Neutrinos

in Astrophysics and Cosmology

Neutrinos from the Sun

Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Neutrinos from the Sun

Solar radiation: 98 % light (photons) 2 % neutrinos At Earth 66 billion neutrinos/cm² sec

Hans Bethe (1906–2005, Nobel prize 1967) Thermonuclear reaction chains (1938)

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Hydrogen Burning: Proton-Proton Chains

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Solar Neutrino Spectrum

First Measurement of Solar Neutrinos

observatory (1967–2002)

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Results of Chlorine Experiment (Homestake)

Average (1970–1994) $2.56 \pm 0.16_{stat} \pm 0.16_{sys}$ SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 10³⁶ Atoms) Theoretical Prediction 6–9 SNU "Solar Neutrino Problem" since 1968

Georg Raffelt, MPI Physics, Munich

GALLEX/GNO and SAGE

Gallium Results

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

1000 tons of heavy water

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Georg Raffelt, MPI Physics, Munich

1000 tons of heavy water

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

1000 tons of heavy water

Normal (light) water H_20 Heavy water D_20

Nucleus of hydrogen (proton)

Nucleus of heavy hydrogen (deuterium)

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Missing Neutrinos from the Sun

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Charged and Neutral-Current SNO Measurements

Ahmad et al. (SNO Collaboration), PRL 89:011301,2002 (nucl-ex/0204008)

Solar Neutrino Spectrum

Solar Neutrino Spectroscopy with BOREXINO

- Neutrino electron scattering
- Liquid scintillator technology (~ 300 tons)
- Low energy threshold (~ 60 keV)
- Online since 16 May 2007
- Expected without flavor oscillations
 75 ± 4 counts/100 t/
 - 75 ± 4 counts/100 t/d
 - Expected with oscillations 49 ± 4 counts/100 t/d
- BOREXINO result (May 2008) $49 \pm 3_{stat} \pm 4_{sys} \text{ cnts/100 t/d}$ arXiv:0805.3843 (25 May 2008)

pep Neutrinos in Borexino

Borexino Collaboration, arXiv:1110.3230v1

Oscillation of Reactor Neutrinos at KamLAND (Japan)

Oscillation pattern for anti-electron neutrinos from Japanese power reactors as a function of L/E

KamLAND Scintillator detector (1000 t)

Best-fit "solar" oscillation parameters

Yusuke Koshio at Neutrino 2014

Three-Flavor Neutrino Parameters

Three mixing angles θ_{12} , θ_{13} , θ_{23} (Euler angles for 3D rotation), $c_{ij} = \cos \theta_{ij}$, a CP-violating "Dirac phase" δ , and two "Majorana phases" α_2 and α_3 $\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\frac{\alpha_2}{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$ $39^{\circ} < \theta_{23} < 53^{\circ}$ $7^{\circ} < \theta_{13} < 11^{\circ}$ $33^{\circ} < \theta_{12} < 37^{\circ}$ Relevant for Atmospheric/LBL-Beams Reactor Solar/KamLAND $0v2\beta$ decay Normal Inverted Tasks and Open Questions 2 e μ τ Δm^2 τ 3 • Precision for all angles Solar **1** 72–80 meV² • CP-violating phase δ ? μ τ • Mass ordering?

- Mass ordering? (normal vs inverted)
- Absolute masses?
 (hierarchical vs degenerate)
- Dirac or Majorana?

Matter Effect on Flavor Oscillations in the Sun

Neutrinos are Brighter at Night

Solar Models

Equations of Stellar Structure

Assume spherical symmetry and static structure (neglect kinetic energy) Excludes: Rotation, convection, magnetic fields, supernova-dynamics, ...

