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Neutrinos from Thermal Processes 

These processes were first 
discussed in 1961-63 
after V-A theory 

Photo (Compton) Plasmon decay Pair annihilation 

Bremsstrahlung 
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Refraction and Forward Scattering 

Plane wave in vacuum     Φ 𝒓, 𝑡 ∝ 𝑒−𝑖𝜔𝑡+𝑖𝒌⋅𝒓 

With scattering centers     Φ 𝒓, 𝑡 ∝ 𝑒−𝑖𝜔𝑡 𝑒𝑖𝑘⋅𝑟 + 𝑓 𝜔, 𝜃
𝑒𝑖𝑘⋅𝑟

𝑟
 

In forward direction, adds 
coherently to a plane wave 
with modified wave number 

    𝑘 = 𝑛refr𝜔 

    𝑛refr = 1 +
2𝜋

𝜔2
 𝑁 𝑓 𝜔, 0  

 

    𝑁 = number density of scattering centers 
    𝑓 𝜔, 0  = forward scattering amplitude 
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Color-Magnitude Diagram for Globular Clusters 

 Color-magnitude diagram synthesized from several low-metallicity globular 
 clusters and compared with theoretical isochrones (W.Harris, 2000) 

Hot, blue cold, red 

H 

Main-Sequence 

• Stars with M so 
   large that they 
   have burnt out 
   in a Hubble time 
• No new star 
   formation in 
   globular clusters 
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Color-Magnitude Diagram for Globular Clusters 

 Color-magnitude diagram synthesized from several low-metallicity globular 
 clusters and compared with theoretical isochrones (W.Harris, 2000) 
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Bounds on Particle Properties 
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Basic Argument: Stars as Bolometers 

Flux of weakly interacting particles 

• Low-mass weakly-interacting particles can be emitted from stars 
• New energy-loss channel 
• Back-reaction on stellar properties and evolution 
 

• What are the emission processes? 
• What are the observable consequences? 
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Electromagnetic Properties of  Neutrinos 
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Neutrino Electromagnetic Form Factors 

Effective 
coupling of 
electromagnetic 
field to a 
neutral fermion 
 
 
 

Charge en = F1(0) = 0 

Anapole moment G1(0) 

Magnetic dipole moment m = F2(0)  

Electric dipole moment e = G2(0)  

𝐿eff = −𝐹1Ψ𝛾𝜇Ψ 𝐴𝜇 
 

             −𝐺1Ψ𝛾𝜇𝛾5Ψ 𝜕𝜈𝐹
𝜇𝜈 

 

             −
1

2
𝐹2 Ψ𝜎𝜇𝜈Ψ 𝐹𝜇𝜈 

             −
1

2
𝐺2 Ψ𝜎𝜇𝜈𝛾5Ψ 𝐹𝜇𝜈 

• Charge form factor F1(q2) and anapole G1(q2) are short-range interactions 
   if charge F1(0) = 0  
• Connect states of equal helicity 
• In the standard model they represent radiative corrections to weak interaction  

• Dipole moments connect states of opposite helicity  
• Violation of individual flavor lepton numbers (neutrino mixing) 
     Magnetic or electric dipole moments can connect different flavors 
          or different mass eigenstates (“Transition moments”)  
• Usually measured in “Bohr magnetons”  mB = e/2me   
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Plasmon Decay and Stellar Energy Loss Rates 

Assume photon dispersion relation like a 
massive particle (nonrelativistic plasma)  

𝐸𝛾
2 − 𝑝𝛾

2 = 𝜔pl
2 =

4𝜋𝛼𝑛𝑒
𝑚𝑒

 

Energy-loss rate 
of stellar plasma 

Photon decay rate 
(transverse plasmon) 
with energy Eg 

Γ 𝛾 → 𝜈𝜈 =
4𝜋

3𝐸𝛾
×

𝛼𝜈 𝜔pl
2 4𝜋 

𝜇𝜈
2 2 𝜔pl

2 4𝜋 
2

𝐶V
2𝐺F

2 𝛼 𝜔pl
2 4𝜋 

3

 

Millicharge 
 

Dipole moment 
 

Standard model 

𝑄 𝛾 → 𝜈𝜈 =  
2𝑑3𝐩

2𝜋 3

𝐸𝛾Γ𝛾→𝜈𝜈

𝑒𝐸𝛾 𝑇 − 1
=

8𝜁3𝑇
3

3𝜋
×

𝛼𝜈 𝜔pl
2 4𝜋 

𝜇𝜈
2 2 𝜔pl

2 4𝜋 
2

𝐶V
2𝐺F

2 𝛼 𝜔pl
2 4𝜋 

3
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Color-Magnitude Diagram for Globular Clusters 

