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TI paradigm

• cooling flows are absent; heating ≈ average cooling

• interplay of gravity & local TI in globally stable ICM

• behavior reproduced by realistic jets

• holds with anisotropic conduction

• role of turbulent heating/mixing



Toy model
heating~cooling at every radius 

(must be true to some degree to prevent cooling flows)

hydrostatic equilibrium: dp/dr = -ρg 
gravity due to dark matter

how far can we go with this 
simple model?

q+(r, t) = hn2⇤(T )i



“Entropy” (K=T/ne2/3)
entropy tracks non-adiabatic 

htg./cooling

K(r): history of gas accn.

[Cavagnolo et al. 2009]

large K  <=> low ICM density



Spherical Sims. Clusters
multiphase

if tcool/tff small!
only hot phase
if tcool/tff big!

cool filaments when tTI/tff < 10
spherical compression is quantitatively imp.

Log10 density

10 kpc

[Sharma et al. 2012]

need to understand this from analytic/phenomenological calculations



q+=q- =>small dM/dt 
as observedε ~10-3

cooling-flowq+=q-

dM/dt ~ 0.01dM/dt CF, as observed

[Sharma et al. 2012]



Self-Adjustment of ICM

mass dropout if tTI/tff<10
CC clusters at tTI/tff~10

even if we start w. much 
lower K0 or  tTI/tffK0=10 keVcm2



Self-Adjustment of ICM
[Cavagnolo et al. 2008]

K0=10 keVcm2

CC/NCC division corresponds to 
our tcool/tff criterion!

tcool/tff≈10 



Core vs. halo mass
tcool ~ T/nΛ~T1/2/n

cooling more imp. for lower
mass halos

bigger & lower density cores 
for groups vs. clusters

entropy almost the same for 
diff. halos => smaller halos 

overheated => steepening of 
LX-TX reln.

tcool/tff<10

hot plasma at late times

4x1013 Msun

1015 Msun

[Sharma et al. 2012]



Effects of Conduction

thermal conduction can, in principle, bring in heat from larger radii

106 R. Piffaretti et al.: Temperature and entropy profiles of nearby cooling flow clusters observed with XMM-Newton

for SCDM50, Mtot(<720 kpc) = 5.41+1.13
−0.76 × 1014 M# and

Mtot(<720 kpc) = 4.56 ± 0.35 × 1014 M# being Allen et al.
(2001)’s value and our estimate, respectively.

– For NGC 533, A 1837 and Sérsic 159−3 a fair comparison
with previous work is not possible.

To reiterate, the remainder of our analysis of our final sam-
ple of 13 objects relies on the validity of extrapolating pro-
files fitted to the inner region of the data: for both SCDM50
and ΛCDM70, the number of objects for which the outer ra-
dius Rout is larger than (or equal to) r∆ at the 95 percent level
of confidence is: 11 (NGC 533, A 262, A 1837, Sérsic 159–3,
2A 0335+096, MKW 3s, A 2052, A 4059, A 3112, A 1795 and
A 1835) for ∆ = 2500, 7 (NGC 533, A 1837, Sérsic 159–3,
MKW 3s, A 4059, A 1795 and A 1835) for ∆ = 1500, only 3
(A 1837, Sérsic 159–3 and A 1835) for ∆ = 1000 and none
for ∆ = 500.

4. Scaled temperature profiles

In the following we investigate the structure of the tempera-
ture profiles for our final sample of 13 cooling flow clusters.
In Figs. 1 (for SCDM50) and 2 (for ΛCDM70), we present the
deprojected radial profiles plotted against the radius in units
of rvir (≈r180 for SCDM and ≈r101 for ΛCDM at z = 0), where
the temperature has been normalized by the mean emission-
weighted temperature 〈TX〉. From a visual inspection it is ev-
ident that a temperature gradient is present at large radii and
that when normalized and scaled by the virial radius, tempera-
ture profiles are remarkably similar. In addition almost all the
individual profiles clearly show a break radius rbr, a decrease
of temperature from rbr inwards and a decline at radii larger
than rbr. In the following, we investigate the shape in detail.

4.1. The break radius

In the following we compute the break radius of the individual
clusters in units of rvir. For each cluster we divide the scaled
temperature profiles in two radial intervals: from the innermost
bin to the bin i and from the bin i + 1 to the outermost one.
Temperature profiles in each of the two intervals are then fit-
ted using straight lines, power laws and exponential functions.
All the nine combinations are used and for each pair of fit-
ting functions, i is varied until the best fit is achieved. Clusters
that do not show a clear temperature decrease in the outer re-
gion are excluded. These are A 262, A 496 and Perseus. For
the remaining clusters the bin i which gives the best fit is inde-
pendent of the choice of the fitting functions. The break radius
xbr = rbr/rvir is then defined as (xi + xi+1)/2 (where xi is the
distance of the bin i from the center in units of rvir) and its un-
certainty (xi+1−xi)/2. In Fig. 3 we show the break radius xproj

br =

rproj
br /rvir of the projected temperature profiles in SCDM50 as a

function of redshift. The mean value of xproj
br is 0.11 with a stan-

dard deviation of 0.01. Using a different method, De Grandi &
Molendi (2002) find 0.20 for the mean value of xproj

br for a sam-
ple of 11 cooling flow and 10 non-cooling flow clusters and
a lower value, 0.16, for the cooling flow clusters only. Taking
into account that De Grandi & Molendi (2002), who also used
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Fig. 1. Scaled temperature profiles (deprojected) in SCDM50 cos-
mology: the radius is scaled with the virial radius rvir = r180,
while the temperature is normalized by the mean emission-weighted
temperature 〈TX〉. Clusters are related to symbols as follows:
NGC 533 (crosses), A 262 (filled squares), A 1837 (filled diamonds),
Sérsic 159−3 (filled circles), 2A 0335+096 (open triangles), MKW 3s
(open pentagons), A 2052 (filled triangles), A 4059 (open diamonds),
A 496 (open hexagon), A 3112 (open stars), A 1795 (open squares),
Perseus (open circles) and A 1835 (filled stars).
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Fig. 2. Same as Fig. 1, but in ΛCDM70 cosmology.

projected profiles, computed the break radius for cooling flow
clusters by excluding the cooling region and fitting the pro-
files with a constant temperature for r < rproj

br and with a line
for r > rproj

br , the fact that their estimate is larger than ours is
not surprising. In ΛCDM70 the mean value of xproj

br is reduced
to 0.08 with a standard deviation of 0.01. In agreement with
De Grandi & Molendi (2002) we find that the intrinsic disper-
sion of the parent population of scaled break radii (assumed to
be distributed like a Gaussian) is consistent with 0 (for both
SCDM50 andΛCDM70). By performing the same analysis us-
ing deprojected temperature profiles we find 0.12 and 0.09 for
the mean value of xdeproj

b for SCDM50 and ΛCDM70, respec-
tively, and standard deviation of 0.01. This latter results shows
consistency between break radii of projected and deprojected
profiles.

