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Hubble Deep Field 

“Baryonic matter” (mostly dark) 
 0.25 GeV/m3 

Neutrinos+Antineutrinos 
per flavor      1.12×108/m3 
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Structure of Spiral Galaxies 

Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 

Spiral Galaxy NGC 2997 Spiral Galaxy NGC 891 
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Dark Halo 

Structure of a Spiral Galaxy 
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Dark Halo 

Structure of a Spiral Galaxy 
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Bullet Cluster (1E 0657-56) 
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Pie Chart of Dark Universe 

 Dark Energy ~70% 
 (Cosmological Constant) 

 Neutrinos 
 0.1-1% 

Dark Matter 
~25% 

Ordinary Matter ~5% 
(of this only about 
 10% luminous) 



Basics of Cosmology 
• How Many Neutrinos? 
   (Dark radiation/sterile neutrinos?) 
 
• Absolute mass determination and limits 
 
• Big Bang Nucleosynthesis – BBN  
   (Origin of light elements) 
 
• Leptogenesis 
   (Origin of Matter Abundance) 



Basics of Cosmology 

Some Basics 
of Cosmology 
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Expanding Universe and the Big Bang 

Hubble’s law 

    vexpansion = H0  Distance 

 

Hubble’s constant 

    H0 = 67.3 ± 1.2 km s–1 Mpc–1 

 

    1 Mpc = 3.26  106 lyr 

                 = 3.08  1024 cm 
 

 

Expansion age of the universe 

t0  H0
–1  14  109 years 
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Expanding Universe and the Big Bang 

Hubble’s law 

    vexpansion = H0  Distance 

 

Hubble’s constant 

    H0 = 67.3 ± 1.2 km s–1 Mpc–1 

 

    1 Mpc = 3.26  106 lyr 

                 = 3.08  1024 cm 
 

 

Expansion age of the universe 

t0  H0
–1  14  109 years 

• Photons 
• Neutrinos 
• Charged Leptons 
• Quarks 
• Gluons 
• W- and Z-Bosons  
• Higgs Particles 
• Gravitons 
• Dark-Matter Particles 
• Topological defects 
• …  



Big Bang 
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Cosmic Expansion 

Cosmic Scale Factor Cosmic Redshift 

• Space between galaxies grows 
 

• Galaxies (stars, people) stay the same 
   (dominated by local gravity 
    or by electromagnetic forces) 
 

• Cosmic scale factor today:  𝒂 = 𝟏 

• Wavelength of light is “stretched” 
 

• Suffers redshift    𝒛 + 𝟏 =
𝝀𝐭𝐨𝐝𝐚𝐲

𝝀𝐭𝐡𝐞𝐧
 

 

• Redshift today:    𝒛 = 𝟎 

𝒛 + 𝟏 =
𝝀today

𝝀then
=

𝒂today

𝒂then
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Friedman-Robertson-Walker-Lemaître Cosmology 

• On scales ≳ 100 Mpc, space is maximally symmetric 
   (homogeneous & isotropic) 
 

• The corresponding Robertson-Walker metric is 
 

𝒅𝒔𝟐 = 𝒅𝒕𝟐 − 𝒂𝟐 𝐭
𝒅𝒓𝟐

𝟏 − 𝒌𝒓𝟐
+ 𝒓𝟐 𝒅𝜽𝟐 + sin𝟐𝜽 𝒅𝝓𝟐  

Co-moving spherical coordinates 

r is dimensionless 

 

Cosmic 
scale 
factor 

Clock time 
of co-moving 
observer 

k = 0 k = -1 k = +1 

Curvature 
k = 0, 1 
 



Georg Raffelt, MPI Physics, Munich Neutrinos in Astrophysics and Cosmology, NBI, 23–27 June 2014 

Friedman Equation: Newtonian Derivation 

• Birkhoff’s theorem: 
   Spherical symmetry implies that only 
   the mass interior to a radius  𝑹 is relevant 
   for the motion of a test mass  𝒎  at  𝑹 
 
• Energy conservation  𝑽𝐩𝐨𝐭 + 𝑽𝐤𝐢𝐧 = 𝐜𝐨𝐧𝐬𝐭 
 

     −
𝑮𝐍

𝟒𝝅
𝟑

𝑹𝟑𝝆 𝒎 

𝑹
+

𝟏

𝟐
 𝑹 𝟐𝒎 = 𝐜𝐨𝐧𝐬𝐭 

 