 Color-magnitude diagram synthesized from several low-metallicity globular 
 clusters and compared with theoretical isochrones (W.Harris, 2000) 
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 Particle emission reduces 
 helium burning lifetime, 
 i.e. number of  HB stars 

Particle emission 
delays He ignition, i.e. 
core mass increased 
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Color-Magnitude Diagram of Globular Cluster M5 

Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:1308.4627 

CMD (a) before and (b) after cleaning CMD of brightest 2.5 mag of RGB 

Brightest red giant 
measures nonstandard energy loss 
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Helium Ignition for Low-Mass Red Giants 

Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:1308.4627 

Brightness increase at He ignition by nonstanderd neutrino losses 

log 𝑇eff  

lo
g
𝐿
/𝐿

su
n

 

Neutrino magnetic dipole moment 
[10−12𝜇𝐵] 
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Neutrino Dipole Limits from Globular Cluster M5 

I-band brightness 
of tip of red-giant brach 
[magnitudes] 

Neutrino magnetic dipole moment [10−12𝜇𝐵] 

𝜇𝜈 <  
2.6 × 10−12𝜇𝐵 (68% CL)

4.5 × 10−12𝜇𝐵 (95% CL)
 

Most restrictive limit on 
neutrino electromagnetic 
properties 

Detailed account of theoretical and 
observational uncertainties 

Viaux, Catelan, Stetson, Raffelt, Redondo, Valcarce & Weiss, arXiv:1308.4627 

• Uncertainty dominated 
   by distance 
• Can be improved in  
   future (GAIA mission)  
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Standard Dipole Moments for Massive Neutrinos 

Standard electroweak model: 
Neutrino dipole and 
transition moments  
are induced at higher order 

Massive neutrinos 𝜈𝑖 (𝑖 = 1, 2, 3) 
mixed to form weak eigenstates 

𝜈ℓ =  𝑈ℓ𝑖𝜈𝑖

3

𝑖=1

 

Explicitly for Dirac neutrinos 
   Magnetic moments 𝜇𝑖𝑗 

   Electric moments 𝜖𝑖𝑗 

 𝜇𝑖𝑗 =
𝑒 2𝐺F

4𝜋 2
𝑚𝑖 +𝑚𝑗  𝑈ℓ𝑗𝑈ℓ𝑖

∗

ℓ=𝑒,𝜇,𝜏

𝑓
𝑚ℓ

𝑚𝑊
 

 

 𝜖𝑖𝑗  =  … 𝑚𝑖 −𝑚𝑗  … 
 

 𝑓
𝑚ℓ

𝑚𝑊
= −

3

2
+
3

4
 

𝑚ℓ

𝑚𝑊

2

+ 𝒪
𝑚ℓ

𝑚𝑊

4
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Standard Dipole Moments for Massive Neutrinos 

Diagonal case: 
Magnetic moments 
of Dirac neutrinos 

𝜇𝑖𝑖 =
3𝑒 2𝐺F

4𝜋 2
𝑚𝑖 = 3.20 × 10−19𝜇B

𝑚𝑖

eV
 

 

𝜖𝑖𝑖  = 0 

𝜇B =
𝑒

2𝑚𝑒
 

Off-diagonal case 
(Transition moments) 
 

First term in 𝑓(𝑚ℓ 𝑚𝑊 ) 
does not contribute: 
“GIM cancellation” 

𝜇𝑖𝑗 =
3𝑒 2𝐺F

4 4𝜋 2
(𝑚𝑖+𝑚𝑗)

𝑚𝜏

𝑚𝑊

2

 𝑈ℓ𝑗𝑈ℓ𝑖
∗ 𝑚ℓ

𝑚𝜏

2

ℓ=𝑒,𝜇,𝜏

 

 

       = 3.96 × 10−23𝜇B
𝑚𝑖 +𝑚𝑗

eV
  𝑈ℓ𝑗𝑈ℓ𝑖

∗ 𝑚ℓ

𝑚𝜏

2

ℓ=𝑒,𝜇,𝜏

 

Largest neutrino mass eigenstate   0.05 eV <  𝑚 <  0.2 eV 
For Dirac neutrino expect 

1.6 × 10−20𝜇𝐵 < 𝜇𝜈 < 6.4 × 10−20𝜇𝐵 
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Consequences of Neutrino Dipole Moments 

T  electron recoil energy  

i
𝜕

𝜕𝑡

𝜈𝐿
𝜈𝑅

=
0 𝜇𝜈𝐵⊥

𝜇𝜈𝐵⊥ 0

𝜈𝐿
𝜈𝑅

 

