Neutrinos

in Astrophysics and Cosmology

Cosmological Neutrinos 1

Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

Imostly galaxies) Gravitating mass 5.1 GeV/m3 "Baryonic matter" (mostly dark) 0,25 GeV/m³

Luminous Matter

"Dark matter

 $1.3 \text{ GeV} \text{Im}^3$ 4.11×10⁸/m³ **Neutrinos+Antineutrinos** per flavor $1.12 \times 10^8 / \text{m}^3$

(T = 2.75 K)

Cosmic microwave photons

Structure of Spiral Galaxies

Structure of a Spiral Galaxy

Georg Raffelt, MPI Physics, Munich

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Structure of a Spiral Galaxy

Dark Halo

Georg Raffelt, MPI Physics, Munich

Bullet Cluster (1E 0657-56)

Dark Energy ~70% (Cosmological Constant)

Ordinary Matter ~5% (of this only about 10% luminous)

Dark Matter ~25% Neutrinos 0.1–1% How Many Neutrinos? (Dark radiation/sterile neutrinos?)

Absolute mass determination and limits

 Big Bang Nucleosynthesis – BBN (Origin of light elements)

 Leptogenesis (Origin of Matter Abundance)

Some Basics of Cosmology

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \, \mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \,\mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \, \mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law $v_{expansion} = H_0 \times Distance$ Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$ $= 3.08 \times 10^{24} \text{ cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \,\mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \, \mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law

 $v_{expansion} = H_0 \times Distance$

 $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$ = $3.08 \times 10^{24} \text{ cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$ = $3.08 \times 10^{24} \text{ cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

Hubble's law $v_{expansion} = H_0 \times Distance$ Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$ $= 3.08 \times 10^{24} \, \mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

- Photons
- Neutrinos
- Charged Leptons
- Quarks
- Gluons
- W- and Z-Bosons
- Higgs Particles
- Gravitons

O...

- Dark-Matter Particles
- Topological defects

Hubble's law

 $v_{expansion} = H_0 \times Distance$

Hubble's constant $H_0 = 67.3 \pm 1.2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ $1 \text{ Mpc} = 3.26 \times 10^6 \text{ lyr}$

 $= 3.08 \times 10^{24} \,\mathrm{cm}$

Expansion age of the universe

 $t_0 \approx H_0^{-1} \approx 14 \times 10^9$ years

Georg Raffelt, MPI Physics, Munich

The Big Bang

Cosmic Expansion

Cosmic Scale Factor

Cosmic Redshift

- Space between galaxies grows
- Galaxies (stars, people) stay the same (dominated by local gravity or by electromagnetic forces)
- Cosmic scale factor today: *a* = 1

- Wavelength of light is "stretched"
- Suffers redshift $z + 1 = \frac{\lambda_{\text{today}}}{\lambda_{\text{then}}}$
- Redshift today: z = 0

$$z + 1 = rac{\lambda_{ ext{today}}}{\lambda_{ ext{then}}} = rac{a_{ ext{today}}}{a_{ ext{then}}}$$

Georg Raffelt, MPI Physics, Munich

Friedman-Robertson-Walker-Lemaître Cosmology

- On scales ≥ 100 Mpc, space is maximally symmetric (homogeneous & isotropic)
- The corresponding Robertson-Walker metric is

Friedman Equation: Newtonian Derivation

• Birkhoff's theorem:

Spherical symmetry implies that only the mass interior to a radius R is relevant for the motion of a test mass m at R

• Energy conservation $V_{pot} + V_{kin} = const$

$$-\frac{G_{\rm N}\frac{4\pi}{3}R^3\rho m}{R} + \frac{1}{2}\dot{R}^2m = \text{const}$$
$$\implies \left(\frac{\dot{R}}{R}\right)^2 = \frac{8\pi}{3}G_{\rm N}\rho + \frac{\text{const}}{R^2}$$

• Rescale $R = a R_c$ with cosmic scale factor a and R_c radius of curvature today

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G_{\rm N}\rho - \frac{k}{a^2R_0^2}$$

Friedman Equation

with $k = 0, \pm 1$

Critical Density and Density Parameter

• Evolution of the cosmic scale factor a(t) is governed by the Friedman Equation

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G_{\rm N}\rho - \frac{k}{a^2R_c^2}$$

• In a flat universe (k = 0), the relationship between H and ho is unique

$$\rho_{\rm crit} = \frac{3H^2}{8\pi G_{\rm N}} = \frac{3}{8\pi} (Hm_{\rm Pl})^2$$
 critical density

