Coincidence measurements for GERDA Phase II

Katharina von Sturm

Università degli Studi di Padova

June 26, 2014

Katharina von Sturm (Uni Padova)

Coincidence measurements

► < ∃ ►</p>

Table of contents

- 1 The $0
 u\beta\beta$ decay
- **2** The GERDA experiment
- 3 Motivation
- 4 Setup at LNL
- 5 Simulations

(日) (同) (三) (三)

The 0 uetaetaeta decay

Some open questions we try to shed light on

- What is the mass of the neutrinos?
- Normal or inverted neutrino mass hierarchy?
- Are neutrinos Majorana or Dirac particles?
- Which physics beyond the Standard Model?

The 0 uetaetaeta decay

Some open questions we try to shed light on

- What is the mass of the neutrinos?
- Normal or inverted neutrino mass hierarchy?
- Are neutrinos Majorana or Dirac particles?
- Which physics beyond the Standard Model?

Search for the 0
uetaeta decay

$$\mathcal{N}(\mathsf{A},\mathsf{Z})
ightarrow \mathcal{N}(\mathsf{A},\mathsf{Z}{+}2) + 2e^{-} (////2//)$$

- Lepton number violating $\Delta L = 2$
- \Rightarrow Physics beyond the standard model

The Gerda experiment

Phase I $T_{1/2}^{0\nu\beta\beta} > 2.1 \cdot 10^{25} \text{ yr } 90\% \text{ C.L.} (med. sens. } T_{1/2}^{0\nu\beta\beta} > 2.4 \cdot 10^{25} \text{ yr})$ Phase II 30 new detectors + improve background rejection

Katharina von Sturm (Uni Padova)

Coincidence measurements

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Motivation

Pulse shape analysis to reduce background

Motivation

Pulse shape analysis to reduce background

like in the detector

Katharina von Sturm (Uni Padova)

Coincidence measurements

June 26, 2014 5 / 17

signal

Motivation

Single compton events with coincidence measurements

- Coincidence measurements
- Depending on the observation angle cut on energy to select single compton events
- \Rightarrow Parameters A/E, rise-time etc.
- \Rightarrow Neural network, pulse shape library

< ロト < 同ト < ヨト < ヨト

Setup at LNL

LEGO... LEgnaro Germanium Observatory

Katharina von Sturm (Uni Padova)

Setup at LNL

LEGO @ Laboratori Nazionali di Legnaro

MC geometry

 $\Leftarrow \mathsf{Automatic\ filling\ every\ 14\,h}$

Katharina von Sturm (Uni Padova)

Coincidence measurements

June 26, 2014 8 / 17

Remote control

Update	Configure Log Message	s		
stop	No. of Events	s File Name O Digi	Event	Display >>
Digitizer Run St	atus on			undef
		0.0000 Hz	ch. 0	Samples
DAQ is	STOPPED	0.0000112		
DAQ is Started on	STOPPED Thu, 19 Jun at 17:27:54	Collected 0 events out of 0	Ch. 1	0
DAQ is Started on	STOPPED Thu, 19 Jun at 17:27:54 Thu, 19 Jun at 17:27:54	Collected 0 events out of 0	Ch. 1 Ch. 2	0 Buffers

Enable	Threshold	Edge	Offset	DAQ Parameters	Trigger Source	Output Trigger
 Ch. 0 Ch. 1 Ch. 2 ✓ Ch. 3 	0x 1f5e 0x 2026 0x 24cc 0x 1fcc	Falling V Falling V Falling V Falling V	0x 8000 0x 8000 0x 8000 0x 8000	Samples: 128 us Buffers: 327 PostTrigger: 50 % Coincidence: 1 channels	Ch. 0 Software Ch. 1 at 10 Hz Ch. 2 Ch. 3 External	✓ Ch. 0 ✓ Ch. 1 Software ✓ Ch. 2 Daq Trigger ✓ Ch. 3
Get Configuration					Load Configuration	

Everything is remote controllable

Katharina von Sturm (Uni Padova)

<ロ> (日) (日) (日) (日) (日)

Tuning the MC simulations

¹³⁷Cs Spectrum

- Comparison of uncollimated measurement and simulation
- Adding copper holder improves accordance

Katharina von Sturm (Uni Padova)

→ ∃ >

Collimated simulation

• Coaxial detectors collimated to 1 mm (left) and 10 mm (right)

Katharina von Sturm (Uni Padova)

Coincidence measurements

June 26, 2014 11 / 17

Simulations

Confinement of the events

Katharina von Sturm (Uni Padova)

Coincidence measurements

June 26, 2014 12 / 17

Signal and Background events

• About 85% are single compton events

Katharina von Sturm (Uni Padova)

Coincidence measurements

Simulations

Rate... Events where are thou?

- Events
- ✓ right energy
- ✓ confined in roughly 3x3x3 mm region
- $\checkmark\,$ roughly 85% are single compton events

3

(人間) トイヨト イヨト

- Events
- ✓ right energy
- ✓ confined in roughly 3x3x3 mm region
- $\checkmark\,$ roughly 85% are single compton events
- Event rate is on the order of $1 \text{ MBq}^{-1}\text{d}^{-1}$

3

□ ▶ ▲ □ ▶ ▲ □

- Events
- ✓ right energy
- ✓ confined in roughly 3x3x3 mm region
- $\checkmark\,$ roughly 85% are single compton events
- Event rate is on the order of $1 \text{ MBq}^{-1}\text{d}^{-1}$
- $\bullet\,$ We can use a 740 MBq ^{137}Cs source

3

- Events
- 🗸 right energy
- ✓ confined in roughly 3x3x3 mm region
- $\checkmark\,$ roughly 85% are single compton events
- Event rate is on the order of $1 \text{ MBq}^{-1}\text{d}^{-1}$
- $\bullet\,$ We can use a 740 MBq ^{137}Cs source
- ! Careful
- ! Single rate cannot be too high \Rightarrow pile-up
- ! We cannot handle the source ourselves and need additional shielding

Pulse shape simulations using adl3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Summary

- Background suppression with PSA is essential for Gerda Phase II
- Coincidence measurements to learn how Single Site events look like
- LEGO has been set up and is ready to go
- Compare with PS simulations
- Build a new method to do PSA and cross check other methods

Summary

- Background suppression with PSA is essential for Gerda Phase II
- Coincidence measurements to learn how Single Site events look like
- LEGO has been set up and is ready to go
- Compare with PS simulations
- Build a new method to do PSA and cross check other methods

Thanks for your attention!

Katharina von Sturm (Uni Padova)

Coincidence measurements

June 26, 2014 17 / 17

3