     ⟹  
𝑹 

𝑹

𝟐

=
𝟖𝝅

𝟑
 𝑮𝐍𝝆 +

𝐜𝐨𝐧𝐬𝐭

𝑹𝟐
 

 
• Rescale  𝑹 = 𝒂 𝑹𝑪  with cosmic scale factor 𝒂 and 𝑹𝑪 radius of curvature today 
 

     𝑯𝟐 =
𝒂 

𝒂

𝟐

=
𝟖𝝅

𝟑
𝑮𝐍𝝆 −

𝒌

𝒂𝟐𝑹𝑪
𝟐 

 

   with 𝒌 = 𝟎, ±𝟏 
 
 

R 
m 

Density  r 

Friedman Equation 
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Critical Density and Density Parameter 

• Evolution of the cosmic scale factor 𝒂(𝒕) is governed by the Friedman Equation 
 

           𝑯𝟐=
𝒂 

𝒂

𝟐

=
𝟖𝝅

𝟑
𝑮𝐍𝝆 −

𝒌

𝒂𝟐𝑹𝑪
𝟐 

 

• In a flat universe (𝒌 = 𝟎), the relationship between 𝑯 and 𝝆 is unique 
 

           𝝆𝐜𝐫𝐢𝐭=
𝟑𝑯𝟐

𝟖𝝅𝑮𝐍
=

𝟑

𝟖𝝅
𝑯𝒎𝐏𝐥

𝟐 

 

• Cosmic density always expressed in terms of density parameters 
 

           𝛀 =
𝝆

𝝆𝐜𝐫𝐢𝐭
=

𝟖𝝅𝑮𝐍𝝆

𝟑𝑯𝟐
 

 

• With the present-day Hubble parameter 𝑯𝟎 = 𝟔𝟕. 𝟑 𝐤𝐦 𝐬−𝟏 𝐌𝐩𝐜−𝟏 we have 
 

           𝝆𝐜𝐫𝐢𝐭= 𝟖. 𝟓𝟏 × 𝟏𝟎−𝟑𝟎𝐠 𝐜𝐦−𝟑 = 𝟓 𝐆𝐞𝐕 𝐦−𝟑 = 𝟐. 𝟓 𝐦𝐞𝐕 𝟒 
 

   Most of this in the form of “dark energy” 

critical density 
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Generic Solutions of Friedman Equation 

Radiation 𝑝 =
𝜌

3
 

Dilution of radiation 
and redshift of energy 

Matter 𝑝 = 0 Dilution of matter 

Vacuum 
energy 

𝑝 = −𝜌 
𝑎(𝑡) ∝ 𝑒 Λ 3  𝑡 

 

Λ = 8𝜋𝐺N𝜌vac 

Vacuum energy not 
diluted by expansion 

Equation 
of state 

Behavior of energy-density under 
cosmic expansion 

Evolution of 
cosmic scale factor 

𝜌 ∝ 𝑎−4 

𝜌 ∝ 𝑎−3 

𝜌 = const 

𝑎(𝑡) ∝ 𝑡1 2  

𝑎(𝑡) ∝ 𝑡2 3  

Energy-momentum tensor of a perfect fluid with density 𝝆 and pressure 𝒑 
 

𝑻𝝁𝝂 =

𝝆    
 𝒑   
  𝒑  
   𝒑

         𝑻𝐯𝐚𝐜
𝝁𝝂

= 𝝆 𝒈𝝁𝝂

𝝆    
 −𝝆   
  −𝝆  
   −𝝆
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Expansion of Different Cosmological Models 

Time (billion years) 

Cosmic scale factor 𝒂 

today 

Adapted from Bruno Leibundgut 

-14 

M = 0 

-9 

M = 1 

-7 

M > 1 

M = 0.3 

Λ = 0.7 
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Evolution of Cosmic Density Components 

Assumed neutrino masses 

   m3 = 50 meV 

   m2 =   9 meV 

   m1 =   0 

Lesgourgues & Pastor 
astro-ph/0603494 

Matter 
radiation 
equality 

Vacuum Energy 
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Evolution of Cosmic Density Components 

Assumed neutrino masses 

   m3 = 50 meV 

   m2 =   9 meV 

   m1 =   0 

Lesgourgues & Pastor 
astro-ph/0603494 

CDM Baryons 

Neutrinos 

Photons 

L 

Matter 
radiation 
equality 



Sky Map of Galaxies (XMASS XSC) 

http://spider.ipac.caltech.edu/staff/jarrett/2mass/XSC/jarrett_allsky.html 



SDSS Survey 
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Structure Formation in the Universe 

