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lceCube

e ~1km?3 of instrumented ice ,

e Uses 5160 Digital Optical -
Modules (DOMs) across 86
vertical strings to detect

Cherenkov radiation

¢ 160 Cherenkov tank surface
array (lceTop)

* Deployed 1.5 - 2.5km
the surface
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Relativistic charged particles traveling through a

dielectric medium produce Cherenkov radiation
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lceCube Hot Water Drill Animation




lceCube Hot Water Drill Animation




NuMu

6.08e+04

44 .43 deg -
357.53 deg N A e
100/446 shown, mox'EEGevg == 566/5.77
100/444 shown, max E(GeV) == 1.58 =
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Track topology

(e.g. induced by
muon neutrino)

Good pointing,

0.2°-1°

Lower bound on energy
for through-going events

Cascade topology

(e.g. induced by electron
neutrino)

Good energy resolution,
15%

Some pointing,

10° - 15°
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Very High Energy

e \Very high energy lceCube (GZK) astrophysical search found 2
anomalous background events in 2 years of data

1.04+0.16 PeV 1.14+0.17 PeV
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Background Events

Zenith angle (SPE12) Vs NPE
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¢ Fortuitous scenario where the events were mis-reconstructed
too high in energy
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"Ernie” - 2nd highest energy neutrino ever




"Ernie” - 2nd highest energy neutrino ever




3-year HESE Result

Background Atmospheric Muon Flux

—
® 3é(+ 1) events total 102 - ---------------------------------- Bkg. Atmospheric Neutrinos (n/K)

] Background Stat. and Syst. Uncertainties
Atmospheric Neutrinos (90% CL Charm Limit)

Signal+Bkg. Best-Fit Astrophysical E~2 Spectrum |1
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Data

e 6.677 1, atm. neutrinos
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e 5.70 rejection of only
atmospheric neutrino
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HESE-III Sky Map

ICECUBE PRELIMINARY oo g

...............................................................................................

: 30 Equatorial

0 TS=2log(L/LO) 11.2917

e No significant evidence for clustering
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Monte Carlo

e High Energy Starting Event analysis is simple and
serendipitous

e Fasy cuts

e Signal would, and has been, found by dedicated analysis that use
more sophisticated methods

e Analysis which found the 2 ‘background’ events

* Developed on Monte Carlo

e 2 backgrounds were statistically significant
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Background - CORSIKA
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Neutrino
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Neutrino

e Running the full CORSIKA simulation is overkill for
oroducing a simulated neutrino sample
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e Running the full CORSIKA simulation is overkill for
oroducing a simulated neutrino sample

* A solution is to generate neutrino Monte Carlo separately
than muon background from CORSIKA
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e Running the full CORSIKA simulation is overkill for
oroducing a simulated neutrino sample
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e Atmospheric and predicted astrophysical neutrino fluxes follow a
power law in energy, e.g. ®,, o E 7
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Neutrino

e Running the full CORSIKA simulation is overkill for
oroducing a simulated neutrino sample

* A solution is to generate neutrino Monte Carlo separately
than muon background from CORSIKA

e Atmospheric and predicted astrophysical neutrino fluxes follow a
power law in energy, e.g. ®,, o E 7
e Specific energy regions are more important than others
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* Modity spectral index
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Neutrino

e Running the full CORSIKA simulation is overkill for
oroducing a simulated neutrino sample

* A solution is to generate neutrino Monte Carlo separately
than muon background from CORSIKA

e Atmospheric and predicted astrophysical neutrino fluxes follow a
power law in energy, e.g. ®,, o E 7
e Specific energy regions are more important than others

e Over-simulate events in regions of interest
* Modity spectral index
e Modify energy range
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Gamma Ray Bursts