Cosmic density always expressed in terms of density parameters

$$\Omega = \frac{\rho}{\rho_{\rm crit}} = \frac{8\pi G_{\rm N}\rho}{3H^2}$$

• With the present-day Hubble parameter $H_0 = 67.3 \text{ km s}^{-1} \text{ Mpc}^{-1}$ we have

$$\rho_{\rm crit} = 8.51 \times 10^{-30} {
m g \ cm^{-3}} = 5 {
m GeV \ m^{-3}} = (2.5 {
m meV})^4$$

Most of this in the form of "dark energy"

Generic Solutions of Friedman Equation

	Equation of state	Behavior of energy-density under cosmic expansion		Evolution of cosmic scale factor	
Radiation	$p = \frac{\rho}{3}$	$\rho \propto a^{-4}$	Dilution of radiation and redshift of energy	$a(t) \propto t^{1/2}$	
Matter	p=0	$\rho \propto a^{-3}$	Dilution of matter	$a(t) \propto t^{2/3}$	
Vacuum energy	$p = -\rho$	$ ho = \mathrm{const}$	Vacuum energy not diluted by expansion	$a(t) \propto e^{\sqrt{\Lambda/3} t}$ $\Lambda = 8\pi G_{ m N} ho_{ m vac}$	

Energy-momentum tensor of a perfect fluid with density ho and pressure p

$$T^{\mu\nu} = \begin{pmatrix} \rho & & \\ & p & \\ & & p & \\ & & & p \end{pmatrix} \qquad T^{\mu\nu}_{\text{vac}} = \rho g^{\mu\nu} \begin{pmatrix} \rho & & & \\ & -\rho & & \\ & & -\rho & \\ & & & -\rho \end{pmatrix}$$

Expansion of Different Cosmological Models

Adapted from Bruno Leibundgut

Evolution of Cosmic Density Components

Evolution of Cosmic Density Components

Sky Map of Galaxies (XMASS XSC)

http://spider.ipac.caltech.edu/staff/jarrett/2mass/XSC/jarrett_allsky.html

Structure Formation in the Universe

Early phase of exponential expansion (Inflationary epoch)

Zero-point fluctuations of quantum fields are stretched and frozen

Structure grows by gravitational instability

Cosmic density fluctuations are frozen quantum fluctuations

Power Spectrum of Density Fluctuations

Field of density fluctuations of matter (e.g. dark matter)

$$\delta(\mathbf{x}) = \frac{\delta\rho(\mathbf{x})}{\bar{\rho}}$$

Fourier transform of density field

$$\delta_{\mathbf{k}} = \int d^3 \mathbf{x} \, e^{-i\mathbf{k}\cdot\mathbf{x}} \delta(\mathbf{x})$$

Power spectrum is essentially the square of the Fourier transform ($\hat{\delta}$ is δ -function)

$$\langle \delta_{\boldsymbol{k}} \delta_{\boldsymbol{k}'} \rangle = (2\pi)^3 \hat{\delta}(\boldsymbol{k} - \boldsymbol{k}') P(\boldsymbol{k})$$

Power spectrum is Fourier transform of two-point correlation function ($x = x_2 - x_1$)

$$\xi(\mathbf{x}) = \langle \delta(\mathbf{x}_2) \delta(\mathbf{x}_1) \rangle = \int \frac{d^3 \mathbf{k}}{(2\pi)^3} e^{i\mathbf{k} \cdot \mathbf{x}} P(\mathbf{k}) = \int \frac{d\Omega}{4\pi} \frac{dk}{k} e^{i\mathbf{k} \cdot \mathbf{x}} \frac{k^3 P(\mathbf{k})}{\underbrace{\frac{2\pi^2}{\Delta^2(\mathbf{k})}}}$$

Gaussian random field (phases of δ_k uncorrelated) is fully characterized by

 $P(k) = |\delta_k|^2$ Power Spectrum

or equivalently by

$$\Delta(k) = \left(\frac{k^3 P(k)}{2\pi^2}\right)^{1/2} = \frac{k^{3/2} |\delta_k|}{\sqrt{2} \pi}$$

No "non-Gaussianities" in cosmological precision data (Planck CMBR results)

Structure Formation by Gravitational Instability

Georg Raffelt, MPI Physics, Munich

Gravitational Growth of Density Perturbations

The dynamical evolution of small perturbations

$$\delta(x) = \frac{\delta\rho(x)}{\bar{\rho}} \ll 1$$

is independent for each Fourier mode δ_k (linear regime)