4.2. The outer region

For comparison with other studies, we quantify the decline
seen in Fig. 1 (i.e. in a SCDM50 cosmology) for radii larger

[Piffaretti et al. 2005]



Problems w. conduction

• globally unstable

• HBI shuts of conduction

• still can play a key role in energetics

• numerics: no MPI code for implicitly doing 
aniso. conduction



 Conduction & cold gas

generalize the simple toy model but accounting 
conductive heating in energetics

q+(r, t) = hn2⇤(T )i+r · ~q

How do isotropic & anisotropic conduction change the picture?

in addition to tcool/tff, conduction is expected to suppress TI 



Why conduction in core?

No. 1, 2008 CONDUCTION AND STAR FORMATION THRESHOLD IN BCGs L7

Fig. 3.—Regions of thermal stability in the ICM based on the Field-length
criterion. Long-dashed lines show where for conduction suppressionl (K) p rF

factors and 1. Above these lines, conduction should be more effectivef p 0.2c

than radiative cooling, causing cooler structures of scale !r to evaporate. Below
these lines, radiative cooling should be more effective than conduction, al-
lowing thermal instability to proceed. Solid lines show schematic entropy
profiles of the form , with ,2 1.2K(r) p K ! (150 keV cm )(r/100 kpc) K p 00 0

10, 20, 30, and 50, as labeled. Short-dashed blue lines give entropy profiles
from K. W. Cavagnolo et al. (2008, in preparation) for clusters in which
Rafferty et al. (2008) find central star formation. Dotted red lines give entropy
profiles for clusters from Rafferty et al. (2008) without clear evidence for star
formation and that also have no detectable Ha emission (Cavagnolo et al.
2008).

with andG(U " I) p d(U " I)/d log r G(U " R) p d(U "
.R)/d log r

The transition to Ha emission and star formation is sharp
in both cases, but it is not yet clear whether the threshold ought
to be expressed in terms of central entropy or central cooling
time. Here we are presenting the results as a function of central
entropy because we are going to interpret them in terms of the
ICM entropy structure in the next section. However, it is in-
teresting that the central cooling times at which Ha and blue
light appear are substantially smaller than yr. Simply hav-1010
ing gas that is able to cool within a Hubble time is not enough
for star formation in a BCG. Some other more restrictive con-
dition must also be satisfied.

It is also interesting that in both figures there are clusters
with central entropy !20 keV cm2 and cooling time !3 # 108

yr that do not show evidence for star formation. Low entropy
and a correspondingly short cooling time are therefore not suf-
ficient to guarantee star formation. Rafferty et al. (2008) present
evidence suggesting that star formation proceeds only if the
AGN heating rate is less than the gas cooling rate and the
central galaxy is close to the X-ray brightness peak.

3. CONDUCTION AND THE CONDITIONS FOR A MULTIPHASE ICM

We suspect that the critical entropy threshold for multiphase
gas and star formation in BCGs may result from electron ther-
mal conduction. Cool star-forming clouds should appear only
in systems whose size is greater than a critical length scale,
known as the Field length, below which thermal conduction
smooths out temperature inhomogeneities (Field 1965; Begel-
man & McKee 1990). One can derive the Field length heuris-
tically by considering thermal balance for a cool cloud of radius
r embedded in a medium of temperature T. Electron thermal
conduction sends energy into the cloud at a rate
∼ , where2 "7 5/2 "1 "1r k(T )(T/r) k(T ) p 6 # 10 T f ergs s Kc

is the Spitzer conduction coefficient and is a suppression"1cm fc

factor depending on the magnetic field structure in the medium.
Radiative cooling can rid the cloud of energy at a rate
∼ , where the cooling function for3 2 1/2r n L(T ) L(T ) ∝ T T 1 2
keV. Cooling and conduction are therefore in approximate bal-
ance for systems with a radius of order the Field length,

1/2 3/2Tk(T ) K 1/2l { p 4 kpc f . (2)F c[ ] [ ]2 2n L(T ) 10 keV cm

Through a coincidence of scaling, the Field length is a function
of entropy alone when free-free emission is the dominant cool-
ing mechanism (Donahue et al. 2005).

Figure 3 illustrates how this criterion translates into the en-
tropy-radius plane. The long-dashed lines give the loci of points
for which , given suppression factors andl (K) p r f p 0.2F c

1. Magnetic suppression of conduction is a complicated and
incompletely understood process, but most recent estimates
have been in the range –0.3 (Malyshkin 2001; Narayanf ≈ 0.2c

& Medvedev 2001). Below each line, gas within radius r con-
stitutes a subsystem with . Conduction cannot stabilizer 1 lF

that gas against cooling, allowing multiphase gas to persist and
star formation to proceed. Above each line is the region of
stability, in which conduction leads to evaporation and
homogeneity.

For comparison, the solid lines in Figure 3 show schematic
intracluster entropy profiles motivated by the large Chandra
entropy survey of K. W. Cavagnolo et al. (2008, in preparation).
Fitting the form in equation (1) to those profiles gives

and for clus-2K p 146.8 ! 68.1 keV cm a p 1.22 ! 0.26100

ters with and temperatures ranging from 2 to2K ! 50 keV cm0

12 keV. The solid lines therefore represent typical intracluster
entropy profiles with , and2K p 150 keV cm , a p 1.2100

, 10, 20, 30, and 50 keV cm2. Note that only the sche-K p 00

matic profiles with , corresponding to clusters2K ! 30 keV cm0

with central star formation and Ha emission, dip below the
threshold for conductive stabilization corresponding to f pc

. Colored lines giving entropy profiles from K. W. Cavag-0.2
nolo et al. (2008, in preparation) reinforce this correspondence:
short-dashed blue lines show Rafferty et al. (2008) clusters
with central star formation, and dotted red lines show Rafferty
et al. (2008) clusters without clear evidence for star formation
and without detectable Ha emission (Cavagnolo et al. 2008).