Hydrostatic equilibrium

$$\frac{dP}{dr} = -\frac{G_N M_r \rho}{r^2}$$

Energy conservation

$$\frac{dL_r}{dr} = 4\pi r^2 \epsilon \rho$$

Energy transfer

$$L_r = \frac{4\pi r^2}{3\kappa\rho} \frac{d(aT^4)}{dr}$$

Literature

- Clayton: Principles of stellar evolution and nucleosynthesis (Univ. Chicago Press 1968)
- Kippenhahn & Weigert: Stellar structure and evolution (Springer 1990)

- r Radius from center
- P Pressure
- G_N Newton's constant
- ρ Mass density
- M_r Integrated mass up to r
- L_r Luminosity (energy flux)
- ϵ Local rate of energy generation [erg g⁻¹s⁻¹]

$$\epsilon = \epsilon_{\rm nuc} + \epsilon_{\rm grav} - \epsilon_{\nu}$$

- κ Opacity $κ^{-1} = κ_{γ}^{-1} + κ_{c}^{-1}$
- κ_{γ} Radiative opacity

$$\kappa_{\gamma}\rho = \langle \lambda_{\gamma} \rangle_{\text{Rosseland}}^{-1}$$

 κ_c Electron conduction

Constructing a Solar Model: Fixed Inputs

Solve stellar structure equations with good microphysics, starting from a zero-age main-sequence model (chemically homogeneous) to present age

Fixed quantities				
Mass	M_{\odot} = 1.989 $ imes$ 10 ³³ g	Kepler's 3 rd law		
	0.1%			
Age	t_{\odot} = $4.57 imes10^9 m yrs$	Meteorites		
	0.5%			

Quantities to match				
Luminosity	L_{\odot} = 3.842 \times $10^{33}erg~s^{\text{-1}}$	Solar constant		
	0.4%			
Radius	$ m R_{\odot}$ = 6.9598 $ imes$ 10 10 cm	Angular diameter		
	0.1%			
Metals/hydrogen	(Z/X) _☉ = 0.0229	Photosphere and		
ratio		meteorites		

Constructing a Solar Model: Free Parameters

3 free parameters

- Convection theory has 1 free parameter:
 Mixing length parameter a_{MLT} determines the temperature stratification where convection is not adiabatic (upper layers of solar envelope)
- 2 of 3 quantities determining the initial composition: X_{ini}, Y_{ini}, Z_{ini} (linked by X_{ini} + Y_{ini} + Z_{ini} = 1). Individual elements grouped in Z_{ini} have relative abundances given by solar abundance measurements (e.g. GS98, AGS05)
- Construct 1 M_{\odot} initial model with X_{ini}, Z_{ini}, Y_{ini} = 1 X_{ini} Z_{ini} and a_{MLT}
- \bullet Evolve for the solar age t_{\odot}
- Match (Z/X) $_{\odot}$, L $_{\odot}$ and R $_{\odot}$ to better than 10⁻⁵

Standard Solar Model Output Information

Standard Solar Model: Internal Structure

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Helioseismology and the New Opacity Problem

Helioseismology: Sun as a Pulsating Star

- Discovery of oscillations: Leighton et al. (1962)
- Sun oscillates in > 10⁵ eigenmodes
- Frequencies of order mHz (5-min oscillations)
- Individual modes characterized by radial n, angular ℓ and longitudinal m numbers

Helioseismology: p-Modes

- Solar oscillations are acoustic waves (p-modes, pressure is the restoring force) stochastically excited by convective motions
- Outer turning-point located close to temperature inversion layer
- Inner turning-point varies, strongly depends on ℓ (centrifugal barrier)

Credit: Jørgen Christensen-Dalsgaard

Examples for Solar Oscillations

http://astro.phys.au.dk/helio_outreach/english/

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Helioseismology: Observations

- Doppler observations of spectral lines measure velocities of a few cm/s
- Differences in the frequencies of order mHz
- Very long observations needed.
 BiSON network (low-l modes)
 has data for ~ 5000 days
- Relative accuracy in frequencies is 10⁻⁵

Helioseismology: Comparison with Solar Models

- \bullet Oscillation frequencies depend on ρ , P, g, c
- Inversion problem: From measured frequencies and from a reference solar model determine solar structure
- Output of inversion procedure: $\delta c^2(r)$, $\delta \rho(r)$, R_{CZ} , Y_{SURF}

Relative sound-speed difference between helioseismological model and standard solar model

