Experimental Lecture #7 Telescopes and more

D. Jason Koskinen

NBIA PhD School: Neutrinos Underground and in the Heavens June 23-27, 2014

The Niels Bohr International Academy

• Neutrino Telescopes and Beyond

• Neutrino Telescopes and Beyond

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

IceCube

- ~1km³ of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86
 vertical strings to detect
 Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)
- Deployed 1.5 2.5km the surface

IceCube DOM

IceCube

- ~1km³ of instrumented ice
- Uses 5160 Digital Optical Modules (DOMs) across 86
 vertical strings to detect
 Cherenkov radiation
- 160 Cherenkov tank surface array (IceTop)
- Deployed 1.5 2.5km
 the surface

Relativistic charged particles traveling through a dielectric medium produce Cherenkov radiation

Copyright © 2001 Purdue University

IceCube Hot Water Drill Animation

IceCube Hot Water Drill Animation

Track topology (e.g. induced by muon neutrino)

Good pointing, 0.2° - 1° Lower bound on energy for through-going events

Cascade topology (e.g. induced by electron neutrino)

Good energy resolution, 15% Some pointing, 10° - 15°

Very High Energy

• Very high energy IceCube (GZK) astrophysical search found 2 anomalous background events in 2 years of data

Very High Energy

• Very high energy IceCube (GZK) astrophysical search found 2 anomalous background events in 2 years of data

Background Events

 Fortuitous scenario where the events were mis-reconstructed too high in energy

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

"Ernie" - 2nd highest energy neutrino ever

"Ernie" - 2nd highest energy neutrino ever

3-year HESE Result

- 36(+1) events total
 - 8.4 ± 4.2 atm. muons
 - 6.6^{+5.9}-1.6 atm. neutrinos
- 5.7σ rejection of only atmospheric neutrino flux

HESE-III Sky Map

• No significant evidence for clustering

Monte Carlo

- High Energy Starting Event analysis is simple and serendipitous
 - Easy cuts
 - Signal would, and has been, found by dedicated analysis that use more sophisticated methods
- Analysis which found the 2 'background' events
 - Developed on Monte Carlo
 - 2 backgrounds were statistically significant

Background - CORSIKA

• Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample

• Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA
 - Atmospheric and predicted astrophysical neutrino fluxes follow a power law in energy, e.g. $\Phi_{\nu}\propto E_{\nu}^{-\gamma}$

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA
 - Atmospheric and predicted astrophysical neutrino fluxes follow a power law in energy, e.g. $\Phi_{\nu}\propto E_{\nu}^{-\gamma}$
 - Specific energy regions are more important than others

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA
 - Atmospheric and predicted astrophysical neutrino fluxes follow a power law in energy, e.g. $\Phi_{\nu}\propto E_{\nu}^{-\gamma}$
 - Specific energy regions are more important than others
 - Over-simulate events in regions of interest

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA
 - Atmospheric and predicted astrophysical neutrino fluxes follow a power law in energy, e.g. $\Phi_{\nu}\propto E_{\nu}^{-\gamma}$
 - Specific energy regions are more important than others
 - Over-simulate events in regions of interest
 - Modify spectral index

- Running the full CORSIKA simulation is overkill for producing a simulated neutrino sample
- A solution is to generate neutrino Monte Carlo separately than muon background from CORSIKA
 - Atmospheric and predicted astrophysical neutrino fluxes follow a power law in energy, e.g. $\Phi_{\nu}\propto E_{\nu}^{-\gamma}$
 - Specific energy regions are more important than others
 - Over-simulate events in regions of interest
 - Modify spectral index
 - Modify energy range

Gamma Ray Bursts

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

Gamma Ray Bursts

• Gamma-ray satellites identify time and location of GRB

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

Gamma Ray Bursts

- Gamma-ray satellites identify time and location of GRB
- Search for neutrinos produced by $p+\gamma$ interactions
 - 1. Fireball GRB models, i.e. gamma-rays produced from high temperature plasma
 - 2. Model Independent

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

GRB Fireball Model

• Data provides an upper limit that is 3.7x lower than fireball prediction

• Model independent search also shows no events associated with GRBs

Model Independent

KM3NeT

• Possible neutrino telescope in Mediterranean

Radio

• Neutrinos break high energy cosmic ray degeneracy in why no high energy cosmic rays are detected:

- Neutrinos break high energy cosmic ray degeneracy in why no high energy cosmic rays are detected:
 - Cosmic ray accelerators do NOT produce particles at 5x10¹⁹ eV, i.e. no observation of neutrinos near 5x10¹⁹ eV

- Neutrinos break high energy cosmic ray degeneracy in why no high energy cosmic rays are detected:
 - Cosmic ray accelerators do NOT produce particles at 5x10¹⁹ eV, i.e. no observation of neutrinos near 5x10¹⁹ eV
 - 2. Cosmic ray accelerators **DO** produce particles at 5x10¹⁹ eV, i.e. positive observation of neutrinos near 5x10¹⁹ eV