This simple analysis suggests that conduction is responsible
for the strong dependence of Ha emission and star formation
on central entropy. Even though the suppression factor isfc

uncertain, a threshold must exist in the K-r plane above which
conduction heats and evaporates cooler gas clouds faster than
radiative losses can cool them. One therefore expects to see a
transition from a multiphase ICM at low central entropy levels
to a more homogeneous, isothermal ICM at higher entropy
levels. The Ha observations are indicating that this transition
is at approximately the expected location in the K-r plane for
thermal conduction with . We note that the presence off ≈ 0.2c

such a threshold is independent of the origin of the line-emitting
gas, which could come either from condensation of the ICM
or from stripping of cool interstellar clouds from galaxies pass-
ing through the cluster core. Stripped gas in an ambient medium

[Voit et al. 2008]

Field length, below which conducting prevents local TI

expect isotropic conduction to prevent condensation 
when Field length>core size; not so for anisotropic



Morphology
4 B. Wagh, P. Sharma, M. McCourt
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Figure 1. Contour plots of electron number density just when cold gas condenses in different 2-D simulations with initial core entropy of
K0 = 5 keV cm2. The number density is cut-off at the lowest and highest limits. Arrows represent magnetic field unit vectors. The cold
gas is more filamentary in presence of magnetic fields, as can be seen by comparing with Figure 4 in Paper I.

files of the ratio of the cooling time and the free-fall time
(tcool/tff) for 3-D simulations with an initial core entropy of
K0 = 5 keV cm2. The left panel shows the profiles for the
simulation with anisotropic conduction at the Spitzer value.
The right panel shows the same for isotropic conduction at
the Spitzer value. The minimum tcool/tff ≈ 6 in the initial
condition. Since tcool/tff < 10 in the core, cold gas condenses
with anisotropic conduction because of local thermal insta-
bility. Initially cold gas condenses out from the hot phase,
lowering the density of the remaining hot gas. This raises the
tcool/tff ratio until it reaches about 10. After that point we
no longer see cold gas. Thus, we conclude that the criterion
for the formation of multiphase gas and the self regulation
of core entropy are essentially unaffected in presence of mag-
netic fields and anisotropic conduction. Compare this with the
isotropic run where only a minor readjustment of the profiles
happens. The bottom panel of Figure 2 shows the mass accre-
tion rate as a function of time for the same runs. Clearly, the
mass accretion rate, especially in the cold phase (correspond-
ing to spikes), is much larger with anisotropic conduction.
This is consistent with the drop-out of large amount of gas
with anisotropic conduction. While K0 = 5 keV cm2 does not
show extensive cold gas with isotropic thermal conduction,
anisotropic runs are very similar to hydrodynamic runs. Thus,
we conclude that isotropic conduction at the Spitzer value is
ruled out by observations which show cold gas for clusters
with core entropy K0 ∼< 10 keV cm2 (Cavagnolo et al. 2008).
In contrast, anisotropic thermal conduction is consistent with
these observations.

Figure 3 shows the mass accretion rate in the cold phase
as a function of the initial core entropy (K0) for different
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Figure 2. Time- and angle-averaged radial profiles of (tcool/tff )
for hot (! 0.1 keV) gas in 3-D simulations with anisotropic (left)
and isotropic (right) thermal conduction. The initial core entropy
is K0 = 5 keV cm2. Substantial cold gas forms and drops out
with anisotropic conduction, leaving behind a core with tcool/tff ≈

10 at late times. Profiles are only slightly adjusted for the run
with isotropic thermal conduction. Bottom panel shows the mass
accretion rate through the inner radius (1 kpc) as a function of time
for the two runs. Large spikes correspond to enhanced accretion in
the cold phase.

runs. The 3-D control runs without thermal conduction are in-
cluded for comparison. The 2-D and 3-D runs with anisotropic
and isotropic thermal conduction at the Spitzer value are
also shown. Thermal conduction is expected to suppress cold

c© 2013 RAS, MNRAS 000, 1–6

[Wagh et al. 2014]

halo mass 3.8x1014Msun; split monopolar B~1 μG; K0=5 keV cm2

sim. with aniso. conduction much closer to hydro 



Anisotropic vs Isotropic 
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Figure 1. Contour plots of electron number density just when cold gas condenses in different 2-D simulations with initial core entropy of
K0 = 5 keV cm2. The number density is cut-off at the lowest and highest limits. Arrows represent magnetic field unit vectors. The cold
gas is more filamentary in presence of magnetic fields, as can be seen by comparing with Figure 4 in Paper I.

files of the ratio of the cooling time and the free-fall time
(tcool/tff) for 3-D simulations with an initial core entropy of
K0 = 5 keV cm2. The left panel shows the profiles for the
simulation with anisotropic conduction at the Spitzer value.
The right panel shows the same for isotropic conduction at
the Spitzer value. The minimum tcool/tff ≈ 6 in the initial
condition. Since tcool/tff < 10 in the core, cold gas condenses
with anisotropic conduction because of local thermal insta-
bility. Initially cold gas condenses out from the hot phase,
lowering the density of the remaining hot gas. This raises the
tcool/tff ratio until it reaches about 10. After that point we
no longer see cold gas. Thus, we conclude that the criterion
for the formation of multiphase gas and the self regulation
of core entropy are essentially unaffected in presence of mag-
netic fields and anisotropic conduction. Compare this with the
isotropic run where only a minor readjustment of the profiles
happens. The bottom panel of Figure 2 shows the mass accre-
tion rate as a function of time for the same runs. Clearly, the
mass accretion rate, especially in the cold phase (correspond-
ing to spikes), is much larger with anisotropic conduction.
This is consistent with the drop-out of large amount of gas
with anisotropic conduction. While K0 = 5 keV cm2 does not
show extensive cold gas with isotropic thermal conduction,
anisotropic runs are very similar to hydrodynamic runs. Thus,
we conclude that isotropic conduction at the Spitzer value is
ruled out by observations which show cold gas for clusters
with core entropy K0 ∼< 10 keV cm2 (Cavagnolo et al. 2008).
In contrast, anisotropic thermal conduction is consistent with
these observations.

Figure 3 shows the mass accretion rate in the cold phase
as a function of the initial core entropy (K0) for different
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Figure 2. Time- and angle-averaged radial profiles of (tcool/tff )
for hot (! 0.1 keV) gas in 3-D simulations with anisotropic (left)
and isotropic (right) thermal conduction. The initial core entropy
is K0 = 5 keV cm2. Substantial cold gas forms and drops out
with anisotropic conduction, leaving behind a core with tcool/tff ≈

10 at late times. Profiles are only slightly adjusted for the run
with isotropic thermal conduction. Bottom panel shows the mass
accretion rate through the inner radius (1 kpc) as a function of time
for the two runs. Large spikes correspond to enhanced accretion in
the cold phase.

runs. The 3-D control runs without thermal conduction are in-
cluded for comparison. The 2-D and 3-D runs with anisotropic
and isotropic thermal conduction at the Spitzer value are
also shown. Thermal conduction is expected to suppress cold

c© 2013 RAS, MNRAS 000, 1–6

[Wagh et al. 2014]

much smaller cold gas condenses with isotropic conduction 
because of suppression of TI by conduction

difference is more pronounced for massive clusters

K0=5 keV cm2
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Ṁ
c
o
ld
(M

!
y
r−

1
)

3-D aniso. cond.
2-D aniso. cond.