New Solar Opacities (Asplund, et al. 2005, 2009)

- Large change in solar composition: Mostly reduction in C, N, O, Ne
- Results presented in many papers by the "Asplund group"
- Summarized in Asplund, Grevesse, Sauval & Scott (2009)

Authors	(Z/X) _O	Main changes (dex)
Grevesse 1984	0.0277	
Anders & Grevesse 1989	0.0267	$\Delta C = -0.1, \Delta N = +0.06$
Grevesse & Noels 1993	0.0245	
Grevesse & Sauval 1998	0.0229	$\Delta C = -0.04$, $\Delta N = -0.07$, $\Delta O = -0.1$
Asplund, Grevesse & Sauval 2005	0.0165	$\Delta C = -0.13, \Delta N = -0.14, \Delta O = -0.17$ $\Delta Ne = -0.24, \Delta Si = -0.05$
Asplund, Grevesse, Sauval & Scott (arXiv:0909.0948, 2009)	0.0178	

Origin of Changes

Spectral lines from solar photosphere and corona	 Improved modeling 3D model atmospheres MHD equations solved NLTE effects accounted for in most cases Improved data Better selection of spectral lines Previous sets had blended lines (e.g. oxygen line blended with nickel line)
Meteorites	 Volatile elements do not aggregate easily into solid bodies e.g. C, N, O, Ne, Ar only in solar spectrum Petractory elements
meteorites	e.g. Mg, Si, S, Fe, Ni both in solar spectrum and meteorites meteoritic measurements more robust

Consequences of New Element Abundances

What is good	 Much improved modeling Different lines of same element give same abundance (e.g. CO and CH lines) Sun has now similar composition to solar neighborhood 	
New problems	 Agreement between helioseismology and SSM very much degraded Was previous agreement a coincidence? 	

Standard Solar Model 2005: Old and New Opacity

	Old: BS05 (GS98)	New: BS05 (ASG05)	Helioseismology
R _{cz}	0.713	0.728	$\textbf{0.713} \pm \textbf{0.001}$
Y _{SURF}	0.243	0.229	0.2485 ± 0.0035
<δc>	0.001	0.005	—
<δr>	0.012	0.044	—

Old and New Neutrino Fluxes

	Old: (GS98)		New: (AGSS09)		Best Measurements	
	Flux	Error	Flux	Error	Flux	Error
	cm ⁻² s ⁻¹	%	cm ⁻² s ⁻¹	%	cm ⁻² s ⁻¹	%
рр	5.98×10^{10}	±0.6	6.03×10^{10}	±0.6	$6.05 imes 10^{10}$	±0.6
рер	$1.44 imes 10^8$	±1.1	$1.47 imes 10^8$	±1.2	$1.46 imes 10^8$	±1.2
hep	$8.04 imes 10^3$	±30	$8.31 imes 10^3$	±30	$18 imes 10^3$	±45
⁷ Be	$5.00 imes 10^{9}$	±7	$4.56 imes 10^9$	±7	$4.82 imes 10^9$	±4.5
⁸ B	$5.58 imes 10^6$	±14	$4.59 imes 10^6$	±14	$5.0 imes 10^{6}$	±3
¹³ N	$2.96 imes 10^8$	±14	$2.17 imes 10^8$	±14	$< 6.7 \times 10^{8}$	
¹⁵ 0	$2.23 imes 10^8$	±15	$1.56 imes 10^8$	±15	$< 3.2 \times 10^{8}$	
¹⁷ F	$5.52 imes 10^6$	±17	$3.40 imes 10^6$	±16	$< 59 \times 10^{6}$	

• Directly measured 7-Be (Borexino) and 8-B (SNO) fluxes are halfway between models

• CN fluxes depend linearly on abundances, measurements needed

Prospect for CNO Flux Measurements

CNO neutrino measurements require excellent background reduction/subtraction Not achievable in Borexino in near future. Perhaps in SNO+?