Zero-point fluctuations of quantum 
fields are stretched and frozen 

Early phase of exponential expansion 
(Inflationary epoch) 

Cosmic density fluctuations are 
frozen quantum fluctuations 

Structure grows by gravitational 
instability 
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Power Spectrum of Density Fluctuations 

Field of density fluctuations of matter (e.g. dark matter) 

      𝛿 𝒙 =
𝛿𝜌 𝒙

𝜌 
 

Fourier transform of density field 
 

      𝛿𝒌= ∫ 𝑑3𝒙 𝑒−𝑖𝒌⋅𝒙𝛿 𝒙  
 

Power spectrum is essentially the square of the Fourier transform (𝛿  is 𝛿-function) 
 

      𝛿𝒌𝛿𝒌′ = 2𝜋 3𝛿 𝒌 − 𝒌′ 𝑃(𝒌) 
 

Power spectrum is Fourier transform of two-point correlation function (𝑥 = 𝑥2 − 𝑥1) 

      𝜉 𝒙 = 𝛿 𝒙2 𝛿 𝒙1 =  
𝑑3𝒌

2𝜋 3
 𝑒𝑖𝒌⋅𝒙𝑃 𝒌 =  

𝑑Ω

4𝜋

𝑑𝑘

𝑘
  𝑒𝑖𝒌⋅𝒙

𝑘3𝑃 𝒌

2𝜋2

Δ2 𝒌

 

Gaussian random field (phases of 𝛿𝑘 uncorrelated) is fully characterized by 
 

      𝑃 𝑘 = 𝛿𝑘
2       Power Spectrum 

 

or equivalently by 

      Δ 𝑘 =
𝑘3𝑃 𝑘

2𝜋2

1 2 

=
𝑘3 2 𝛿𝑘

2 𝜋
 

No “non-Gaussianities” in cosmological precision data (Planck CMBR results) 
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Structure Formation by Gravitational Instability 
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Gravitational Growth of Density Perturbations 

The dynamical evolution of small perturbations 

      𝛿 𝑥 =
𝛿𝜌 𝑥

𝜌 
≪ 1 

is independent for each Fourier mode 𝛿𝑘 (linear regime) 
 

• For pressureless, nonrelativistic matter (cold dark matter) 
   naively expect exponential growth by gravitational instability 
 

• But only power-law growth in expanding universe  
   (competition between expansion and gravitational instability) 

Matter dominates 

𝑎 ∝ 𝑡2 3  

Sub-horizon 

𝜆 ≪ 𝐻−1 
Super-horizon 

𝜆 ≫ 𝐻−1 

Radiation dominates 

𝑎 ∝ 𝑡1 2  
𝛿𝑘 ∝ 𝑎2 ∝ 𝑡 𝛿𝑘 ∝ const 

𝛿𝑘 ∝ 𝑎 ∝ 𝑡2 3  
Density contrast grows 
linearly with scale factor 
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Processed Power Spectrum in CDM Scenario 
Primordial spectrum Suppressed by stagnation 

during radiation phase 

CMBR 

Galaxy 
surveys 

Primordial spectrum usually 
assumed to be a power law 
 

      𝑃 𝑘 = 𝛿𝑘
2 ∝ 𝑘𝑛𝑠  

 

Harrison-Zeldovich spectrum 
(“flat”) has 𝑛𝑠 = 1 
 

Precision cosmology provides 
 

      𝑛𝑠= 0.960 ± 0.007 
 

in spectacular agreement with 
simplest theories of inflation 
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Power Spectrum of Cosmic Density Fluctuations 

Te
gm

ar
k,

 T
A

U
P

  2
0

0
3
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Discovery of the Cosmic Microwave Background Radiation 

Discovery of 2.7 Kelvin 
Cosmic microwave background radiation 
by Penzias and Wilson in 1965 
(Nobel Prize 1978) 
 

Beginning of “big-bang cosmology” 

Robert W. Wilson 
Born 1936 

Arno A. Penzias  
Born 1933 
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Last Scattering Surface 



COBE Temperature Map of the Microwave Background 

T = 2.725 K (uniform on the sky) 
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T = 2.725 K (uniform on the sky) 



COBE Temperature Map of the Microwave Background 

T = 2.725 K (uniform on the sky) 
Dynamical range  DT = 3.353 mK  (DT/ T  10-3) 

