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Neutrinos in Cosmology 
• How Many Neutrinos? 
   (Dark radiation/sterile neutrinos?) 
 
• Absolute mass determination and limits 
 
• Big Bang Nucleosynthesis – BBN  
   (Origin of light elements) 
 
• Leptogenesis 
   (Origin of Matter Abundance) 
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Neutrino Thermal Equilibrium 

Cosmic expansion rate 

Friedmann equation (flat universe) 

Radiation dominates 

Expansion rate 

Neutrino reaction rate 

Dimensional analysis of reaction rate 

in a thermal medium for T ≪ mW,Z 

Examples for neutrino processes 

GF 

𝑒+ + 𝑒− ↔ 𝜈 + 𝜈 
𝜈 + 𝜈 ↔ 𝜈 + 𝜈 
𝜈 + 𝑒± ↔ 𝜈 + 𝑒± 

Γ ∼ 𝐺F
2𝑇5 

H2 =
8𝜋

3

𝜌

𝑚Pl
2  𝐺N =

1

𝑚Pl
2  

𝜌 ∼ 𝑇4 

H ∼
𝑇2

𝑚Pl
 

Condition for thermal equilibrium:   Γ > 𝐻 

𝑇 > 𝑚Pl𝐺F
2 −1 3 ∼ 1019GeV 10−5GeV−2 2 −1 3 = 1 MeV 

Neutrinos are in thermal equilibrium for  T ≳ 1 MeV 
corresponding to  t ≲ 1 sec 
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Dirac vs Majorana Neutrinos 

4 states per flavor 
Twice the radiation 
density? 

2 states per flavor 
Standard assumption 
in cosmology 

Paul Dirac Ettore Majorana 
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BBN Theory vs Observations 
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Baryon and Radiation Density from BBN 
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4He 

D 

D abundance from Cook et al. (2013) and He-4 from Izotov et al. (2013) 
BBN hint for extra radiation (evidence driven by He abundance) 
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What is wrong with neutrino dark matter? 

Galactic Phase Space (“Tremaine-Gunn-Limit”) 

Maximum mass density of a degenerate 
Fermi gas 

𝜌max = 𝑚𝜈
𝑝max
3

3𝜋2 
𝑛max

=
𝑚𝜈 𝑚𝜈𝑣escape

3

3𝜋2
 

Spiral galaxies 
    mn  > 20–40 eV 
Dwarf galaxies 
    mn  > 100–200 eV 

Neutrino Free Streaming (Collisionless Phase Mixing) 

Neutrinos Neutrinos 

Over-density  

• At  T < 1 MeV  neutrino scattering in early universe is ineffective 
• Stream freely until non-relativistic 
• Wash out density contrasts on small scales  

• Neutrinos are “Hot Dark Matter” 
• Ruled out by structure formation 
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Neutrino Mass and Neff Limits 

Giusarma, Di Valentino, Lattanzi, Melchiorri &  Mena, arXiv:1403.4852 

with HST prior 
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Future Cosmological Neutrino Mass Sensitivity 

Basse, Bjælde, Hamann, Hannestad & Wong, arXiv:1304.2321: 
Dark energy and neutrino constraints from a future EUCLID-like survey 

ESA’s Euclid satellite to be  
launched in 2020 
Precision measurement of the 
universe out to redshift of 2 

     Pin down the neutrino mass in the sky! 



Sterile Neutrinos 

Sterile Neutrinos 
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Sterile Neutrino Oscillations 

sin2(2𝜃𝑎𝑠) 

Probability  𝜈𝑎 → 𝜈𝑠 

t 

Sterile (right-handed) neutrinos 𝜈𝑠 may exist that are not the Dirac partner to an 
ordinary (active) neutrino 𝜈𝑎 = 𝜈𝑒, 𝜈𝜇, or 𝜈𝜏          (White Paper arXiv:1204.5379) 

• Unknown mass 𝑚𝑠 
• Unknown mixing angles with ordinary neutrinos Θ𝑒𝑠, Θ𝜇𝑠, and Θ𝜏𝑠 

• Some experimental “anomalies” explained by 𝜈𝑠 
• Experimental constraints imply that mixing angle must be small 
 

Production in the early universe? 