External Shock

The Flow decelerating into
Internal Shock the surrounding medium

Collisions betw. diff. l

N == J X
1"#
O
collapse
R

Afterglow

>10"°cm

P. Mészaros, Science 2001
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Gamma Ray Bursts

e Gamma-ray satellites identity time and location of GRB

External Shock

The Flow decelerating into
Internal Shock the surrounding medium

Collisions betw. diff. 1

Y
» A&

collapse

P. Mészaros, Science 2001

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014



Gamma Ray Bursts

e Gamma-ray satellites identity time and location of GRB

® Search for neutrinos produced by p+Y interactions

1. Fireball GRB models, i.e. gamma-rays produced from high temperature plasma

2. Model Independent

External Shock

The Flow decelerating into
Internal Shock the surrounding medium

Collisions betw. diff. 1

-
5 &

collapse

P. Mészaros, Science 2001
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GRB Fireball Model
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e Data provides an upper limit that is 3.7x lower than fireball prediction

* Model independent search also shows no events associated with GRBs
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Model Independent

arxiv:1204.4219

24 — - = s
90% Upper limit —— 41 04
22 90% Sensitivity --------- )
20 4 035
12 4 0.3
- NA
)] h
o 1025 5§
o o
= >
- LL>
S 1 015 «
- LLl
=
6 41 0.1
4
41 0.05
2
O 1 1 1 1 1+ 1 331 1 1 1 r 3 3 3131 1 1 1 L 3 3 a1 O
10 s 100 s 1000 s 10000 s

At (S)

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014



KM3NeT

* Possible neutrino telescope in Mediterranean
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Radio
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GZK Reminder

proton

el
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GZK Reminder

e Neutrinos break high energy cosmic ray degeneracy in why
no high energy cosmic rays are detected:

2.7K CMBy

-

T

proton

el

— 20
E=10"eV neutron
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GZK Reminder

e Neutrinos break high energy cosmic ray degeneracy in why
no high energy cosmic rays are detected:

1. Cosmic ray accelerators do NOT produce particles at 5x10" eV,
i.e. no observation of neutrinos near 5x10'7 eV

proton

———-
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GZK Reminder

e Neutrinos break high energy cosmic ray degeneracy in why
no high energy cosmic rays are detected:
1. Cosmic ray accelerators do NOT produce particles at 5x10" eV,
i.e. no observation of neutrinos near 5x10" eV

2. Cosmic ray accelerators DO produce particles at 5x10' eV, i.e.
positive observation of neutrinos near 5x10" eV

27K CMBy
proton m a
———-
E=10"eV

neutron _
Q v
- C
proton
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ANITA

e Askaryan effect is where high energy particle in a dense
medium produces coherent (polarized) radio emission

e Askaryan effect is
where high energy
particle in a dense
medium produces
coherent (polarized) '* 56° Cherenkov Cone

3
\ -
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radio emission 1-akm
V \\

EM particle cascade l
™ N

SNBSS ~&r ﬂsaw 2@\%\%\%\%\ AR
R - - 5 e 0

4 Y N

http://www.thespectrumofriemannium.com/2012/10/17/log047-the-askaryan-effect/
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ANITA
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ANITA

= First orbit
=== Second orbit
=== Third orbit

=== Fourth orbit

e First two flights are
done

o ANITA-III

® Ox Improvement in

Sensitivity '°e'f;emh(km)
e Planned flight in Dec. :
2014

ANITA-I ANITA-I

Neutrino 1 1
Candidate Events

Expected 1.1 0.97 +/- 042
Background

*A. Vieregg, Harvard CfA 2013
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Low Coverage for GZK
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ARA

e Askaryan Radio Array

Power and
Central Station communications
Electronics to ICL
Downhole
instrumentation
Hpol
antenna
FO Transmitter
Top Hpol
=
Top Vpol
I I o [ )

o Calibration Bottom Hpol " Vpol
Calibration antennas - antenna
antennas Antenna ‘

clusters
Bottom Vpol
| — ‘ e
Depth: 200 m
*surface antennas are not shown
va iy
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ARA

® Deployed

ARA Station O O O O ARA37

O Planned ARA

Station O O O O O
® Planned for

2014/15 10
O

\ South

o 0 o0 O ‘e-leo-g pole

lceCube O

south

Pole
Station

O O
Planned for
O

2015/16 O O

5 4 Skiway
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ARA Projected Sensitivity
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ARIANNA on the Ross Ice Shelf -
78+ 44.523"'S, 165 02414'E +
Antarctrcngss Ice Shelf Antenna Neutrino Array R
W&f _ ;ﬁﬂj‘““* ,:»‘3” N / IS{&iiSOIrfland and McMurdo
e f‘ | (~120 km from array)
W .