- For pressureless, nonrelativistic matter (cold dark matter) naively expect exponential growth by gravitational instability
- But only power-law growth in expanding universe (competition between expansion and gravitational instability)

	Sub-horizon $\lambda \ll H^{-1}$	Super-horizon $\lambda \gg H^{-1}$	
Radiation dominates $a \propto t^{1/2}$	$\delta_k \propto { m const}$	$\delta_k \propto a^2 \propto t$	
Matter dominates $a \propto t^{2/3}$	$\delta_k \propto a \propto t^{2/3}$		Density contrast grows linearly with scale factor

Processed Power Spectrum in CDM Scenario

Primordial spectrum Suppressed by stagnation Primordial spectrum usually assumed to be a power law 10-5 $P(k) = |\delta_k|^2 \propto k^{n_s}$ Linear Power Spectrum P(k) [Mpc³] Harrison-Zeldovich spectrum 10-4 ("flat") has $n_s = 1$ Precision cosmology provides 10-3 **CMBR** $n_{\rm s} = 0.960 \pm 0.007$ in spectacular agreement with 10-2 Galaxy simplest theories of inflation 10

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014

Power Spectrum of Cosmic Density Fluctuations

Discovery of the Cosmic Microwave Background Radiation

(Nobel Prize 1978)

Beginning of "big-bang cosmology"

Georg Raffelt, MPI Physics, Munich

Last Scattering Surface

T = 2.725 K (uniform on the sky)

Dynamical range $\Delta T = 3.353 \text{ mK} (\Delta T/T \approx 10^{-3})$ Dipole temperature distribution from Doppler effect caused by our motion relative to the cosmic frame

Dynamical range $\Delta T = 18 \ \mu K \ (\Delta T/T \approx 10^{-5})$ Primordial temperature fluctuations

COBE Satellite

Georg Raffelt, MPI Physics, Munich

Cosmic Microwave Background (Planck 2013)

Power Spectrum of CMB Temperature Fluctuations

Sky map of CMBR temperature fluctuations

$$\Delta(\theta, \varphi) = \frac{T(\theta, \varphi) - \langle T \rangle}{\langle T \rangle}$$

Multipole expansion

$$\Delta(\theta,\varphi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\theta,\varphi)$$

Angular power spectrum

$$C_{\ell} = \langle a_{\ell m}^* a_{\ell m} \rangle$$
$$= \frac{1}{2\ell + 1} \sum_{m = -\ell}^{\ell} a_{\ell m}^* a_{\ell m}$$

Provides "acoustic peaks" and a wealth of cosmological information

Flat Universe from CMBR Angular Fluctuations

Geometry of the Universe and Angular Scales

Flat Universe $\Omega = 1$

Closed Universe $\Omega > 1$

Georg Raffelt, MPI Physics, Munich

Dark Energy ~70% (Cosmological Constant)

Ordinary Matter ~5% (of this only about 10% luminous)

Dark Matter ~25% Neutrinos 0.1–1%

Matter-Radiation Equality (Redshift 3400)

Dark Matter 42%

Baryons 8%

> Massless Neutrinos 20%

After Electron-Positron Annihilation (T = 100 keV)

Neutrinos 41%

> Photons 59%

Relevant for Big Bang Nucleosynthesis (BBN)

Before Electron-Positron Annihilation (T = 1 MeV)

Neutrino Thermal Equilibrium

Neutrino reaction rate

Cosmic expansion rate

Examples for neutrino processes

$$e^{+} + e^{-} \leftrightarrow \overline{\nu} + \nu$$

$$\overline{\nu} + \nu \leftrightarrow \overline{\nu} + \nu$$

$$\nu + e^{\pm} \leftrightarrow \nu + e^{\pm}$$

Dimensional analysis of reaction rate in a thermal medium for T \ll m_{W,Z} $\Gamma \sim G_{\rm F}^2 T^5$

Friedmann equation (flat universe)

$$\mathrm{H}^2 = \frac{8\pi}{3} \frac{\rho}{m_{\mathrm{Pl}}^2}$$

$$\left(G_{\rm N} = \frac{1}{m_{\rm Pl}^2}\right)$$

Radiation dominates

 $\rho \sim T^4$

Expansion rate H ~ $\frac{T^2}{m_{\rm Pl}}$

Condition for thermal equilibrium: $\Gamma > H$

$$T > (m_{\rm Pl}G_{\rm F}^2)^{-1/3} \sim [10^{19} {\rm GeV} (10^{-5} {\rm GeV}^{-2})^2]^{-1/3} = 1 {\rm MeV}^{-1/3}$$