• Naïve average population  𝑝𝜈𝑎→𝜈𝑠 =
1

2
sin2 2𝜃𝑎𝑠 ≪ 1 (ignoring matter effects) 
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Flavor Relaxation in a Medium 
Active neutrinos suffer collisions in a medium (rate Γ), but not 𝜈𝑠 
• Mixed state “collapses” to 𝜈𝑎 or 𝜈𝑠 
• Flavor content is “measured” by the medium 
    at intervals   𝜏 ∼ Γ−1  
• Oscillations begin from scratch  
• Average oscillation probability  1 2  sin

2(2Θ) 

Flavor conversion rate 
1

2
sin2 2Θ   Γ } 

prob(na) 

With collisions 

Single 
energy 

With energy 
distribution 
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Parameters for Thermalisation 

Hannestad, Tamborra and Tram, arXiv:1204.5861 

Matter effect implies that thermalisation depends on mass ordering 

𝑚𝑠 > 𝑚𝑎 𝑚𝑠 < 𝑚𝑎 
𝜈𝑠 

𝜈𝑎 𝜈𝑠 

𝜈𝑎 
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Constraints on Light Sterile Neutrinos 

Archidiacono, Fornengo, Gariazzo, Giunti, Hannestad, Laveder, arXiv:1404.1794 

𝑚𝑠 [eV] 

Δ𝑁eff
𝑠  

Fully thermalised 

Includes 
SBL data 

Sterile neutrinos with 
parameters favored by 
short-baseline (SBL) 
experiments are in conflict 
with cosmology unless their 
thermalisation is not complete 
(e.g. suppressed by matter 
effect from new interactions 
or by neutrino asymmetries 
or by other effects) 
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Sterile Neutrino Dark Matter 

Sterile Neutrino White Paper, arXiv:1204.5379 

Resonant production, requires large lepton asymmetry caused 
by other sterile neutrinos flavors 

Unidentified 
tentative 
x-ray line 
(3.55 keV) 
arXiv:1402.2301 
& 1402.4119 



Georg Raffelt, MPI Physics, Munich Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 

Sterile Neutrino Summary 

• Fully thermalised sterile neutrino (eV-mass) 
   excluded 
 

• Partially thermalised allowed  
   or even favored, needs new ingredients 
 

• keV-range sterile neutrinos 
   possible as dark matter 
 

• 3.55 keV x-ray line hint for this scenario? 
 
 



Leptogenesis 

Leptogenesis 



Basics of Cosmology 
• More matter than anti-matter in the universe 
   (BAU – Baryon Asymmetry of the Universe) 
 
• Not from initial conditions (inflationary universe) 
 
• Should be generated by physical processes: 
   “Baryogenesis” 
 
• Requires an absolute difference between matter 
   and anti-matter in physical laws 
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Quark Soup Before QCD Confinement 
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After QCD Confinement 

𝑢𝑢𝑑 

3,000,000,003 
quarks 

3,000,000,000 
anti-quarks 

1 proton 

Initial Asymmetry ∼ 10−9 (Baryon-to-Photon-Ratio)  
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Baryogenesis in the Early Universe 

Sakharov conditions for creating the  
Baryon Asymmetry of the Universe (BAU) 
• C and CP violation 
• Baryon number violation 
• Deviation from thermal equilibrium 

Particle-physics standard model 
• Violates C and CP 
• Violates B and L by EW instanton effects 
   (B - L  conserved) 

• However, electroweak baryogenesis not quantitatively 
   possible within particle-physics standard model 
• Works in SUSY models for small range of parameters 

Andrei Sakharov 
1921–1989 

A.Riotto & M.Trodden: Recent  progress in baryogenesis  
Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 
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CP Violation in Particle Physics 

Physics Nobel Prize 2008 

Discrete symmetries in particle physics 
 

C       –  Charge conjugation, transforms particles to antiparticles 
             violated by weak interactions 
 

P       –  Parity, changes left-handedness to right-handedness 
             violated by weak interactions 
 

T       –  Time reversal, changes direction of motion (forward to backward) 
 

CPT  –  exactly conserved in quantum field theory 
 

CP    –  conserved by all gauge interactions 
             violated by three-flavor quark mixing matrix 