2-D iso. cond.
3-D iso. cond.
3-D no cond.

Figure 3.Average mass accretion rate through the inner boundary
in the cold (< 0.01 keV) phase as a function of the initial core en-
tropy K0 (and initial minimum tcool/tff ) for different cluster runs.
Anisotropic conduction does not affect the cold gas formation cri-
terion. In contrast, cold gas is suppressed with isotropic conduction
for K0 ∼

> 5 keV cm2. All runs with conduction use a Spitzer frac-
tion f = 1.

phase formation, and this is evident with isotropic conduc-
tion. The runs with anisotropic conduction are not affected
much and show cold gas for both tangled and radial initial
magnetic field geometries. Cold gas formation is hardly sup-
pressed with anisotropic thermal conduction because all scales
perpendicular to the magnetic field direction are thermally
unstable, and long overdense filaments aligned along the lo-
cal magnetic field condense out of the hot phase (see Fig.
1).

We have verified that the simulations with anisotropic
thermal conduction show magnetic fields preferentially
aligned perpendicular to the radial direction outside the core
because of the HBI. The core magnetic field is tangled be-
cause of motions stirred by local thermal instability. Simula-
tions without conduction or with isotropic conduction do not
show such a bias. This can be seen at large radii in Figure 1.

Figure 4 shows the mass accretion rate in the cold phase
for different mass halos and using different Spitzer fractions,
with both isotropic (filled symbols) and anisotropic (open
symbols) thermal conduction. The mass accretion rate de-
creases with increasing core entropy and no cold gas is formed
for K0 > 10 keV cm2. More importantly, no cold gas is pro-
duced in group and massive cluster runs for K0 ! 7.5 keV
cm2 runs using isotropic conduction at the Spitzer value.
Observationally, there is not much dependence of the pres-
ence of cold gas filaments (e.g., traced by Hα) with the halo
mass (McDonald, Veilleux, & Mushotzky 2011; also Fig. 9
in Paper I). Improving the accuracy of this observational cor-
relation will help constrain conduction in cluster cores. The
mass accretion rate in the cold phase is quite insensitive to the
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Figure 4. The average mass accretion rate in the cold phase (<
0.01 keV) as a function of core entropy in 2-D runs (512×256) with
isotropic and anisotropic thermal conduction. The squares, circles
and triangles represent group (halo mass 3.8 × 1013 M!), cluster
(halo mass 3.8×1014 M!) and massive cluster (halo mass 1015 M!)
runs, respectively. Different colors correspond to different values of
core entropy.

The filled symbols are for isotropic conduction runs with
conductivity factors of f = 0.3, 1 (mass accretion rate decreases

with increasing Spitzer fraction). The open symbols are for
anisotropic conduction runs with conductivity factors of f = 1, 3.

halo mass and the Spitzer fraction for runs using anisotropic
conduction; the spread in open symbols is much smaller than
in filled symbols in Figure 4.

4 ASTROPHYSICAL IMPLICATIONS

This paper takes the important step of including magnetic
fields and thermal conduction in studying the condensation
of cold filaments in globally stable but locally thermally
unstable cores of galaxy clusters. The formalism developed
by McCourt et al. (2012) and Paper I is based on the ob-
served rough thermal balance in cluster cool cores, and is
able to quantitatively account for the presence of extended
cold filaments observed in most cool clusters. We show that
anisotropic thermal conduction at the Spitzer value does not
significantly affect the formation of cold gas in our models
with thermal balance, but models using isotropic conduction
show strongly suppressed cold gas condensation (Fig. 3). The
simulations with anisotropic conduction show cold gas when-
ever tcool/tff ∼< 10 (corresponding to K0 ∼< 10 keV cm2) but
formation of substantial cold gas with isotropic thermal con-
duction requires tcool/tff < 6 (K0 < 5 keV cm2). Thus, obser-
vations suggest that either thermal conduction is anisotropic
or, if conduction is isotropic, it is suppressed by a factor > 3
compared to the Spitzer value.

c© 2013 RAS, MNRAS 000, 1–6

1-2 orders of 
magnitude lower

cold gas with 
isotropic conduction

at K0≳5 keV cm2

[Wagh et al. 2014]



What heats cool cores?

– 4 –

such that in 3D it is actually a torus. The dynamics of toroidal clumps is expected to differ from the dynamics
of spherical clumps, in terms of the drag forces and interaction with their surroundings, the development of
instabilities, and so on. However, it may be good enough as an approximation and for preliminary work. In
particular, features near the symmetry axis must be treated very carefully and with caution. The full 3D
problem is computationally expensive, and will be examined in a future work.

3. GLOBAL FLOW STRUCTURE

The global flow structure influences the mixing of the clump with the shocked jets’ material. For that
we start by presenting in figure 1 and 2 the global flow structure of Run M20D03, where a periodic jet is
injected into the grid. Later we will follow in greater details the evolution of the clumps in this run. The
clumps, that have an initial 3D torus structure in our 2.5D grid, start with an initial constant density having
a contrast of

δ =
ρclumps − ρICM

ρICM
, (5)

relative to the density of the ICM, ρICM. The jet is active for tjet = 10 Myr and with a quiescence period of
tq = 10 Myr between active phases, i.e., a time period of tjp = 20 Myr.

cold clumps
bubble

shock waves

sound waves

Fig. 1.— The global flow structure of Run M20D03 at t = 50 Myr. In Run M20D03 the jet is active
for tjet = 10 Myr in each episode, with a quiescence period of tq = 10 Myr between active episodes. The
color coding of density is in g cm−3 and logarithmic scale. In the left panel we show the density map
at t = 50 Myr of the regions influenced by the jets. Marked are three dense-cold clumps with an initial
over-density of δ = (ρclumps−ρICM)/ρICM = 0.1, whose evolution we follow in later sections, as well as shock
waves and sound waves. Each clump has an initial shape of a torus in 3D with a cross section of radius
R = 1 kpc, and the centers of the cross sections at t = 0 are at a distance of r = 45 kpc from the center
of the grid. In the right panel we zoom on one region at the same time, and also present velocity arrows,
emphasizing vortices and flow toward the jet’s axis in some ICM regions. Velocity is proportional to the
arrow length, with inset showing an arrow for 10, 000 km s−1. Note the different scaling of the panels.

