TI with conduction & turbulence

Prateek Sharma (IISc)

key contributors: B Wagh, M McCourt, N Banerjee

Wagh et al. 2014, MNRAS Banerjee & Sharma 2014, MNRAS

TI paradigm

- cooling flows are absent; heating \approx average cooling
- interplay of gravity & local TI in globally stable ICM
- behavior reproduced by realistic jets
- holds with anisotropic conduction
- role of turbulent heating/mixing

how far can we go with this simple model?

Spherical Sims. Clusters

need to understand this from analytic/phenomenological calculations

dM/dt ~ 0.01dM/dt CF, as observed

Self-Adjustment of ICM

Self-Adjustment of ICM

 $t_{cool}/t_{ff} \approx 10$

CC/NCC division corresponds to our t_{cool}/t_{ff} criterion!

Core vs. halo mass

Effects of Conduction

thermal conduction can, in principle, bring in heat from larger radii

Problems w. conduction

- globally unstable
- HBI shuts of conduction
- still can play a key role in energetics
- numerics: no MPI code for implicitly doing aniso. conduction

Conduction & cold gas

generalize the simple toy model but accounting conductive heating in energetics

$$q^+(r,t) = \langle n^2 \Lambda(T) \rangle + \nabla \cdot \vec{q}$$

How do isotropic & anisotropic conduction change the picture?

in addition to t_{cool}/t_{ff} , conduction is expected to suppress TI

Why conduction in core?

[Voit et al. 2008]

$$\lambda_{\rm F} \equiv \left[\frac{T\kappa(T)}{n^2\Lambda(T)}\right]^{1/2} = 4 \text{ kpc } \left[\frac{K}{10 \text{ keV cm}^2}\right]^{3/2} f_c^{1/2}.$$

Field length, below which conducting prevents local TI

expect isotropic conduction to prevent condensation when Field length>core size; not so for anisotropic

aniso. cond. iso. cond. no

[Wagh et al. 2014]

no cond.

sim. with aniso. conduction much closer to hydro

much smaller cold gas condenses with isotropic conduction because of suppression of TI by conduction difference is more pronounced for massive clusters

Cold gas accretion

forward shock not efficient: more like sound waves which move out fast

> mi<mark>xing of hot</mark> jet mat<mark>erial/outer ICM</mark> & cooler ICM plasma

mixing/entrainment crucial for isotropic heating even with, say cosmic rays

 density from

 10⁻²⁴ to 10⁻²⁷ g/cm³

 r(kpc)

 10
 20
 30
 40
 50

0

2Gyr

50

40

[230 [20] 20] 20

10

N Experiments with Turbulent Heating/Mixing

work done by turbulent force balances cooling over the box, on average mimicking heating due to jet-induced turbulence

only large-enough clouds can condense out smaller ones are mixed faster than they can cool

L = 10 kpc is the driving scale

Scalings

L is the driving scale

$$\rho v_L^3/L = 2K/t_{\rm mix,L} \approx n^2 \Lambda = U/t_{\rm cool}$$

$$t_{
m mix,L}/t_{
m cool} pprox 2K/U pprox \mathcal{M}^2 \gtrsim 1$$
 for condensation

implies that clouds condense out at large scales & turbulence is close to sonic; ruled out for CCs!

 $2K/Upprox \mathcal{M}^2$ can be <1, but $\,t_{
m mix,L} < t_{
m cool}$ in this case

can't have condensation as seen in CCs

Turbulent Mixing?

small box, represents the cool core

outer region is bubble material or hotter dilute regions of ICM

turbulence mixes the hotter gas with the denser core

$$\langle F \cdot v \rangle = \langle \mathcal{L} \rangle$$

still, but lower velocities because the dilute outer regions have longer cooling times & larger volume

Mach no. with mixing

mixing gives a Mach number consistent with observations of cool core clusters

$Data => t_{cool} \approx t_{TI}$

 $t_T \approx t_{cool}$ or $\alpha \approx 0$ for observations to match idealized simulations

Measuring tti

measure the growth rate of density perturbations

measuring growth rate gives tTI and the density dependence of microscopic heating

$$q^+ \propto n^{\alpha}$$

 $\alpha \approx 0$ needed for agreement with observations

Measuring tti

Label [†]	Res.	L_x (kpc)	eta^{\ddagger}	$\frac{\langle \text{heating} \rangle}{\langle \text{cooling} \rangle}$	$t_{\rm TI}$ range (Myr)	$\alpha^{\dagger\dagger}$ range
		$=L_y=L_z$				
H^*	128^{3}	40	•••	1.0	59 to 116	/-0.8 to 0.6
Hh	256^{3}	40	•••	1.0	52 to 132	/ -1.2 to 0.7
Ht	128^{3}	40	•••	1.0	•••	/ \
Hs	128^{3}	20	•••	1.0	•••	
Hl	128^{3}	80	•••	1.0	100 to 117	0.3 to 0.6
Hm	128^{3}	80	•••	1.0	66 to 87	-0.5 to 0.1
Hha	256^{3}	40	•••	no cooling	•••	•••
Μ	128^{3}	40	100	1.0	67 to 69	-0.5 to -0.4
MA	128^{3}	40	100	1.0	73 to 93	-0.3 to 0.2
MAm	128^{3}	80	100	1.0	66 to 87	-0.5 to 0.1
						\backslash /
$\alpha \approx 0$ agrees with the range observed from TI growth rate						

 $q^+ \propto n^{lpha}$ too simplistic

Conclusions

- aniso. conduction much closer to runs without conduction
- isotropic conduction suppresses cold gas
- Turbulent heating is ruled out
- Turbulent mixing is viable
- $\alpha \approx 0$ for turbulent heating/mixing

Thank You!