M. Kobayashi T. Maskawa 

 All measured CP-violating effects derive 
      from a single phase in the quark mass matrix 
      (Kobayashi-Maskawa phase),  
      i.e. from complex Yukawa couplings 
 

 Cosmic matter-antimatter asymmetry 
      requires new ingredients 
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𝑚𝐷 𝑚𝐷
2 𝑀  𝑀 

See-Saw Model for Neutrino Masses 

1027 eV 

Planck 
mass 

GUT 
scale 

Electroweak 
     scale 

QCD 
scale 

Cosmological 
constant 

1024 1021 1018 1015 1012 109 106 103 1 10−3 

𝜈𝐿
′
, 𝑁𝑅
′ 0 𝑚𝐷
𝑚𝐷 𝑀

𝜈𝐿
′

𝑁𝑅
′  

𝜈𝐿, 𝑁𝑅
𝑚𝐷
2 𝑀 0
0 𝑀

𝜈𝐿
𝑁𝑅

 

Mass matrix for one family of ordinary and heavy r.h. neutrinos 

Diagonalization 

One light and one heavy Majorana neutrino 
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Leptogenesis by Majorana Neutrino Decays 

Heavy sterile 
neutrino N 

Lepton ℓ 

Higgs Φ 

N 
N 

ℓ 

Φ 

Φ 

+ 

CP-violating decays of 
heavy sterile neutrinos by 
interference of tree-level 
with one-loop diagram 
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Leptogenesis by Out-of-Equilibrium Decay 

Equilibrium 
abundance of 
heavy Majorana 
neutrinos 

W. Buchmüller & M. Plümacher: Neutrino masses and the baryon asymmetry 
Int. J. Mod. Phys. A15 (2000) 5047-5086 

 M. Fukugita & T. Yanagida: 
 Baryogenesis without Grand 
 Unification 
 Phys. Lett. B 174 (1986) 45  

Equilibrium 
abundance of 
heavy Majorana 
neutrinos 

Real abundance 
determined by 
decay rate 

ΓDecay = 𝑔𝜈
2
𝑀

8𝜋
 

 CP-violating decays by 
 interference of tree-level 
 with one-loop diagram 

Created 
lepton-number 
abundance 

Equilibrium 
abundance of 
heavy Majorana 
neutrinos 

Real abundance 
determined by 
decay rate 
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Dow Jones Index for Leptogenesis 

0

50

100

150

200

250

300

inSPIRE: Citations of Fukugita & Yanagida, PLB 174 (1986) 45 
or “Leptogenesis” in title 
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Neutrinoless bb Decay 

Some nuclei decay only by 
the bb mode, e.g. Ge-76 

76Ge 

76Se 

76As 

0+ 

2- 

2+ 

0+ 

Half life ~ 1021 yr 
Standard 2n mode 0n mode, enabled 

by Majorana mass 

𝑚𝑒𝑒 =  𝜆𝑖 𝑈𝑒𝑖
2𝑚𝑖

𝑁

𝑖=1

 
Measured 
quantity 

Best limit 
from 76Ge 

𝑚𝑒𝑒 < 0.35 eV 
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Antineutrino Oscillations Different from Neutrinos?  

Dirac phase causes different 3-flavor oscillations 
for neutrinos and antineutrinos 

Distance [1000 km] for  E = 1 GeV 

𝜈𝑒 → 𝜈𝑒 
       same as  𝜈𝑒 → 𝜈𝑒 

𝜈𝑒 → 𝜈𝜇  

𝜈𝑒 → 𝜈𝜇 

𝝂𝐞   = 𝑐12𝑐13   𝝂𝟏  + 𝑠12𝑐13   𝝂𝟐  + 𝑠13𝑒
−𝑖𝛿    𝝂𝟑 

𝝂𝐞   = 𝑐12𝑐13  𝝂𝟏   + 𝑠12𝑐13  𝝂𝟐   + 𝑠13𝑒
+𝑖𝛿    𝝂𝟑 
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Leptogenesis Summary 

• See-saw model for small Majorana masses 
   provides a generic way for BAU generation 
 

• Observing lepton-number violation 
   (neutrinoless double beta decay) 
   and leptonic CP violation (LBL oscillation) 
   would provide strong support (not proof) 
   for this scenario 
 
 