Due to numerical limitations of the 2.5D code we launch jets along the same direction and they expand
along the symmetry axis. In reality, for such a long duration we expect that a relative motion of the central

[Hillel & Soker 2014]
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is subjected to optically thin radiative cooling and turbu-
lent heating by random velocity perturbations. The magne-
tohydrodynamic (MHD) equations governing this plasma are
given by:

∂ρ
∂t

+ #∇ · (ρ#v) = 0, (1a)

∂(ρ#v)
∂t

+ #∇ · (ρ#v ⊗ #v + P ∗I) = #F , (1b)

∂E
∂t

+ #∇ · {(E + P ∗)#v + ( #B · #v) #B + #Q} = #F · #v − L, (1c)

∂ #B
∂t

− #∇× (#v × #B) = 0, (1d)

P ∗ = P +
#B · #B
2

, (1e)

E =
P

γ − 1
+

ρ#v · #v
2

+
#B · #B
2

, (1f)

where t, ρ, #v, P , #B, E, and γ have their usual meanings. There
are three non-ideal MHD terms (#F, L, #Q): #F represents tur-
bulent forcing at a given location in the ICM, L (≡ neniΛ,
where ne/ni are electron/ion number densities and Λ(T ) is
the temperature-dependent cooling function) is the radiative
loss term, and #Q is the heat flux due to anisotropic thermal
conduction given by

#Q = −κSb̂(b̂ · #∇)T, (2)

where b̂ ≡ #B/| #B| is the magnetic field unit vector. The con-
ductivity is chosen to be equal to the classical Spitzer con-
ductivity (Spitzer 1965),

κS =
1.84 × 10−5

lnλ
T 5/2erg s−1K− 7

2 cm−1. (3)

We use the standard value of lnλ = 37. We carry out hydro
and MHD runs, and some runs with anisotropic thermal con-
duction. The list of runs with appropriate parameters is given
in Table 1.

2.2 Numerical setup

For a plasma in thermal equilibrium, which is not subject
to gravitational stratification, thermally instability leads to
condensation of cold gas from the hot phase. Nonlinearly, the
cold gas collapses to an extremely small scale ∼ Field length
(in the cold phase; Field 1965; Koyama & Inutsuka 2004;
Sharma et al. 2010). Resolving such structures using realis-
tic microscopic parameters is impossible as the separation of
scales is enormous. Convergence of the cold phase is partly
achieved if we truncate the cooling function at a small tem-
perature floor Tcutoff (as also done by McCourt et al. 2012),

L = neniΛ(T )H(T − Tcutoff), (4)

where H is the Heaviside function and we choose Tcutoff = 106

K for most runs (one of our runs, MA4, uses a cut-off at 104 K
to assess sensitivity to this parameter). This choice is reason-
able since runaway cooling happens once a blob cools below
few×106 K. We use the cooling function Λ(T ) for an ionised

plasma as given in Figure 1 of Sharma et al. (2010). To pre-
vent negative temperatures, anisotropic thermal conduction
in Eq. 1c is implemented using limited averaging of transverse
temperature gradients (Sharma & Hammett 2007).

Turbulent forcing, #F in Eq. (1b,c), is calculated as fol-
lows. First, statistically uniform, isotropic random velocity
perturbations in each direction δvi(#k) are generated in #k
space, which have the following spectrum (from Gammie &
Ostriker 1998),

δvi(#k) ∝ k3e−(4k/kpeak), (5)

where kpeak = 2π/(10kpc) is the fiducial peak driving
wavenumber. Then, the velocity field is made divergenceless
by projecting δ#v(#k) perpendicular to #k. After converting the
velocity perturbations to real space, a constant is subtracted
from all three components of velocity perturbations such that
no net momentum is added to the box, i.e., 〈δ#v(#x)〉 = #0. Tur-
bulent forcing, given by

#F (#x, t) = ρδ#v(#x, t)/δt, (6)

is scaled to maintain global thermal equilibrium, 〈#F · (#v +
δ#v)〉 = 〈L〉, where 〈〉 denotes volume averaging and δt is the
CFL timestep.

We have modified the ATHENA MHD (Stone et al.
2008) code to solve equations 1 through 6. We use piecewise
linear spatial reconstruction, the CTU/van-Leer integrator,
and periodic boundary conditions. We use the Roe solver for
MHD runs and HLLC solver for hydrodynamic simulations.

It is important to note that the turbulent force #F appears
twice in the MHD equations, once in the momentum equa-
tion and then in the energy equation. These are implemented
separately as split updates without modifying the main MHD
integrator. Cooling and conduction are also applied in an op-
erator split fashion; sub-cycling is implemented for the cooling
and conduction substeps.

Most of our runs use a 3-D cartesian grid extending 40
kpc in each direction, with a resolution of 1283; some runs
with 80 kpc box size and 2563 resolution are also carried out.
Our uniform runs are initialized with a temperature and den-
sity typical of a cool core: T0 = 0.78 keV, ne = 0.1 cm−3;
the cooling time for these parameters is ≈ 100 Myr. In an-
other set of runs (hereafter referred to as mixing runs) we
use an 80 kpc domain with (40kpc)3 occupied by ne = 0.1
cm−3 (T = 0.78 keV) and rest of the volume by ne/3 in pres-
sure balance. Homogeneous, isotropic initial density pertur-
bations are seeded with ( δρ

〈ρ〉 )rms = 10−3 (the spectrum is the

same as in Sharma et al. 2010). For MHD simulations a uni-
form magnetic field with β = 100 (ratio of plasma pressure
and magnetic pressure) is initialized. The plasma composi-
tion is such that the mean mass per particle and electron are
µ = 0.62 and µe = 1.17, respectively.

3 RESULTS

We have carried out several simulations to study the interplay
of radiative cooling, turbulent heating and mixing in detail.

c© 2012 RAS, MNRAS 000, 1–12
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Figure 2. Volume rendering of temperature (T ) at 90 Myr (top) and at 1.05 Gyr (bottom) for the fiducial run (1283; H; left) and 2563 (Hh;
right) run. The box size is 40 kpc. The colorbar shows the temperature; all the plasma above 3×106 K is transparent and the plasma below
this temperature is opaque. The first nonlinear state (at 90 Myr) shows perturbations due to driven turbulence; the second nonlinear state
at 1.05 Gyr is dominated by cold gas. The temperature distributions for the two resolutions are statistically similar. There is substantial
gas at intermediate temperatures that forms a turbulent sheath around the coolest clumps.

tually saturates. The right panel of Figure 3 shows the Mach
number distribution at 90 Myr and 1.05 Gyr. Unlike the tem-
perature distribution, the Mach number distribution shows a
single broad peak. The Mach number peak at M ∼> 1 dis-
agrees with the observations of cool core clusters that show
subsonic gas. A comparison of temperature and Mach num-
ber distributions for the two resolutions show that the results
are statistically converged. Since the results show statistical
convergence at 1283 and because the simulations with cool-
ing are expensive, most of our other runs with magnetic fields
and conduction are carried out at the resolution of 1283.