𝑑𝜎

𝑑𝑇
=

𝐺𝐹
2𝑚𝑒

2𝜋
𝐶V + 𝐶A

2 + 𝐶V − 𝐶A
2 1 −

𝑇

𝐸

2

+ 𝐶V
2 − 𝐶A

2 𝑚𝑒𝑇

𝐸2  

                                                                                                   +𝛼𝜇𝜈
2

1

𝑇
+

1

𝐸
 

Γ =
𝜇𝜈
2

24𝜋
 𝜔pl

3  

Γ =
𝜇𝜈
2

8𝜋

𝑚2
2 −𝑚1

2

𝑚2

3

 

Spin precession 
in external 
E or B fields 

Decay or 
Cherenkov 
effect 

Plasmon 
decay in 
stars 

Scattering 
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Neutrino Spin Oscillations 

Spin Precession in external E or B fields 
 

    𝑖𝜕𝑡
𝜈𝐿
𝜈𝑅

=
0 𝜇𝜈𝐵𝑇

𝜇𝜈𝐵𝑇 0

𝜈𝐿
𝜈𝑅

 
 

For relativistic neutrinos the oscillation equation 
• is independent of energy 
• involves only the transverse B field 

Oscillation  
Length 

Probability nL  nR  

z 

1 

0 

𝜋

𝜇𝜈𝐵𝑇
 

Distance for helicity reversal 
𝜋

2𝜇𝜈𝐵T
= 5.36 × 1013cm

10−10𝜇B
𝜇𝜈

1G

𝐵𝑇
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Spin-Flavor Oscillations 

Spin-flavor precession in external E or B fields 
 

    𝑖𝜕𝑡
𝜈1
𝜈2

=
0 𝜇𝜈𝐵𝑇

−𝜇𝜈𝐵𝑇 0

𝜈1
𝜈2

 
 

Majorana neutrinos: 
• Diagonal dipole moments vanish 
• Transition moments inevitably exist, couple neutrinos with anti-neutrinos 
• Standard model calculation ~ Dirac case 

𝜈1 𝜈2 

Dirac 
neutrinos 

𝜈1
𝐿 𝜈1

𝑅 

𝜈2
𝐿 𝜈2

𝑅 

Dirac 
anti-neutrinos 

𝜈1
𝐿

 𝜈1
𝑅

 

𝜈2
𝐿

 𝜈2
𝑅

 

𝜈1
𝐿 

𝜈2
𝐿 

Majorana 

𝜈1
𝐿

 

𝜈2
𝐿

 

Transition 
moments 
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Neutrino Spin-Flavor Oscillations in a Medium 

Two-flavor oscillations of Majorana neutrinos with a transition magnetic moment m  
and ordinary flavor mixing in a medium 
 

    𝑖𝜕𝑟

𝜈𝑒
𝜈𝜇
𝜈𝑒
𝜈𝜇

=

𝑐Δ + 𝑎𝑒 𝑠Δ 0 𝜇𝐵
𝑠Δ −𝑐Δ + 𝑎𝜇 −𝜇𝐵 0

0 −𝜇𝐵 𝑐Δ − 𝑎𝑒 𝑠Δ
𝜇𝐵 0 𝑠Δ −𝑐Δ − 𝑎𝜇

𝜈𝑒
𝜈𝜇
𝜈𝑒
𝜈𝜇

 

 

with 𝑐 = cos(2Θ), 𝑠 = sin(2Θ),  

         Δ = (𝑚2
2−𝑚1

2) 4𝐸 ,  𝑎𝑒 = 2𝐺𝐹 𝑛𝑒 −
1

2
𝑛𝑛   and  𝑎𝜇 = 2𝐺𝐹 −

1

2
𝑛𝑛  

 
• Resonant spin-flavor precession (RSFP) can be a subdominant effect for solar 
   neutrino conversion and can produce a small solar anti-neutrino flux 
 

• Can be important for supernova neutrinos 
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Neutrino Radiative Lifetime Limits 

For low-mass neutrinos, plasmon decay in globular cluster stars 
yields the most restrictive limits 

Plasmon 
decay 
𝜸𝐩𝐥 → 𝝂 + 𝝂 

Radiative 
decay 
𝜈 → 𝜈′ + 𝛾 

Γ𝜈→𝜈′𝛾 =
𝜇eff
2

8𝜋
 𝑚𝜈

3  

Γ𝛾→𝜈𝜈 =
𝜇eff
2

24𝜋
𝜔pl

3  
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Further Reading on Particle Limits from Stars 

Georg Raffelt: 
 
Astrophysical Methods to Constrain Axions 
and Other Novel Particle Phenomena 
Phys. Rept. 198 (1990) 1–113 
 
Stars as Laboratories for Fundamental Physics 
(University of Chicago Press, 1996) 
http://wwwth.mpp.mpg.de/members/raffelt/mypapers/199613.pdf 

 
Neutrinos and the Stars 
Proc. ISAPP 2012 “Neutrino Physics and Astrophysics”  
(26 July–5 August 2011, Varenna, Lake Como, Italy) 
arXiv:1201.1637  