Particle Bounds

Solar Neutrino Limit on Solar Energy Losses

Self-consistent models of the present-day Sun provide a simple power-law connection between a new energy loss L_a (e.g. axions) and the all-flavor solar neutrino flux from the B8 reaction as measured by SNO

Schlattl, Weiss & Raffelt, hep-ph/9807476

Hidden Photons (HPs)

New U(1) gauge boson (HP) with small mass m and kinetic mixing parameter χ

$$\mathcal{L} = -\frac{1}{4}A_{\mu\nu}A^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{m^2}{2}B_{\mu}B^{\mu} - \frac{\chi}{2}A_{\mu\nu}B^{\mu\nu}$$

Normal photons oscillate into HPs, lose coherence by collisions, HPs escape from Sun

Dispersion relation of longitudinal plasmons to lowest order independet of k

$$\omega_{\rm L} = \omega_{\rm Pl} = \left(\frac{4\pi\alpha n_e}{m_e}\right)^{1/2}$$
 (Plasma frequency)

At any position in the Sun, L-plasmons with

$$k_L = \sqrt{\omega_L^2 - m^2}$$

match HP dispersion relation: Resonant conversion!

$$\Gamma_{\rm HP}^{\rm prod}(\omega) = \frac{\chi^2 m^2}{e^{\omega/T} - 1} \frac{\omega^2 \Gamma_{\rm L}}{\left(\omega^2 - \omega_{\rm Pl}^2\right)^2 + (\omega\Gamma_{\rm L})^2} \sim \frac{\chi^2 m^2}{e^{\omega/T} - 1} \frac{\pi}{2} \delta(\omega - \omega_{\rm Pl})$$

(Redondo, arXiv:0801.1527. An, Pospelov & Pradler, arXiv:1302.3884. Redondo & Raffelt, arXiv:1305.2920)

Georg Raffelt, MPI Physics, Munich

Solar Hidden Photon Constraints

Energy loss in hidden photons (HPs) in solar plasma

$$Q_{\rm HP} = \chi^2 m^2 \frac{\alpha \ T \ n_e}{m_e}$$

Solar energy loss

$$L_{\rm HP} = \chi^2 \left(\frac{m}{\rm eV}\right)^2 5.7 \times 10^{21} L_{\odot}$$

Nominal limit

 $\chi m < 4 \times 10^{-12} \text{ eV}$

Redondo & Raffelt, arXiv:1305.2920

Summary of Hidden Photon Limits

Redondo & Raffelt, arXiv:1305.2920

Search for Solar Axions

Axion Physics in a Nut Shell

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Experimental Tests of the "Invisible" Axion

P. Sikivie

Physics Department, University of Florida, Gainesville, Florida 32611 (Received 13 July 1983)

Experiments are proposed which address the question of the existence of the "invisible" axion for the whole allowed range of the axion decay constant. These experiments exploit the coupling of the axion to the electromagnetic field, axion emission by the sun, and/or the cosmological abundance and presumed clustering of axions in the halo of our galaxy.

Primakoff effect:

Axion-photon transition in external static E or B field (Originally discussed for π^0 by Henri Primakoff 1951)

Pierre Sikivie:

Macroscopic B-field can provide a large coherent transition rate over a big volume (low-mass axions)

• Axion helioscope: Look at the Sun through a dipole magnet

 Axion haloscope: Look for dark-matter axions with A microwave resonant cavity

Search for Solar Axions

Axion Helioscope (Sikivie 1983)

Ν

S

CERN Axion Solar Telescope (CAST) (Data since 2003)

Alternative technique: Bragg conversion in crystal Experimental limits on solar axion flux from dark-matter experiments (SOLAX, COSME, DAMA, CDMS ...)