ANITA

- Askaryan effect is where high energy particle in a dense medium produces coherent (polarized) radio emission
- Askaryan effect is where high energy particle in a dense medium produces coherent (polarized) radio emission

http://www.thespectrumofriemannium.com/2012/10/17/log047-the-askaryan-effect/

ANITA

ANITA

- First two flights are done
- ANITA-III
 - 5x improvement in sensitivity
 - Planned flight in Dec.
 2014

	ANITA-I	ANITA-II
Neutrino Candidate Events	1	1
Expected Background	1.1	0.97 +/- 0.42

*A. Vieregg, Harvard CfA 2013

Low Coverage for GZK

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

ARA

• Askaryan Radio Array

ARA

ARA Projected Sensitivity

D. Jason Koskinen - NBIA PhD School: Neutrinos Underground and in the Heavens - June 2014

ARIANNA on the Ross Ice Shelf 78 44.523' S, 165 02.414' E Antarctic Ross Ice Shelf Antenna Neutrino Array

Dry Valleys

Wireless Internet Link

Ross Island and McMurdo Station (~120 km from array)

Minna Bluff (radio barrier)

30 x 30 km, 900-station grid

Counting neutrinos

A high-energy neutrinos constantly stream through all objects on Earth. Occasionally, a neutrino hits the nucleus of atoms and generates a blast of particles, generating a pulse of radio emissions that can be recorded. Here is a look at why the antarctic is a good place to monitor those radio emissions:

station collects and transmits the level of neutrinos based

on the amount of particle emissions.

Graphic by Scott Brown / The Register ANTARCTICA

South Pole

0

Monitoring

station

ARGENTINA

Ross Ice Shelf

Passive stations

Counting neutrinos

A high-energy neutrinos constantly stream through all objects on Earth. Occasionally, a neutrino hits the nucleus of atoms and generates a blast of particles, generating a pulse of radio emissions that can be recorded. Here is a look at why the antarctic is a good place to monitor those radio emissions:

station collects and transmits the level of neutrinos based

on the amount of particle emissions.

Graphic by Scott Brown / The Register ANTARCTICA

South Pole

0

Monitoring

station

ARGENTINA

Ross Ice Shelf

Passive stations

• Large

- 31x31 array
- 30km x 30km

Counting neutrinos

A high-energy neutrinos constantly stream through all objects on Earth. Occasionally, a neutrino hits the nucleus of atoms and generates a blast of particles, generating a pulse of radio emissions that can be recorded. Here is a look at why the antarctic is a good place to monitor those radio emissions:

station collects and transmits the level of neutrinos based

on the amount of particle emissions.

Graphic by Scott Brown / The Register ANTARCTICA

South Pole

Monitoring

station

ARGENTINA

Ross Ice Shelf

Passive stations

• Large

- 31x31 array
- 30km x 30km

Economical

Counting neutrinos

A high-energy neutrinos constantly stream through all objects on Earth. Occasionally, a neutrino hits the nucleus of atoms and generates a blast of particles, generating a pulse of radio emissions that can be recorded. Here is a look at why the antarctic is a good place to monitor those radio emissions:

station collects and transmits the level of neutrinos based

on the amount of particle emissions.

Graphic by Scott Brown / The Register ANTARCTICA

South

Pole

Monitoring

_station

ARGENTINA

Ross Ice Shelf

Passive stations

Large

- 31x31 array
- 30km x 30km
- Economical
- Redeployable

Counting neutrinos

A high-energy neutrinos constantly stream through all objects on Earth. Occasionally, a neutrino hits the nucleus of atoms and generates a blast of particles, generating a pulse of radio emissions that can be recorded. Here is a look at why the antarctic is a good place to monitor those radio emissions:

on the amount of particle emissions.

Scott Brown /

The Register

ANTARCTICA

South

Pole

Monitoring

_station

ARGENTINA

Ross Ice Shelf

- Reflected pulse very similar to direct pulse
- Free from RF interference
- Enhanced signal from reflection

Summer tests showed
 1.45A from tower

- Summer tests showed
 1.45A from tower
- Station requires 0.9A

- Summer tests showed
 1.45A from tower
- Station requires 0.9A
- Issues
 - Winter reduces efficiency due to cold
 - Low wind contingency

Other Options

Other Options

• Neutrino interaction in dielectric regolith of the moon

http://astro.physics.uiowa.edu/~www/research/high_energy_astrophysics_2.html

Square Kilometre Array

Very Large Array

High Energies

- IceCube
- Neutrinos at PeV+ energies produce polarized radio emission (Askaryan) for which antennae detectors are wellsuited