The amplitude of density perturbations is a good diag-
nostic to characterize the two nonlinear stages in the evolution
of our simulations. In the turbulent stage, the density fluc-
tuations are small because turbulence is subsonic. However,
when local thermal instability kicks in later, the density per-
turbations become highly nonlinear because of condensation

of cold gas. Figure 4 shows the volume-averaged rms density
fluctuations ([δρ/ρ]rms =

√

〈[ρ− 〈ρ〉]2〉/〈ρ〉, where 〈〉 denotes
volume averaging) as a function of time for the fiducial run,
and for other selected runs. It is clear that (δρ/ρ)rms steadily
increases to reach a saturation between ≈ 0.2− 0.3 at t ≈ 40
Myr, which is approximately the eddy turnover time. After
some time in this nonlinear turbulent steady state with small
density perturbations, the density perturbations start grow-
ing roughly exponentially and saturate with (δρ/ρ)rms ∼> 1 at
later times.

The growth rate of density perturbations due to ther-
mal instability can be measured from Figure 4. The measured
thermal instability growth rate can help us compare our ide-
alized simulations with cluster observations, as we discuss in
section 4.2. A very precise measurement of the thermal insta-
bility growth rate is not possible from our simulations because
the initial saturation of δρ

〈ρ〉 (due to turbulence before thermal
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Figure 2. Volume rendering of temperature (T ) at 90 Myr (top) and at 1.05 Gyr (bottom) for the fiducial run (1283; H; left) and 2563 (Hh;
right) run. The box size is 40 kpc. The colorbar shows the temperature; all the plasma above 3×106 K is transparent and the plasma below
this temperature is opaque. The first nonlinear state (at 90 Myr) shows perturbations due to driven turbulence; the second nonlinear state
at 1.05 Gyr is dominated by cold gas. The temperature distributions for the two resolutions are statistically similar. There is substantial
gas at intermediate temperatures that forms a turbulent sheath around the coolest clumps.

tually saturates. The right panel of Figure 3 shows the Mach
number distribution at 90 Myr and 1.05 Gyr. Unlike the tem-
perature distribution, the Mach number distribution shows a
single broad peak. The Mach number peak at M ∼> 1 dis-
agrees with the observations of cool core clusters that show
subsonic gas. A comparison of temperature and Mach num-
ber distributions for the two resolutions show that the results
are statistically converged. Since the results show statistical
convergence at 1283 and because the simulations with cool-
ing are expensive, most of our other runs with magnetic fields
and conduction are carried out at the resolution of 1283.

The amplitude of density perturbations is a good diag-
nostic to characterize the two nonlinear stages in the evolution
of our simulations. In the turbulent stage, the density fluc-
tuations are small because turbulence is subsonic. However,
when local thermal instability kicks in later, the density per-
turbations become highly nonlinear because of condensation

of cold gas. Figure 4 shows the volume-averaged rms density
fluctuations ([δρ/ρ]rms =

√

〈[ρ− 〈ρ〉]2〉/〈ρ〉, where 〈〉 denotes
volume averaging) as a function of time for the fiducial run,
and for other selected runs. It is clear that (δρ/ρ)rms steadily
increases to reach a saturation between ≈ 0.2− 0.3 at t ≈ 40
Myr, which is approximately the eddy turnover time. After
some time in this nonlinear turbulent steady state with small
density perturbations, the density perturbations start grow-
ing roughly exponentially and saturate with (δρ/ρ)rms ∼> 1 at
later times.

The growth rate of density perturbations due to ther-
mal instability can be measured from Figure 4. The measured
thermal instability growth rate can help us compare our ide-
alized simulations with cluster observations, as we discuss in
section 4.2. A very precise measurement of the thermal insta-
bility growth rate is not possible from our simulations because
the initial saturation of δρ

〈ρ〉 (due to turbulence before thermal
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Figure 3. The probability distribution function (pdf) of mass as a function of temperature and Mach number (M ≡ v/[γP/ρ]1/2) at
two different times for the fiducial run (H) and its high resolution version (Hh). There is a clear excess of gas at the temperature of the
thermally stable phase.

Figure 5. Volume rendering of temperature (T ) at 1.05 Gyr for the MHD runs MA, MA4 (run with the stable phase at 104 K), and MAm
(mixing run; from left to right; see Table 1). The colorbar shows the temperature; all the plasma above 3× 106 K is transparent and the
plasma below this temperature is opaque. The box-size is 40 kpc for MA and MA4, but 80 kpc for the mixing run MAm. Overall, the
volume rendering plots look ‘cloudy,’ similar to the hydro runs (Fig. 2) but there are some magnetically-dominated filamentary structures
at cloud boundaries.

instability takes over) happens at a large value. The range of
measured thermal instability growth time scales for different
runs are given in Table 1.

3.2 Impact of driving scale, magnetic fields and

conduction

After discussing the results from hydro runs in the previous
section, we study the influence of numerical parameters and
additional physics such as MHD and thermal conduction on
our results. The run with half the box-size (20 kpc on a side;
run Hs in Table 1) and a similarly scaled driving scale does
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Figure 7. Probability distribution functions of mass ( dM
d log10 T ) and volume ( dV

d log10 T ) with respect to temperature at early and late times

for the uniform hydro run (H), the uniform MHD runs with anisotropic conduction (MA), and the mixing MHD run with anisotropic
conduction (MAm). The temperature distribution is bimodal after a thermal instability timescale; the bimodality is sharper for MHD runs
with conduction.

obtained by noting that ρ0v
3
L,hot/(fL) = gn2

0Λ0. This gives
the turbulent velocity on the driving scale in the hot zone
vL,hot ≈ (fg)1/3c2/3s0 (L/tcool,0)

1/3, where cs0 is the sound
speed in the cooler zone and tcool,0 its cooling time. Since
the hot zone is overheated and the cooler zone is cooling on
average, there is a flow of energy from the hotter to cooler
zone and flow of mass in the opposite direction.