Dipole temperature distribution from Doppler effect 
caused by our motion relative to the cosmic frame 



COBE Temperature Map of the Microwave Background 

T = 2.725 K (uniform on the sky) 
Dynamical range  DT = 3.353 mK  (DT/ T  10-3) 

Dipole temperature distribution from Doppler effect 
caused by our motion relative to the cosmic frame 

Dynamical range  DT = 18 mK  (DT/ T  10-5) 

Primordial temperature fluctuations 
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COBE Satellite 

John C. Mather  
Born 1946 

George F. Smoot  
Born 1945 

Nobel Prize 2006 



Cosmic Microwave Background (Planck 2013) 
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Power Spectrum of CMB Temperature Fluctuations 

Sky map of CMBR temperature 
fluctuations 
 

   Δ 𝜃, 𝜑 =
𝑇 𝜃, 𝜑 − 𝑇

〈𝑇〉
 

 

Multipole expansion 
 

   Δ 𝜃, 𝜑 =    𝑎ℓ𝑚𝑌ℓ𝑚 𝜃, 𝜑

ℓ

𝑚=−ℓ

∞

ℓ=0

 

 

Angular power spectrum 
 

   𝐶ℓ= 𝑎ℓ𝑚
∗ 𝑎ℓ𝑚  

 

       =
1

2ℓ + 1
 𝑎ℓ𝑚

∗ 𝑎ℓ𝑚

ℓ

𝑚=−ℓ

 

 

Provides “acoustic peaks” and a 
wealth of cosmological information 

Planck 

Acoustic Peaks 
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Flat Universe from CMBR Angular Fluctuations 

 Known physical 
 size of acoustic peak 
 at decoupling (z  1100) 

Measured 
angular size 
today (z = 0) 

flat (Euclidean) 

negative curvature 

positive curvature 

Triangulation with acoustic peak 

Ωtot = 0.963−0.049
+0.043      (CMB alone) 

 

Ωtot = 0.9995−0.0066
+0.0065  (All data) 

 

(95% ranges from Planck, arXiv:1303.5076) 
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Geometry of the Universe and Angular Scales 

Closed Universe 
 > 1 

Flat Universe 
 = 1 

Open Universe 
 < 1 
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Pie Chart of Dark Universe 

 Dark Energy ~70% 
 (Cosmological Constant) 

 Neutrinos 
 0.1-1% 

Dark Matter 
~25% 

Ordinary Matter ~5% 
(of this only about 
 10% luminous) 
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Matter-Radiation Equality (Redshift 3400) 

 Baryons 
 8%  

 Dark Matter 
 42% 

Photons 
30% Massless Neutrinos 

 20% 
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After Electron-Positron Annihilation (T = 100 keV) 

 Neutrinos 
 41%  

 Photons 
 59% 

Relevant for Big Bang Nucleosynthesis (BBN) 
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Before Electron-Positron Annihilation (T = 1 MeV) 

 Neutrinos 
 48.8%  

 Photons 
 18.6% 

Electrons/Positrons 
32.6% 
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Creation of the Universe 

Cosmic 
Neutrino Sea 
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Neutrino Thermal Equilibrium 

Cosmic expansion rate 

Friedmann equation (flat universe) 

Radiation dominates 

Expansion rate 

Neutrino reaction rate 

Dimensional analysis of reaction rate 

in a thermal medium for T ≪ mW,Z 

Examples for neutrino processes 

GF 

𝑒+ + 𝑒− ↔ 𝜈 + 𝜈 
𝜈 + 𝜈 ↔ 𝜈 + 𝜈 
𝜈 + 𝑒± ↔ 𝜈 + 𝑒± 

Γ ∼ 𝐺F
2𝑇5 

H2 =
8𝜋

3

𝜌

𝑚Pl
2  𝐺N =

1

𝑚Pl
2  

𝜌 ∼ 𝑇4 

H ∼
𝑇2

𝑚Pl
 

Condition for thermal equilibrium:   Γ > 𝐻 

𝑇 > 𝑚Pl𝐺F
2 −1 3 

∼ 1019GeV 10−5GeV−2 2 −1 3 = 1 MeV 

Neutrinos are in thermal equilibrium for  T ≳ 1 MeV 
corresponding to  t ≲ 1 sec 
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Neutrino Thermal Equilibrium 

Cosmic expansion rate 

Friedmann equation (flat universe) 