Axion-Photon-Transitions as Particle Oscillations

Raffelt & Stodolsky, PRD 37 (1988) 1237

Photon refractive and birefringence effects (Faraday rotation, Cotton-Mouton-effect)

Stationary Klein-Gordon equation for coupled a-γ-system

on

$$\left[\omega^{2} + \nabla^{2} + 2\omega^{2} \begin{pmatrix} n_{\perp} - 1 & n_{F} & 0 \\ n_{F} & n_{\parallel} & \frac{g_{a\gamma}B}{2\omega} \\ 0 & \frac{g_{a\gamma}B}{2\omega} & -\frac{m_{a}^{2}}{2\omega^{2}} \end{pmatrix} \right] \begin{pmatrix} A_{\perp} \\ A_{\parallel} \\ a \end{pmatrix} = 0$$

Axion-photon transitions

- Axions roughly like another photon polarization state
- In a homogeneous or slowly varying B-field, a photon beam develops a coherent axion component

CERN Axion Solar Telescope (CAST)

Extending to higher mass values with gas filling

Axion-photon transition probability

$$P_{a \to \gamma} = \left(\frac{g_{a\gamma}B}{q}\right)^2 \sin^2\left(\frac{qL}{2}\right)$$

Axion-photon momentum transfer

$$q = \left| \frac{m_a^2 - m_\gamma^2}{2E} \right|$$

Transition is suppressed for $qL \gtrsim 1$

Gas filling: Give photons a refractive mass to restore full transition strength

$$m_{\gamma}^2 = \frac{4\pi\alpha}{m_e} n_e$$
$$m_{\gamma} = 28.9 \text{ eV} \left(\frac{Z}{A} \rho_{\text{gas}}\right)^{1/2}$$

He-4 vapour pressure at 1.8 K is

$$\rho \approx 0.2 \times 10^{-3} \text{ g cm}^{-3}$$

 $m_{\gamma} = 0.26 \text{ eV}$

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Helioscope Limits

CAST-I results: PRL 94:121301 (2005) and JCAP 0704 (2007) 010 CAST-II results (He-4 filling): JCAP 0902 (2009) 008 CAST-II results (He-3 filling): PRL 107: 261302 (2011) and in preparation (2013)

Next Generation Axion Helioscope (IAXO) at CERN

Need new magnet w/ – Much bigger aperture: $\sim 1 \text{ m}^2$ per bore

- Lighter (no iron yoke)
- Bores at T_{room}
- Irastorza et al.: Towards a new generation axion helioscope, arXiv:1103.5334
- Armengaud et al.: Conceptual Design of the International Axion Observatory (IAXO), arXiv:1401.3233

Geo Neutrino

Geo Neutrinos: What is it all about?

We know surprisingly little about the Earth's interior

- Deepest drill hole \sim 12 km
- Samples of crust for chemical analysis available (e.g. vulcanoes)
- Reconstructed density profile from seismic measurements
- Heat flux from measured temperature gradient 30–44 TW (Expectation from canonical BSE model ~ 19 TW from crust and mantle, nothing from core)

- Neutrinos escape unscathed
- Carry information about chemical composition, radioactive energy production or even a hypothetical reactor in the Earth's core

Geo Neutrino Spectrum

Bellini, Ianni, Ludhova, Mantovani & McDonough, arXiv:1310.3732

Extreme Geo Neutrino Fluxes

Schematic radioactive element distribution for fixed heat flux

Minimal neutrino flux at detector

Maximal neutrino flux at detector

Bellini, Ianni, Ludhova, Mantovani & McDonough, arXiv:1310.3732

Geo Neutrinos

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Georg Raffelt, MPI Physics, Munich

KamLAND Geo-Neutrino Flux

 116_{-27}^{+28} Geoneutrino events (U/Th = 3.9 fixed)

Separately free fitting: 116 events 8 events

neutrino geophysics!

KamLAND Collaboration, arXiv:1303.4667 (2013)

Reactor On-Off KamLAND Data

2011 Earthquake Reactors shut down

KamLAND Collaboration, arXiv:1303.4667 (2013)

Applied Anti-Neutrino Physics (AAP)

Applied Anti-Neutrino Physics (AAP) Annual Conference Series since 2004

- Neutrino geophysics
- Reactor monitoring ("Neutrinos for Peace")

- Relatively small detectors can measure nuclear activity without intrusion
- Of interest for monitoring by International Atomic Energy Agency (Monitors fissile material in civil nuclear cycles)