The net rate (per unit volume) of energy brought in the
cooler region by turbulent motions is ∼ (1− f−1/3)U/tmix,hot

(since turbulent velocity in the lower density zone is f1/3

larger than in the denser zone), where tmix,hot = L/vL,hot.
Therefore, the heating rate due to turbulent mixing is
∼ n2

0Λ0(1 − f−1/3)(fg)1/3(cs0tcool,0/L)
2/3 ∼ n2

0Λ0(1 −
f−1/3)(cs0tcool,0/L)

2/3, which can be comparable to the cool-
ing rate for subsonic cooling (cs0tcool,0 ∼> L) in the cooler
region (mimicking the core). Thermal conduction will also
transport heat from hotter to cooler regions without turbu-
lence. The Mach number in the hotter and cooler regions are
∼ (fg)1/3f−1/2(L/cs0tcool,0)

1/3 and ∼ g1/3(L/cs0tcool,0)
1/3,

respectively. For subsonic cooling both zones can have Mach
number M ∼< 1. The cooler zone is thermally unstable (and
cooling on an average at the beginning) and part of it cools to
thermally stable temperature and the rest is mixed in the hot
phase. This is clearly seen by comparing early and late time
pdfs in Figure 6. Most importantly, the Mach number in the
hot phase for turbulent mixing runs is small and consistent
with the observational limits.

Figure 7 shows the volume and mass pdfs as a function of
the Mach number for the hydro, MHD and the MHD mixing
runs at early and later times. At late times the Mach number
pdf for the mixing run is peaked at significantly smaller Mach
numbers as compared to the hydro runs. The lower Mach

number peak, corresponding to the hot phase, is roughly con-
sistent with the velocity constraints in cool core clusters. The
higher Mach number peak corresponds to the gas at ther-
mally stable temperature, and cold filaments can indeed have
slightly supersonic velocities. Thus, turbulent mixing of hot
and cooler ICM via AGN jets is a viable source for heating
cool cluster cores.

4.2 Density dependence of microscopic heating

Some of the previous work (Sharma et al. (2010); McCourt
et al. (2012); Sharma et al. (2012)) has added heat in cool
core clusters as thermal energy. However, observations of jets
expanding in the ICM suggest that heating should be via in-
jection of kinetic energy due to shocks and turbulence. In this
paper we have explored the implications of turbulent heating
of the ICM. The thermal instability timescale (tTI) is not
directly measurable from observations (although tcool is) be-
cause it depends on the density dependence of the unknown
heating function. The internal energy equation is

ρT
ds
dt

= −n2Λ(T ) + q+(n,"r, t),

where s ≡ kB ln(P/ργ)/[(γ − 1)µmp] is the specific entropy.
The isobaric thermal instability timescale for an above form
of the heating function is related to the cooling time via

tTI =
γtcool

2− d lnΛ
d lnT − α

, (9)

where q+ ∝ nα. Thus, tTI ≈ (10/9)tcool for α = 0 and tTI ≈
(10/3)tcool for α = 1 in the free-free regime (Λ ∝ T 1/2; see Eq.
19 in McCourt et al. 2012 for details). We can thus measure
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Figure 4. The volume-averaged rms density fluctuations
([δρ/ρ]rms) as a function of time for different runs. The figure
clearly shows two stages of evolution: first dominated by turbulence
and the second by thermal instability. The linear growth rates mea-
sured using these plots (where rms density fluctuations rise from
an amplitude of 0.3 to 1) are given in Table 1. The runs that do
not show cold gas saturate with lower density perturbations.

not show cold multiphase gas but the run with double the
box-size (and a larger turbulence driving scale; run Hl in Ta-
ble 1) shows condensation of multiphase clouds. The absence
of multiphase gas for the run with a smaller driving scale is
understandable. For the smaller driving scale run which is
pumping in similar energy per unit volume as the run with
a larger driving scale (energy input per unit volume is sim-
ilar because radiative cooling per unit volume is fixed), the
velocity at the driving scale is larger (∝ L1/3, where L is the
driving scale) and the mixing time (∝ L2/3) at the driving
scale is shorter. In this argument we assume that the density
perturbations at scales larger than the driving scale are neg-
ligible. The scales smaller than the driving scale are mixed
at an even faster rate but the cooling rate is independent of
length scale. Thus, the runs with smaller driving scales are
less susceptible to show multiphase gas. Since the small box
run does not show multiphase gas, it also does not show the
late time increase in kinetic energy (Fig. 1) and (δρ/ρ)rms

(Fig. 4). The lower density uniform run with a long cooling
time (Ht in Table 1) also does not produce multiphase gas
because cooling time is longer than the mixing time; this run
behaves like the smaller box run Hs.

The runs with magnetic fields in the lower panel of Figure
1 show that the kinetic energy for MHD runs is smaller com-
pared with the pure hydro runs; this is true for both runs with
and without conduction, although only runs with conduction
are shown. The kinetic energy density is lower because the
gas is not only heated due to the dissipation of kinetic energy
but also due to the dissipation of turbulent magnetic energy,
and hence the energy requirement on turbulence is smaller.
Since turbulent velocity is smaller with magnetic fields and
the mixing time is longer, cold gas is expected to condense
more easily in MHD runs. Moreover, magnetic fields provide
resistance to mixing of cooler gas due to turbulence. The left
panel in Figure 5 shows the temperature snapshot at late

times for the uniform MHD run with anisotropic conduction
(MA). Globally the features look very similar to the hydro
run but the cooler gas is a bit more filamentary because of
magnetic fields. Small scale features are also suppressed be-
cause of thermal conduction.

Figure 6 shows the temperature pdf of gas for the fidu-
cial hydro run and the MHD runs at early and late times.
The pdfs at early times for the uniform runs are very sim-
ilar. At later times the fraction in cold gas is larger for the
uniform MHD run as compared to the hydro run. Since en-
ergy injection rate equals average cooling rate in our set up,
the temperature of the hot phase is higher for MHD because
of enhanced radiative cooling and a larger cold fraction. The
fraction of gas at intermediate temperatures is also smaller
in MHD because of weaker turbulence. Figure 7 shows the
Mach number pdfs of gas for hydro and MHD runs. Unlike
the fiducial hydro run, which shows a broad Mach number
distribution with a single peak (although on a closer look one
can see two peaks even for the hydro run), the uniform MHD
run with conduction shows two clear peaks in the Mach num-
ber distribution. Both the subsonic and supersonic peaks have
a lower Mach number compared to their hydro counterparts,
which is consistent with a smaller kinetic energy for MHD
runs (Fig. 1). The higher Mach number peak corresponds to
the cooler thermally stable gas and the lower Mach number
peak corresponds to the hot peak in the temperature distri-
bution. As expected from Figure 6, the fractional mass in the
higher Mach number peak is larger for MHD as compared to
the hydro run. Figure 4 shows that the rms density perturba-
tions in MHD runs behave like the hydro runs, and therefore
the thermal instability growth rate estimates in Table 1 are
also very similar.