Minna Bluff

(radio barrier)

X
'S
, 23 S

30 x 30 km, 900-station grid




® @
ARIANNA Counting neutrinos
A high-energy neutrinos constantly stream through all

objects on Earth. Occasionally, a neutrino hits the nucleus
of atoms and generates a blast of particles, generating
a pulse of radio emissions that can be recorded. Here is
a look at why the antarctic is a good place to monitor
those radio emissions:

Goal for Arianna
NEUTRINOS ENTER ICE array field is for 960

Countless neutrinos 4 monitor stations.

enter the ice, a few
occasionally strike
hydrogen and oxygen
atoms in the ice.

COLLISION IN ICE

The force of the
collision blasts
particles from the

nucleus of the atoms. - - giosl:mllmcatlon
The spray of particles SHELF |
emit radio waves in , 4 panel

& - solar arra
the form of a “cone Y

that points in the
same direction that
the neutrino was
moving.

Electronics
box

BLOCKED BY WATER
The Ross Ice Shelf

is ideal for 1
monitoring these
emissions due to the :
water below the ice 8 under-ice
blocking the radio antennas

emissions. They bounce
off the water and travel
back through the ice.

Source: UCI Professor
Steven Barwick

station, which has eight antennas buried in the ice.

Graphic b
Sco‘t)t Bro\v/vn / station collects and transmits the level of neutrinos based
The Register on the amount of particle emissions.
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of atoms and generates a blast of particles, generating
a pulse of radio emissions that can be recorded. Here is
a look at why the antarctic is a good place to monitor
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Countless neutrinos monitor stations.
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hydrogen and oxygen
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COLLISION IN ICE
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collision blasts
particles from the

™ | Communication
nucleus of the atoms. g . o] dish
The spray of particles SHELF I \
emit radio waves in 4 panel

< - \ solar arra
the form of a “cone IR y

that points in the
same direction that
the neutrino was
moving.

Electronics
box

BLOCKED BY WATER

The Ross Ice Shelf

is ideal for
monitoring these
emissions due to the
water below the ice
blocking the radio
emissions. They bounce
off the water and travel

back through the ice. nﬁconnzu BY

Source: UCI Professor @ Since the emissions pass
Steven Barwick they are eventually picked up by

station, which has eight antennas buried in th

i: i

8 under-ice
antennas

Graphic b c
SCOI:t Broz«n / station collects and transmits the level of neutrinos based
The Register on the amount of particle emissions.
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The Register on the amount of particle emissions.
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ARIANNA

e Reflected pulse very similar to direct pulse
* Free from RF interference

* Enhanced signal from reflection

L ——
vV [ Direct Pulse
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Power

e Summer tests showed
1.45A from tower
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Power

e Summer tests showed
1.45A from tower

e Station requires 0.9A
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Power

e Summer tests showed
1.45A from tower

e Station requires 0.9A

® |ssues

e Winter reduces efficiency due
to cold

e | ow wind contingency
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Other Options

e Neutrino interaction in dielectric regolith of the moon

/
/

Diffracted Cone of
Radio Cerenkov Radiation

Interaction w/
~ 20% e~ excess

UHE Neutrinos

Downward Neutrinos

Lunar Region where
Radiation is Blocked

Lunar Region where
Radiation is Visable

Front View

http://astro.physics.uiowa.edu/~www/research/high energy astrophysics 2.html
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Very Large Array
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High Energies

e |ceCube

* Neutrinos at PeV+ energies produce polarized radio
emission (Askaryan) for which antennae detectors are well-

suited
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