active Tracker o g
HIEIN NI ok : 2
z AN s 2 8.3 tons total § S
3 -g o (6.4tons in 90 cm radius fiducial) w
Z 15tons | 30 tons
Side ECAL 0.6 tons [

Side HCAL 116tons
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Michel Candidate

e Calibrate with Michel Electrons coming from muon decay

arXiv:1110.3727

e
”IIIT

| ———_—— =

K is; ) T ™ ,“u I,I 1

Sl B N iR NI fmm 1 , 0 2 4 6 8

s ‘ \ . R Mev)
4518ns]
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MINERVA Energy Calibration Tool

e Calibrate with Michel Electrons

6000
I Data

== Simulation

5000

Events / MeV

4000

3000

2000

1000

lllllllll|lllllllll'lllllllll]

0 lllllllllllllllllllllll

0 20 30 40 50 60 70
Electron energy (MeV)

arXiv:1305.5199
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MINERVA Neutrino Event

Hits

100+

104 f

simulated pion-muon event

X-view
90 : . . 0 4 6
(e_Ievaftlon ylew) || - MeV

N =

80—

Béam direction .
—_—— > N — > . - ——— —

50

40

30—

20—

10—

I | | | | | | | |
-9 0 5] 10 15 20 25 30 39 40 45 o0 95 60 65 70 75 60 85 90 95 100 105 110 115

*B. Eberly, U of Pittsburgh
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Data Event

e Subtract off muon contribution to interaction vertex energy

* Easy to see muon, but which remaining track is pion vs.

roton?
p *B. Eberly, U of Pittsburgh
v, CH- p n* X
3. 1 MINERVA Preliminary
C 0.9 Tuew<scavie
2
: o 0.8 s
Mr— E T —e Y
uJ 0.7 ........""‘
% 0.6 s
S 0.5 -
% 0.4~
0.3
0.2
0.1
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MINERVA Physics
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MINERVA Physics

e Study neutrino nucleon Final State Interactions (FSI)

e Measure contributions from the different cross-section
processes

e Resonant
* Deep Inelastic

e Quasi-Elastic

e Neutrinos and anti-neutrinos
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Wrap-Up
e Muons are common background in neutrino detectors

e \/aried detectors for accelerator neutrino beams

e Magnetized steel and solid scintillator
* Liquid noble gas Time Projection Chambers

* Liquid scintillator

* Neutrino interaction physics can be studied using fine-
grained detectors in a high tlux neutrino beam
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Questions?
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