3.3 Mixing runs

Since our uniform runs give large velocities in the hot gas
(Figs. 3, 7), they are inconsistent with observations of cool-
core clusters which show subsonic velocities. The Mach num-
bers are a bit lower for MHD runs, but still too big com-
pared to observations. In order to make our setup consistent
with observations we carry out mixing runs (Hm and MAm
in Table 1) where a fraction of the gas is at the tempera-
ture corresponding to the cool core and rest of the volume is
occupied by the hotter (by a factor of 3; this choice is moti-
vated by the fact that most cluster cores show dramatic lack
of gas below 3 times the peak temperature; Peterson et al.
2003), dilute ICM. In this setup heating of the cool core
happens mainly through turbulent mixing of the hotter and
cooler gases, but not via turbulent heating. Unlike uniform
runs, there is transport (both conductive and turbulent) of
heat from hotter ICM to the cooler gas. This setup mimics
the mixing of hot ICM with the cool core driven by AGN
jets.1 Again, global thermal balance is imposed. Since most

1 ICM core can also be heated by the mixing of cosmic rays within
the bubble with the cool core but cosmic ray particles are collision-
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Table 1. Various runs

Label † Res. Lx (kpc) β‡ 〈heating〉
〈cooling〉 tTI range (Myr) α†† range

= Ly = Lz

H∗ 1283 40 ... 1.0 59 to 116 −0.8 to 0.6
Hh 2563 40 ... 1.0 52 to 132 −1.2 to 0.7
Ht 1283 40 ... 1.0 ... ...
Hs 1283 20 ... 1.0 ... ...
Hl 1283 80 ... 1.0 100 to 117 0.3 to 0.6
Hm 1283 80 ... 1.0 66 to 87 −0.5 to 0.1
Hha 2563 40 ... no cooling ... ...
M 1283 40 100 1.0 67 to 69 −0.5 to − 0.4
MA 1283 40 100 1.0 73 to 93 −0.3 to 0.2
MAm 1283 80 100 1.0 66 to 87 −0.5 to 0.1
MA4 1283 40 100 1.0 31 to 52 −3.4 to − 1.2

Notes
†H stands for hydrodynamics, M is for MHD, h refers to high reso-
lution, A represents anisotropic thermal conduction, and m stands
for mixing runs. Run Ht has half (double) the fiducial density (tem-
perature). Run Hs (Hl) uses half (double) the fiducial box size;
kpeak (Eq. 5) is scaled with the box-size. Run Hha is an adiabatic
high resolution run without cooling. The hydro mixing run Hm
with the 80 kpc box-size has two regions: first a (40 kpc)3 zone at
the fiducial temperature and density; rest of the volume is at thrice
(a third) the fiducial temperature (density). The MHD mixing run
MAm is similar. Run MA4 is a uniform MHD run with the stable
phase at 104 K; all other runs have stable phase at 106 K.
‡β = 8πnkBT

B2 .
†† density dependence of heating using Eq. 9 with d lnΛ/d lnT = 0.
∗The fiducial run.

Simulations include hydro and MHD runs, with and without
thermal conduction. Different runs are summarized in Table
1. Various important results are discussed in the following
sections.

3.1 The fiducial run: evolution & convergence

Most of our simulations, studying the interplay of radiative
cooling and turbulent heating, show two stages in their evo-
lution: first, where the impact of cooling is negligible and a
turbulent steady state is attained; and second, where thermal
instability takes over and leads to the formation of multiphase
gas. The top panel of Figure 1 shows the evolution of average
kinetic energy density for the fiducial hydro run (H) and its
high resolution version (Hh). For these runs the kinetic energy
first saturates at about 40 Myr. This time corresponds to the
eddy turnover time scale at the driving scale (corresponding
to kpeak in Eq. 5) when a turbulent steady state is reached.
At later times, around 300− 600 Myr, the ICM enters a sec-
ond non linear stage of evolution, with a larger magnitude of
kinetic energy. This increase is associated with the produc-
tion of multiphase gas due to local thermal instability. Since
radiative cooling is more efficient at lower temperatures and
we impose thermal balance, larger kinetic energy needs to be
dissipated to balance cooling losses.

Figure 2 shows the volume snapshots of temperature at
90 Myr (saturated turbulence without cold gas) and at 1.05
Gyr (non linear stage with multiphase gas). Snapshots from
the fiducial run are compared with a similar higher resolu-
tion (2563) run. It is obvious from these plots that significant
amount of cold gas has condensed by 1.05 Gyr. The snap-
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Figure 1. Top panel: Volume averaged kinetic energy density for
hydrodynamic runs: the fiducial run (H), the high resolution run
(Hh), and the run with half the initial density (Ht). The lower
density run does not show multiphase gas and the kinetic energy
saturates without growth at later times, unlike other runs that
show multiphase gas. Bottom panel: Kinetic and magnetic energy
densities for the MHD runs with anisotropic thermal conduction,
both the uniform run (MA) and the mixing run (MAm). Magnetic
and kinetic energy densities for both MHD runs are smaller than
in hydro runs because magnetic dissipation contributes to plasma
heating.

shots for different resolutions look different because the ran-
dom number generating seed is the same but the number of
grid points is 8 times larger for the higher resolution run. The
features show a much larger range in the higher resolution run
because of a smaller dissipation scale.

Statistically the simulations at two resolutions are simi-
lar, as can be seen from the probability distributions of tem-
perature and Mach number in Figure 3. The cooler gas starts
as small clouds which are mixed and merged, and at later
times only large clouds comparable to the box size survive.
The coolest, densest gas is clumpy and covered by a sheath of
lower density, higher temperature gas. These clouds are mor-
phologically distinct from the filaments observed in cool core
clusters (e.g., Fabian et al. 2008). This is because the cold fil-
aments are magnetically dominant and not prone to mixing,
unlike our clouds in Figure 2. Magnetic fields are expected to
be dominant in the cold phase because of flux freezing in dense
filaments that are much denser (by a factor ∼ 103) than the
ambient ICM. Moreover, turbulence is not expected to be as
vigorous as in our hydro runs if other sources of heating such
as thermal conduction and turbulent mixing (with the hotter
gas) are present. We discuss the formation of cold filaments
further in section 4.3.

The left panel of Figure 3 shows the temperature distri-
bution of mass, which peaks at 106 K (the thermally stable
phase) and at ∼ 107 K, but there is substantial mass at in-
termediate temperatures; this is also seen in Figure 2. The
mass at the thermally stable phase slowly build up and even-
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α≈0 agrees with the range observed from TI growth rate

q+ / n↵ too simplistic



Conclusions

• aniso. conduction much closer to runs 
without conduction

• isotropic conduction suppresses cold gas 

• Turbulent heating is ruled out

• Turbulent mixing is viable

• α≈0 for turbulent heating/mixing

Thank You!