Radiation dominates 

Expansion rate 

Neutrino reaction rate 

Dimensional analysis of reaction rate 

in a thermal medium for T ≫ mW,Z 

Examples for neutrino processes 

𝑒+ + 𝑒− ↔ 𝜈 + 𝜈 
𝜈 + 𝜈 ↔ 𝜈 + 𝜈 
𝜈 + 𝑒± ↔ 𝜈 + 𝑒± 

Γ ∼ 𝑔2 4𝜋 2 𝑇 

H2 =
8𝜋

3

𝜌

𝑚Pl
2  𝐺N =

1

𝑚Pl
2  

𝜌 ∼ 𝑇4 

H ∼
𝑇2

𝑚Pl
 

Condition for thermal equilibrium:   Γ > 𝐻 

𝑇 < 𝑔2 4𝜋 2 𝑚Pl ≈ 1016GeV ≈ ΛGUT 

It depends on very early cosmic history when neutrinos first enter equilibrium, 
presumably at reheating after inflation 

W,Z 
g g 
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Thermal Radiations 

General  Bosons  Fermions  

𝑔  
𝑑3𝒑

2𝜋 3

𝐸𝒑

𝑒𝐸𝒑 𝑇 ± 1
 Energy density  r  

Pressure  P  
𝜌

3
 

Entropy density  s  
𝜌 + 𝑃

𝑇
=

4

3
  
𝜌

𝑇
 

𝑔  
𝑑3𝒑

2𝜋 3

𝐸𝒑

𝑒𝐸𝒑 𝑇 ± 1
 Energy density  r  

Number density  n  𝑔𝐵

𝜁3

𝜋2
 𝑇3 𝑔  

𝑑3𝒑

2𝜋 3

1

𝑒𝐸𝒑 𝑇 ± 1
 

𝑔𝐵

𝜋2

30
 𝑇4 

𝑔𝐵

2𝜋2

45
 𝑇3 

7

8
 𝑔𝐹

2𝜋2

45
 𝑇3 

7

8
 𝑔𝐹

𝜋2

30
 𝑇4 

3

4
 𝑔𝐹

𝜁3

𝜋2
 𝑇3 

Riemann Zeta Function 
𝜁3 = 1.2020569 … 
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Thermal Degrees of Freedom 

Mass threshold Particles gB gF g
* 

0.5 MeV me e 2 10 10.75 

105 MeV mm m 2 14 14.25 

135 MeV mp p0, p 5 14 17.25 

∼170 MeV LQCD u, d, s, gluons 18 50 61.75 

2 GeV mc,t c, t 18 66 75.75 

6 GeV mb b 18 78 86.25 

90 GeV mW,Z Z0, W 27 78 92.25 

170 GeV mt t 28 90 106.75 

126 GeV mH Higgs 28 78 93.25 

~ 1 TeV ? LSUSY SUSY particles 118 118 213.50 

g, 3n 2 6 (7.25) low 
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Thermal Degrees of Freedom in the Early Universe 

QCD color 
confinement 
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Present-Day Neutrino Density 

Neutrino decoupling 
(freeze out) 

Redshift of Fermi-Dirac 
distribution (“nothing 
changes at freeze-out”) 

Electron-positron 
annihilation beginning  
at T  me = 0.511 MeV 

Redshift of 
neutrino and photon 
thermal distributions 
so that today we have 

  𝐻 ∼ Γ 
  𝑇 ≈ 2.4 MeV    (electron flavor) 
  𝑇 ≈ 3.7 MeV    (other flavors) 

  
𝑑𝑛𝜈𝜈

𝑑𝐸
=

1

𝜋2

𝐸2

𝑒𝐸 𝑇 + 1
 

Temperature 
scales with redshift 
𝑇𝜈 = 𝑇𝛾 ∝ 𝑧 + 1  

• QED plasma is “strongly” coupled 
• Stays in thermal equilibrium (adiabatic process) 
• Entropy of e+e- transfered to photons  

           𝑔∗𝑇𝛾
3  

before
= 𝑔∗𝑇𝛾

3  
after

 

 2 +
7

8
4 =

11

2
  2  

𝑇𝛾
3  

before
=

𝟒

𝟏𝟏
𝑇𝛾

3  
after

 } 
  𝑛𝜈𝜈 1 flavor =

4

11
×

3

4
× 𝑛𝛾 =

3

11
𝑛𝛾 ≈ 112 cm−3 

 

  𝑇𝜈 =
4

11

1 3 

𝑇𝛾 ≈ 1.95 K     for massless neutrinos 