Neutrinos are in thermal equilibrium for $T \gtrsim 1 \text{ MeV}$ corresponding to $t \lesssim 1 \text{ sec}$

Georg Raffelt, MPI Physics, Munich

Neutrino Thermal Equilibrium

Neutrino reaction rate

Cosmic expansion rate

Condition for thermal equilibrium: $\Gamma > H$

 $T < (g^2/4\pi)^2 m_{\rm Pl} \approx 10^{16} {
m GeV} \approx \Lambda_{\rm GUT}$

It depends on very early cosmic history when neutrinos first enter equilibrium, presumably at reheating after inflation

Georg Raffelt, MPI Physics, Munich

Thermal Radiations

	General	Bosons	Fermions	
Number density n	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{1}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\zeta_3}{\pi^2} T^3$	$\frac{3}{4} g_F \frac{\zeta_3}{\pi^2} T^3$	
Energy density ρ	$g\int \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{E_{\boldsymbol{p}}}{e^{E_{\boldsymbol{p}}/T} \pm 1}$	$g_B \frac{\pi^2}{30} T^4$	$\frac{\frac{7}{8}}{9}g_F\frac{\pi^2}{30}T^4$	
Pressure P		$\frac{\rho}{3}$		
Entropy density s	$\frac{\rho + P}{T} = \frac{4}{3} \frac{\rho}{T}$	$g_B \frac{2\pi^2}{45} T^3$	$\frac{\frac{7}{8}}{8}g_F\frac{2\pi^2}{45}T^3$	

Riemann Zeta Function $\zeta_3 = 1.2020569 \dots$

Thermal Degrees of Freedom

Mass threshold		Particles	g _B	g _F	g*
	low	γ, 3ν	2	6	(7.25)
m _e	0.5 MeV	e [±]	2	10	10.75
m _µ	105 MeV	μ^{\pm}	2	14	14.25
m _π	135 MeV	π^0, π^{\pm}	5	14	17.25
Λ_{QCD}	\sim 170 MeV	u, d, s, gluons	18	50	61.75
m _{c,τ}	2 GeV	ς, τ	18	66	75.75
m _b	6 GeV	b [±]	18	78	86.25
m _{W,Z}	90 GeV	Ζ ⁰ , W [±]	27	78	92.25
m _H	126 GeV	Higgs	28	78	93.25
m _t	170 GeV	t	28	90	106.75
Λ_{SUSY}	~ 1 TeV ?	SUSY particles	118	118	213.50

Thermal Degrees of Freedom in the Early Universe

Present-Day Neutrino Density

Neutrino decoupling (freeze out)	$H \sim \Gamma$ $T \approx 2.4 \text{ MeV} \text{(electron flavor)}$ $T \approx 3.7 \text{ MeV} \text{(other flavors)}$		
Redshift of Fermi-Dirac distribution ("nothing changes at freeze-out")	$\frac{dn_{\nu\overline{\nu}}}{dE} = \frac{1}{\pi^2} \frac{E^2}{e^{E/T} + 1}$ Temperature scales with redshift $T_{\nu} = T_{\gamma} \propto (z+1)$		
Electron-positron annihilation beginning at T ≈ m _e = 0.511 MeV	• QED plasma is "strongly" coupled • Stays in thermal equilibrium (adiabatic process) • Entropy of e ⁺ e ⁻ transferred to photons $ \begin{array}{c} g_*T_{\gamma}^3 \\ g_*T_{\gamma}^3 \\ before \end{array} = g_*T_{\gamma}^3 \\ g_*T_{\gamma}^3 \\ before \end{array} = \frac{g_*T_{\gamma}^3}{2} \\ \begin{array}{c} T_{\gamma}^3 \\ g_*T_{\gamma}^3 \\ g_$		
Redshift of neutrino and photon thermal distributions so that today we have	$n_{\nu\overline{\nu}}(1 \text{ flavor}) = \frac{4}{11} \times \frac{3}{4} \times n_{\gamma} = \frac{3}{11} n_{\gamma} \approx 112 \text{ cm}^{-3}$ $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \approx 1.95 \text{ K} \text{for massless neutrinos}$		